Sujet de révision pour les écrits: Fonction Digamma

On rappelle que l'on peut définir la fonction Γ sur $]0, +\infty[$ par : $\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt$. Cette fonction a les propriétés suivantes (admises dans ce problème):

- Pour tout x > 0, on a $\Gamma(x+1) = x\Gamma(x)$.
- Γ est de classe \mathcal{C}^{∞} et : $\forall n \in \mathbb{N}, \forall x > 0, \quad \Gamma^{(n)}(x) = \int_0^{+\infty} (\ln t)^n t^{x-1} e^{-t} dt$.

On définit la fonction ψ (fonction Digamma) par : $\forall x > 0, \psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}$

Préliminaire

- Q1. Montrer que la série $\sum_{n\geq 2} u_n$, de terme général $u_n = \int_{n-1}^n \frac{1}{t} dt \frac{1}{n}$, converge.
- Q2. Montrer que la suite de terme général $H_n = \sum_{k=1}^n \frac{1}{k} \ln(n)$ converge.

La limite de la suite $(H_n)_{n\geqslant 1}$ sera notée γ dans tout le sujet (γ est appelée la constante d'Euler).

Expression de la fonction Digamma à l'aide d'une série

Q3. Pour $x \in]0, +\infty$ [et pour tout entier $n \ge 1$, on définit la fonction f_n sur $]0, +\infty$ [par :

$$f_n(t) = \begin{cases} \left(1 - \frac{t}{n}\right)^n t^{x-1} & \text{si } t \in]0, n] \\ 0 & \text{si } t \in]n, +\infty[\end{cases}$$

(a) Démontrer que, pour tout $x < 1, \ln(1-x) \le -x$.

En déduire que, pour tout entier $n \ge 1$, pour tout $x \in]0, +\infty[$ et tout $t \in]0, +\infty[$,

$$0 \leqslant f_n(t) \leqslant e^{-t}t^{x-1}$$

(b) En utilisant le théorème de convergence dominée, démontrer que, pour tout $x \in]0, +\infty[$:

$$\Gamma(x) = \lim_{n \to +\infty} \int_0^n \left(1 - \frac{t}{n}\right)^n t^{x-1} dt.$$

- Q4. On pose, pour n entier naturel et pour $x \in]0, +\infty \mid I_n(x) = \int_0^1 (1-u)^n u^{x-1} du$.
- (a) Après avoir justifié l'existence de l'intégrale $I_n(x)$, déterminer, pour x > 0 et pour $n \ge 1$, une relation entre $I_n(x)$ et $I_{n-1}(x+1)$.
- (b) En déduire, pour n entier naturel et pour $x \in]0, +\infty[$ une expression de $I_n(x)$. (c) Démontrer que: $\forall x > 0, \Gamma(x) = \lim_{n \to +\infty} \frac{n! n^x}{\prod_{k=0}^{n} (x+k)}$.
 - Q5. En remarquant que, pour $n \ge 1$ et $x \in]0, +\infty[$, $\frac{1}{n^x} \prod_{k=1}^n \left(1 + \frac{x}{k}\right) = e^{xH_n} \prod_{k=1}^n \left[\left(1 + \frac{x}{k}\right) e^{\frac{-x}{k}}\right]$,

démontrer que, pour tout $x \in]0, +\infty[: \frac{1}{\Gamma(x)} = xe^{\gamma x} \lim_{n \to +\infty} \prod_{k=1}^{n} \left[\left(1 + \frac{x}{k}\right) e^{\frac{-x}{k}} \right]$ (f. de WEIERSTRASS).

- Q6. (a) En déduire que la série $\sum_{k\geqslant 1} \left[\ln\left(1+\frac{x}{k}\right)-\frac{x}{k}\right]$ converge simplement sur $]0,+\infty[$.
- (b) On pose, pour tout $x \in]0, +\infty$ $\left[: g(x) = \sum_{k=1}^{+\infty} \left[\ln \left(1 + \frac{x}{k} \right) \frac{x}{k} \right] \right]$. Démontrer que g est de classe \mathcal{C}^1 sur $]0, +\infty$ [et exprimer g'(x) comme somme d'une série de fonctions.
- (c) En déduire que, pour tout $x \in]0, +\infty[, \psi(x) = \frac{-1}{x} \gamma + \sum_{k=1}^{+\infty} (\frac{1}{k} \frac{1}{k+x}).$

Q7. (a) Que vaut $\psi(1)$? En déduire la valeur de l'intégrale $\int_0^{+\infty} e^{-t} \ln(t) dt$.

(b) Calculer, pour tout $x \in]0, +\infty[, \psi(x+1) - \psi(x),$

puis démontrer que, pour tout entier $n \ge 2$, $\psi(n) = -\gamma + \sum_{k=1}^{n} \frac{1}{k}$.

(c) On pose, pour tout $(x,y) \in]0, +\infty$ et k entier naturel, $j_k(y) = \frac{1}{k+y+1} - \frac{1}{k+y+x}$.

Démontrer que la série de fonctions $\sum_{k\geqslant 0} j_k$ converge uniformément sur $]0,+\infty[$.

(d) En déduire que $\lim_{n\to+\infty} \psi(x+n) - \overline{\psi(1+n)} = 0$.

Q8. Déterminer l'ensemble des applications $f:]0, +\infty[\to \mathbb{R}$ vérifiant les trois conditions :

- $f(1) = -\gamma$,
- pour tout $x \in]0, +\infty [, f(x+1) = f(x) + \frac{1}{x},$
- pour tout $x \in]0, +\infty[$, $\lim_{n \to +\infty} (f(x+n) f(1+n)) = 0.$

Une utilisation de la fonction Digamma

Q9. Une urne contient n boules numérotées de 1 à n. On effectue un premier tirage au hasard d'une boule dans l'urne et on adopte le protocole suivant: si on a tiré la boule numéro k, on la remet alors dans l'urne avec k nouvelles boules toutes numérotées k. Par exemple, si on a tiré la boule numéro k, on remet quatre boules de numéro k dans l'urne (la boule tirée plus trois nouvelles boules numérotées k).

On effectue ensuite un deuxième au hasard tirage d'une boule.

On note X (respectivement Y) la variable aléatoire égale au numéro de la boule obtenue au premier tirage (respectivement au deuxième tirage).

- (a) Déterminer la loi de la variable aléatoire X ainsi que son espérance $\mathbf{E}(X)$.
- (b) Déterminer la loi de la variable aléatoire Y et vérifier que, pour tout entier naturel non nul $k \in Y(\Omega)$, on a :

$$P(Y = k) = \frac{1}{n} \left(\psi(2n+1) - \psi(n+1) + \frac{k}{n+k} \right).$$

(c) Exprimer l'espérance $\mathbf{E}(Y)$ à l'aide de ψ . On pourra utiliser sans démonstration que :

$$\sum_{k=1}^{n} \frac{k^2}{n(n+k)} = \frac{1-n}{2} + n(\psi(2n+1) - \psi(n+1)).$$

Indications

- Q1. Théorème de comparaison sur les séries avec un équivalent.
- Q2. Utiliser Q1. et reconnaître ce que représente H_n par rapport à la série $\sum_{k=1}^{+\infty} u_n$
- Q3. (a) Par étude de fonction.

Calcul sur les inégalités.

- (b) Utiliser Q3. a pour la domination
- Q4. (a) Existence d'une intégrale impropre par théorème de comparaison. Intégration par parties dans une intégrale impropre.
- (b) Conjecture puis récurrence.
- (c) Question de synthèse des résultats précédents. Faire le lien entre $\Gamma(x)$ et $I_n(x)$ à l'aide d'un changement de variable
- Q5. Utiliser Q4. c.
- Q6. (à partir d'ici cela commence à devenir un peu plus technique...)
- (a) Revenir à la défition de la convergence simple d'une série de fonctions
- (b) Par théorème de dérivation terme à terme d'une série de fonctions (chap. thm d'interversions et Séries)
- La CVN est plus facile à montrer que la CVU; si nécessaire, se placer sur un segment plutôt que sur $]0, +\infty[$.
- (c) Question de synthèse des résultats précédents. Faire le lien entre $\ln(\Gamma(x))$ et g(x) avec Q5. et utiliser (a) et (b).
- Q7. (a) Utiliser la question précédente Q6. c et un téléscopage.

Reconnaître l'intégrale à calculer avec l'un des résultats admis au début.

Faire le lien avec la définition de ψ .

- (b) Utiliser Q6. c et un téléscopage.
 - Remplacer x par k et faire encore un télescopage
- (c) Montrer une CVN en majorant $|j_k(y)|$ indépendamment de y (mais x, k possibles). Q8. Par analyse-synthèse.
- Q9. Question indépendante du reste en admettant les résutats précédents de Q6c et Q7a Q7b.
- (a) Reconnaître une loi usuelle. Utiliser la définition de l'espérance pour faire le calcul.
- (b) Déterminer la loi conditionnelle de Y sachant (X = j), en déduire la loi du couple X, Y puis la loi de Y.
- (c) Utiliser la définition de l'espérance pour faire le calcul et les résultats précédents.

CORRECTION Fonction Digamma (CCP MP 2016, modifié)

Préliminaire

Q1. D'après le développement limité usuel $\ln(1+x) = x - \frac{x^2}{2} + o(x^2)$, en prenant $x = \frac{1}{n}$ qui tend bien vers 0, on a:

$$u_n = \ln n - \ln(n-1) - \frac{1}{n} = -\ln\left(1 - \frac{1}{n}\right) - \frac{1}{n} = \frac{1}{2n^2} + o\left(\frac{1}{n^2}\right) \underset{n \to +\infty}{\sim} \frac{1}{2n^2} \geqslant 0.$$

Comme la série de Riemann $\sum_{k=1}^{+\infty} \frac{1}{n^2}$ converge, par théorème de comparaison, la série $\sum_{k=1}^{+\infty} u_n$ converge. Autre idée : par comparaison série-intégrale, on a $0 \leqslant u_n \leqslant \frac{1}{n(n-1)} \leqslant \frac{1}{(n-1)^2}$.

Q2. Pour
$$n \ge 2$$
, par relation de Chasles, on a : $\sum_{k=2}^{n} u_k = \int_1^n \frac{dt}{t} - \sum_{k=2}^{n} \frac{1}{k}$,

d'où :
$$\sum_{k=2}^{n} u_k = \ln(n) + 1 - \sum_{k=1}^{n} \frac{1}{k} = 1 - H_n$$
.

Or
$$\left(\sum_{k=2}^{n} u_{k}\right)_{n\geq 2}$$
 converge d'après la question précédente, donc $(H_{n})_{n\geqslant 1}$ converge.

Expression de la fonction Digamma à l'aide d'une série

Q3. Pour $x \in]0, +\infty[$ et pour tout entier $n \ge 1$, on définit la fonction f_n sur $]0, +\infty[$ par :

$$f_n: t \mapsto \begin{cases} \left(1 - \frac{t}{n}\right)^n t^{x-1} & \text{si } t \in]0, n] \\ 0 & \text{si } t > n \end{cases}$$
.

(a) On peut établir l'inégalité souhaitée par étude de la fonction $x \mapsto \ln(1-x) + x$ sur $]-\infty, 1[$. La fonction f_n est clairement positive d'après sa définition.

De plus, pour tout $t \in]0, n$ $[, f_n(t) = e^{n \ln(1-\frac{t}{n})}t^{x-1}, \text{ avec } \ln(1-\frac{t}{n}) \leqslant -\frac{t}{n} \text{ par la question précédente, vu qu'on a bien } \frac{t}{n} < 1 \text{ pour } t \in]0, n[$. On en déduit, par croissance de l'exponentielle et produit par une quantité positive : $f_n(t) \leqslant e^{n \times \left(-\frac{t}{n}\right)}t^{x-1} = e^{-t}t^{x-1}$. Enfin f_n est nulle sur $[n, +\infty[$, tandis que la fonction $t \mapsto e^{-t}t^{x-1}$ y est positive, d'où finalement l'encadrement :

$$\forall t > 0, 0 \le f_n(t) \le e^{-t} t^{x-1}.$$

- (b) Comme demandé, on applique le théorème de convergence dominée à la suite (f_n) :
- Pour tout $n \ge 1$, f_n est continue par morceaux sur \mathbb{R}_+^* .
- Pour t fixé, si n est assez grand (n > t), on a : $f_n(t) = \left(1 \frac{t}{n}\right)^n t^{x-1}$.

Or,
$$\left(1 - \frac{t}{n}\right)^n = e^{n\ln\left(1 - \frac{t}{n}\right)}$$
, et $\ln\left(1 - \frac{t}{n}\right) = -\frac{t}{n} + o\left(\frac{1}{n}\right)$, donc $\left(1 - \frac{t}{n}\right)^n = e^{n\left(-\frac{t}{n} + o\left(\frac{1}{n}\right)\right)} = e^{-t + o(1)} \underset{n \to +\infty}{\longrightarrow} e^{-t}$, par continuité de l'exponentielle. Donc $f_n(t) \underset{n \to +\infty}{\longrightarrow} e^{-t}t^{x-1}$.

On a ainsi prouvé que $(f_n)_{n\geqslant 1}$ converge simplement sur \mathbb{R}_+^* vers la fonction $t\mapsto e^{-t}t^{x-1}$.

• De plus, pour tout $n \ge 1$ et pour tout t > 0, $|f_n(t)| \le e^{-t}t^{x-1}$ par la question précédente, et on a admis au début du problème que la fonction $t \mapsto e^{-t}t^{x-1}$ (qui ne dépenda pas de n) est intégrable sur \mathbb{R}_+^* . Donc, par le théorème de convergence dominée, $\int_0^{+\infty} f_n(t)dt \xrightarrow[n \to +\infty]{} \int_0^{+\infty} e^{-t}t^{x-1}dt$.

Comme f_n est nulle sur $[n, +\infty[$, cela donne finalement :

$$\int_0^n \left(1 - \frac{t}{n}\right)^n t^{x-1} dt \underset{n \to +\infty}{\longrightarrow} \Gamma(x),$$

Q4. (a) Soient $n \in \mathbb{N}^*$ et x > 0.

La fonction $\alpha: u \mapsto (1-u)^n u^{x-1}$ est définie et continue sur]0,1]. De plus, $\alpha(u) \underset{u \to 0^+}{\sim} u^{x-1} = \frac{1}{u^{1-x}}$, avec 1-x < 1, donc α est intégrable sur]0,1] par comparaison de fonctions positives puisque $u \mapsto \frac{1}{u^{1-x}}$ est intégrable sur]0,1] Ainsi $I_n(x)$ est bien définie. Par intégration par parties sur]0,1] avec $U: u \mapsto (1-u)^n$ et $V: u \mapsto \frac{u^x}{x}$ (de classe C^1), on a:

$$I_n(x) = \left[(1-u)^n \times \frac{u^x}{x} \right]_0^1 - \int_0^1 n(1-u)^{n-1} \frac{u^x}{x} du = \frac{n}{x} I_{n-1}(x+1).$$

Ainsi $I_n(x) = \frac{n}{x}I_{n-1}(x+1)$. (b) Comme $I_0(x) = \int_0^1 u^{x-1}du = \left[\frac{u^x}{x}\right]_0^1 = \frac{1}{x}$. Par une récurrence immédiate, sur $n \ge 1$, on obtient

$$I_n(x) = \frac{n!}{x(x+1)\cdots(x+n-1)}I_0(x+n) = \frac{n!}{x(x+1)\cdots(x+n)}.$$

(c) Par changement de variable $u=\frac{t}{n}$ (la fonction $t\mapsto \frac{t}{n}$ réalise une bijection strictement croissante et de classe C^1 de [0, n] sur [0, 1]), on obtient donc :

$$\int_0^n \left(1 - \frac{t}{n}\right)^n t^{x-1} dt = \int_0^1 (1 - u)^n (nu)^{x-1} n du = n^x \int_0^1 (1 - u)^n u^{x-1} du = n^x I_n(x)$$

Le résultat de la question Q3. b se réécrit alors : $\Gamma(x) = \lim_{n \to +\infty} n^x I_n(x)$.

Le calcul de la question précédente permet donc de conclure

$$\Gamma(x) = \lim_{n \to +\infty} n^x \times \frac{n!}{x(x+1)\cdots(x+n)} = \lim_{n \to +\infty} \frac{n!n^x}{\prod_{k=0}^n (x+k)}.$$

Q5. Soient $n \in \mathbb{N}^*$ et x > 0.

L'indication donnée est immédiate en remarquant qu'on a :

$$e^{xH_n} = e^{x\sum_{k=1}^n \frac{1}{k}} e^{-x\ln(n)} = \left(\prod_{k=1}^n e^{\frac{x}{k}}\right) \times \frac{1}{n^x}.$$

Ensuite, d'après la formule établie à la question précédente, on a :

$$\frac{1}{\Gamma(x)} = \lim_{n \to +\infty} \frac{\prod_{k=0}^{n} (x+k)}{n! n^x} = \lim_{n \to +\infty} \frac{x}{n^x} \times \frac{\prod_{k=1}^{n} (k+x)}{\prod_{k=1}^{n} k} = \lim_{n \to +\infty} \frac{x}{n^x} \prod_{k=1}^{n} \left(1 + \frac{x}{k}\right)$$

Grâce à l'indication fournie, on réécrit:

$$\frac{1}{\Gamma(x)} = \lim_{n \to +\infty} x e^{xH_n} \prod_{k=1}^n \left[\left(1 + \frac{x}{k} \right) e^{-\frac{x}{k}} \right].$$

Or $H_n \xrightarrow[n \to +\infty]{} \gamma$ donc, par continuité de l'exponentielle, $e^{xH_n} \xrightarrow[n \to +\infty]{} e^{x\gamma}$ et, finalement, par produit de limites,

$$\frac{1}{\Gamma(x)} = x e^{\gamma x} \lim_{n \to +\infty} \prod_{k=1}^{n} \left[\left(1 + \frac{x}{k} \right) e^{-\frac{x}{k}} \right]$$

Q6. (a) On note qu'on pourrait répondre directement à la question à l'aide d'un DL d'ordre 2. Si l'on veut rester dans les clous du sujet, on commence par réécrire la formule précédente :

$$\prod_{k=1}^{n} \left[\left(1 + \frac{x}{k} \right) e^{-\frac{x}{k}} \right] \xrightarrow[n \to +\infty]{} \frac{1}{\Gamma(x) x e^{\gamma x}}$$

Par continuité de ln, on en déduit :

$$\ln\left(\prod_{k=1}^{n}\left[\left(1+\frac{x}{k}\right)\mathrm{e}^{-\frac{x}{k}}\right]\right)\underset{n\to+\infty}{\longrightarrow}\ln\left(\frac{1}{\Gamma(x)x\mathrm{e}^{\gamma x}}\right), \text{ i.e. } \sum_{k=1}^{n}\left[\ln\left(1+\frac{x}{k}\right)-\frac{x}{k}\right]\underset{n\to+\infty}{\longrightarrow}-\ln\left(\Gamma(x)x\mathrm{e}^{\gamma x}\right).$$

En particulier, on a prouvé que la série $\sum_{k\geqslant 1}\left[\ln\left(1+\frac{x}{k}\right)-\frac{x}{k}\right]$ converge. Ceci ayant été démontré pour tout x>0, on a établi la convergence simple de la série de fonctions $\sum_{k\geqslant 1}g_k$ sur $]0,+\infty[$, où l'on pose $g_k:x\mapsto \ln\left(1+\frac{x}{k}\right)-\frac{x}{k}$.

- (b) On note $g = \sum_{k=1}^{+\infty} g_k$ sur $]0, +\infty[$. On utilise le théorème de dérivation terme à terme :
 - \bullet la convergence de $\sum_{k\geqslant 1}g_k$ vers g a été établie à la question précédente,
 - Les fonctions g_k sont toutes de classe C^1 sur $]0, +\infty[$.
 - Pour tout $k \geqslant 1$, pour tout x > 0, $g'_k(x) = \frac{1}{k+x} \frac{1}{k} = -\frac{x}{k(k+x)}$.

Soit [a, b] un segment de \mathbb{R}_+^* . On a donc $0 < a \leqslant b$. Alors pour tout $k \geqslant 1$ et tout $x \in [a, b]$, $|g_k'(x)| \leqslant \frac{b}{k^2}$ et, comme $\sum_{k\geqslant 1} \frac{b}{k^2}$ converge, on a établi la convergence normale, donc uniforme, de $\sum_{k\geqslant 1} g_k' \sup[a, b]$.

On en déduit que g est de classe C^1 , avec : $\forall x > 0, g'(x) = \sum_{k=1}^{+\infty} g'_k(x) = \sum_{k=1}^{+\infty} \left(\frac{1}{k+x} - \frac{1}{k}\right)$.

(c) Par la question Q6. b, en prenant le logaithme on a, pour tout x > 0.

$$\ln(\Gamma(x)) - = g(x) - \ln(x) - \gamma x$$

Dérivant cette relation sur $\mathbb{R}_+^*,$ on obtient:

$$\psi(x) = \frac{\Gamma'(x)}{\Gamma(x)} = -g'(x) - \frac{1}{x} - \gamma = \sum_{k=1}^{+\infty} \left(\frac{1}{k} - \frac{1}{k+x}\right) - \frac{1}{x} - \gamma$$

Q7. (a) Posant x=1 dans la formule précédente, on trouve : $\psi(1)=-1-\gamma+\sum_{k=1}^{+\infty}\left(\frac{1}{k}-\frac{1}{k+1}\right)$, d'où, par télescopage, $\psi(1)=-1-\gamma+1=-\gamma$.

De plus $\Gamma(1) = \int_0^{+\infty} e^{-t} dt = \lim_{X \to +\infty} \left[-e^{-t} \right]_0^X = \lim_{X \to +\infty} 1 - e^{-X} = 1$ donc, vu que $\psi(1) = \frac{\Gamma'(1)}{\Gamma(1)}$, on obtient $\Gamma'(1) = -\gamma$.

Mais en reprenant l'expression admise au début de l'énoncé, on constate que $\Gamma'(1) = \int_0^{+\infty} e^{-t} \ln(t) dt$, d'où finalement :

$$\int_0^{+\infty} e^{-t} \ln(t) dt = -\gamma$$

(b) D'après la formule de la question Q6. c , on a, pour tout x > 0,

$$\psi(x+1) - \psi(x) = -\frac{1}{x+1} + \frac{1}{x} + \sum_{k=1}^{+\infty} \left(\frac{1}{k} - \frac{1}{k+x+1}\right) - \sum_{k=1}^{+\infty} \left(\frac{1}{k} - \frac{1}{k+x}\right) = \frac{1}{x} - \frac{1}{x+1} + \sum_{k=1}^{+\infty} \left(\frac{1}{k} - \frac{1}{k+x+1} - \frac{1}{k} + \frac{1}{k+x+1}\right) = \frac{1}{x} - \frac{1}{x+1} + \frac{1}{x} + \sum_{k=1}^{+\infty} \left(\frac{1}{k} - \frac{1}{k+x+1} - \frac{1}{k} + \frac{1}{k+x+1}\right) = \frac{1}{x} - \frac{1}{x+1} + \frac{1}{x} + \sum_{k=1}^{+\infty} \left(\frac{1}{k} - \frac{1}{k+x+1} - \frac{1}{k} + \frac{1}{k+x+1}\right) = \frac{1}{x} - \frac{1}{x+1} + \frac{1}{x} + \frac{$$

par somme de séries convergentes. Et donc :

$$\psi(x+1) - \psi(x) = \frac{1}{x} - \frac{1}{x+1} + \sum_{k=1}^{+\infty} \left(\frac{1}{k+x} - \frac{1}{k+x+1} \right) = \sum_{k=0}^{+\infty} \left(\frac{1}{k+x} - \frac{1}{k+x+1} \right) = \frac{1}{x}.$$

En particulier, pour tout $k \in \mathbb{N}^*$, $\psi(k+1) - \psi(k) = \frac{1}{k}$. Donc, par télescopage et avec le (a), on a :

$$\sum_{k=1}^{n-1} \frac{1}{k} = \sum_{k=1}^{n-1} (\psi(k+1) - \psi(k)) = \psi(n) - \psi(1) = \psi(n) + \gamma$$

Soit:

$$\psi(n) = -\gamma + \sum_{k=1}^{n-1} \frac{1}{k}$$

(c) Soit x > 0 fixé. Pour tout $k \in \mathbb{N}$, on définit $j_k : \begin{cases} \mathbb{R}_+^* & \longrightarrow & \mathbb{R} \\ y & \longmapsto & \frac{1}{k+y+1} - \frac{1}{k+y+x} \end{cases}$. On peut réécrire $j_k(y) = \frac{k+y+x-k-y-1}{(k+y+1)(k+y+x)} = \frac{x-1}{(k+y+1)(k+y+x)}$ donc,

$$\forall y > 0, |j_k(y)| \le \frac{|x-1|}{(k+1)(k+x)}$$

Comme $\sum_{k\geqslant 0} \frac{|x-1|}{(k+1)(k+x)}$ est une série convergente, vu que $\frac{|x-1|}{(k+1)(k+x)} \sim \frac{|x-1|}{k^2}$, on a la convergence normale, donc uniforme, de $\sum_{k\geqslant 0} j_k$ sur $]0,+\infty[$.

(d) Soit x > 0 fixé.

Le plus naturel est de prendre une variable réelle quelconque y à la place de la variable entière n de la question $\psi(x+y) - \psi(1+y) = -\frac{1}{1+y} + \frac{1}{x+y} + \sum_{k=1}^{+\infty} \left(\frac{1}{k} - \frac{1}{k+x+y}\right) - \sum_{k=1}^{+\infty} \left(\frac{1}{k} - \frac{1}{k+x+1}\right) = -\frac{1}{1+y} + \frac{1}{x+y} + \sum_{k=1}^{+\infty} \left(\frac{1}{k+x+1} - \frac{1}{k+x+y}\right) = -\frac{1}{1+y} + \frac{1}{x+y} + \sum_{k=1}^{+\infty} \left(\frac{1}{k+x+1} - \frac{1}{k+x+y}\right) = -\frac{1}{1+y} + \frac{1}{x+y} + \sum_{k=1}^{+\infty} \left(\frac{1}{k+x+1} - \frac{1}{k+x+y}\right) = -\frac{1}{1+y} + \frac{1}{x+y} + \frac{1}{$

$$-\frac{1}{1+y} + \frac{1}{x+y} + \sum_{k=1}^{+\infty} j_k(y).$$

la série de fonctions $\sum_{k\geqslant 0} j_k$ converge uniformément sur $]0,+\infty[$ et $\forall k\in\mathbb{N}^*\lim_{y\to+\infty} j_k\left(y\right)=0.$

D'après le théorème de la double limite, $\lim_{y\to+\infty}\sum_{k=1}^{+\infty}j_k\left(y\right)=0$ donc $\lim_{y\to+\infty}\psi(x+y)-\psi(1+y)=0$. On en déduit que $\lim_{n\to+\infty}\psi(x+n)-\psi(1+n)=0$.

 $\mathbf{Q8}.$ Par analyse-synthèse :

• Analyse : Soit f solution. On va montrer que f vérifie la formule de ψ établie en Q6. c, à savoir :

$$\forall x > 0, \quad f(x) = -\frac{1}{x} - \gamma + \sum_{k=1}^{+\infty} \left(\frac{1}{k} - \frac{1}{k+x} \right)$$

Puisque $\frac{1}{t} = f(t+1) - f(t)$ pour tout t > 0, on a

$$\sum_{k=1}^{+\infty} \left(\frac{1}{k} - \frac{1}{k+x} \right) = \sum_{k=1}^{+\infty} (f(k+1) - f(k) - f(k+x+1) + f(k+x))$$

$$= \lim_{n \to +\infty} \left(\sum_{k=1}^{n} (f(k+1) - f(k)) + \sum_{k=1}^{n} (f(k+x) - f(k+x+1)) \right)$$

$$= \lim_{n \to +\infty} (f(n+1) - \underbrace{f(1)}_{=-\gamma} + f(1+x) - f(n+x+1))$$

$$= f(x+1) + \gamma - \underbrace{\lim_{n \to +\infty} (f(x+1+n) - f(1+n))}_{=0} = f(x) + \frac{1}{x} + \gamma$$

ce qui montre bien la relation voulue, et donc $f=\psi_{7}$

• Synthèse : La seule solution éventuelle au problème est donc ψ . Mais on a prouvé en Q7., Q7. b et Q7. c que ψ satisfait les trois conditions voulues, donc finalement ψ est solution, et c'est la seule.

Une application de la fonction Digamma

Q9. Soit $n \in \mathbb{N}^*$.

(a) On suppose les boules indiscernables, ce qui implique qu'à tout moment de l'expérience, chaque boule de l'urne a la même probabilité d'être tirée, peu importe son numéro

Avec cette hypothèse, X suit la loi uniforme sur $\{1, \ldots, n\}$ i.e. :

$$\forall k \in \{1, \dots, n\}, P(X = k) = \frac{1}{n}$$

Il s'ensuit
$$E(X) = \sum_{k=1}^{n} kP(X=k) = \frac{1}{n} \sum_{k=1}^{n} k = \frac{n(n+1)}{2n} = \frac{n+1}{2}$$

(b) D'après l'expérience aléatoire décrite, Y prend ses valeurs dans $\{1, \ldots, n\}$. Soit $k \in \{1, \ldots, n\}$. On utilise la formule des probabilités totales, avec le système complet d'événements $\{(X = 1), (X = 2), \ldots, (X = n)\}$:

$$P(Y = k) = \sum_{j=1}^{n} P_{(X=j)}(Y = k) \times P(X = j) = \frac{1}{n} \sum_{j=1}^{n} P_{(X=j)}(Y = k).$$

On calcule cette somme en distinguant selon les valeurs de $j(j = k \text{ ou } j \neq k)$. En effet, pour j = k, le premier tirage aura amené k boules numérotées k en plus dans l'urne, tandis que pour $j \neq k$, le premier tirage n'aura pas amené de boule numérotée k supplémentaire dans l'urne. Ainsi :

$$P(Y = k) = \frac{1}{n} \left(P_{(X=k)}(Y = k) + \sum_{1 \le j \le n, j \ne k} P_{(X=j)}(Y = k) \right) = \frac{1}{n} \left(\frac{k+1}{k+n} + \sum_{1 \le j \le n, j \ne k} \frac{1}{j+n} \right),$$

$$= \frac{1}{n} \left(\frac{k}{k+n} + \sum_{j=1}^{n} \frac{1}{j+n} \right).$$

Or, par Q7. b, $\psi(2n+1) - \psi(n+1) = \sum_{k=1}^{2n} \frac{1}{k} - \sum_{k=1}^{n} \frac{1}{k} = \sum_{k=n+1}^{2n} \frac{1}{k} = \sum_{j=1}^{n} \frac{1}{j+n}$, d'où finalement :

$$\forall k \in \{1, \dots, n\}, P(Y = k) = \frac{1}{n} \left(\frac{k}{k+n} + \psi(2n+1) - \psi(n+1) \right)$$

(c) On a
$$E(Y) = \sum_{k=1}^{n} kP(X=k) = \sum_{k=1}^{n} \frac{k}{n} \left(\frac{k}{k+n} + \psi(2n+1) - \psi(n+1) \right)$$
, donc:

$$E(Y) = \sum_{k=1}^{n} \frac{k^2}{n(n+k)} + \frac{n+1}{2} (\psi(2n+1) - \psi(n+1))$$

Utilisant l'indication fournie,

$$E(Y) = \frac{1-n}{2} + n(\psi(2n+1) - \psi(n+1)) + \frac{n+1}{2}(\psi(2n+1) - \psi(n+1))$$
$$= \frac{1-n}{2} + \frac{3n+1}{2}(\psi(2n+1) - \psi(n+1))$$

REMARQUE. - Il n'était pas demandé de démontrer l'indication fournie, mais ce n'est pas très difficile :

$$\begin{split} \sum_{k=1}^n \frac{k^2}{n(n+k)} &= \sum_{k=1}^n \left(\frac{k}{n} - \frac{k}{n+k}\right) = \frac{n+1}{2} - \sum_{k=1}^n \frac{n+k-n}{n+k} = \frac{n+1}{2} - \sum_{k=1}^n \left(1 - \frac{n}{n+k}\right) \\ &= \frac{n+1}{2} - n + n \sum_{k=1}^n \frac{1}{n+k} = \frac{1-n}{2} + n \sum_{k=n+1}^{2n} \frac{1}{k} = \frac{1-n}{2} + n(\psi(2n+1) - \psi(n+1)) \end{split}$$