lundi 2 juin 2025

Exercice 1 (Ccp 2018): Soit
$$F: \lambda \mapsto \int_0^{+\infty} \frac{e^{-x} - e^{-\lambda x}}{x} dx$$
.

- 1. Déterminer l'ensemble de définition de F.
- 2. Soit a > 0. Montrer que F est de classe C^1 sur $[a, +\infty[$. Calculer $F(\lambda)$.
- 3. En déduire, pour a, b > 0, la valeur de $\int_0^{+\infty} \frac{e^{-ax} e^{-bx}}{x} dx$.

Solution de l'exercice: ATTENTION: x est la variable d'intégration et λ est le paramètre. 1: Soit $\lambda \in \mathbb{R}$. La fonction $x \mapsto \frac{e^{-x} - e^{-\lambda x}}{x}$ est continue sur $I =]0, +\infty[$.

- On a
$$\frac{e^{-x} - e^{-\lambda x}}{x} = \frac{1 - x + o_{x \to 0}(x) - (1 - \lambda x + o_{x \to 0}(x))}{x} = \frac{(-1 + \lambda)x + o_{x \to 0}(x)}{x} \sim_{x \to 0} -1 + \lambda$$

donc $x \mapsto \frac{e^{-x} - e^{-\lambda x}}{x}$ admet un prolongement par continuité en 0.

- Si
$$\lambda = 0$$
, $\frac{e^{-x} - e^{-\lambda x}}{x} \sim_{x \to +\infty} \frac{1}{x}$ donc n'est pas intégrable sur $[1, +\infty[$.

- Si
$$\lambda < 0$$
, $\frac{e^{-x} - e^{-\lambda x}}{x} \sim_{x \to +\infty} \frac{e^{-\lambda x}}{x} \to_{x \to +\infty} +\infty$ donc n'est pas intégrable sur $[1, +\infty[$.

- Si
$$\lambda > 0$$
, alors $x \mapsto \frac{e^{-x}}{x}$ et $x \mapsto \frac{-e^{-\lambda x}}{x}$ sont intégrables sur $[1, +\infty[$ car $o\left(\frac{1}{x^2}\right)]$ On en déduit que F est définie sur $A =]0, +\infty[$.

2: On suppose que
$$0 < a$$
 et $\lambda \ge a$. Posons $f(\lambda, x) = \frac{e^{-x} - e^{-\lambda x}}{x}$. La fonction f admet une dérivée partielle par rapport à λ égale à $\frac{\partial f}{\partial \lambda}(\lambda, x) = e^{-\lambda x}$. On a $\left|\frac{\partial f}{\partial \lambda}(\lambda, x)\right| \le e^{-ax} = \varphi(x)$ qui est intégrable sur $]0, +\infty[$ (la vérification

des autres hypothèses sont laissées au lecteur) donc F est de classe C^1 sur $[a, +\infty[$ et $F'(x) = \int_0^{+\infty} e^{-\lambda x} dx = \frac{1}{\lambda}$. Ce résultat étant vrai pour a > 0 quelconque, il s'étend à $]0, +\infty[$ On en déduit qu'il existe $C \in \mathbb{R}$ tel que $\forall \lambda > 0$, $F(\lambda) = \ln(\lambda) + C$. Comme F(1) = 0, on a C = 0 et $F(\lambda) = \ln(\lambda)$.

Q3: Le changement de variable affine
$$u = ax$$
 donne $\int_0^{+\infty} \frac{e^{-ax} - e^{-bx}}{x} dx = \int_0^{+\infty} \frac{e^{-u} - e^{-\frac{b}{a}u}}{u} du = F\left(\frac{b}{a}\right) = \ln(b) - \ln(a)$.

Exercice 2 (Ccinp) Déterminer le rayon de convergence et la somme de la série entière $\sum_{n>0} (3n+1)^2 x^n$

Solution de l'exercice:

 $\sum a_n x^n$ et $\sum na_n x^n$ ont même rayon de convergence donc $\sum_{n>0} n^2 x^n$ a même rayon de convergence que $\sum x^n$.

Si $a_n \sim_{n \to +\infty} b_n$ alors $\sum a_n x^n$ et $\sum b_n x^n$ ont même rayon de convergence et $(3n+1)^2 \sim_{n \to +\infty} 9n^2$ donc le rayon de convergence est R=1.

On a $(3n + 1)^2 = 9n^2 + 6n + 1 = 9n(n - 1) + 15n + 1$ donc

$$f(x) = \sum_{n=0}^{+\infty} (3n+1)^2 x^n = 9 \sum_{n=0}^{+\infty} n(n-1) x^n + 15 \sum_{n=0}^{+\infty} n x^n + \sum_{n=0}^{+\infty} x^n = 9 \sum_{n=2}^{+\infty} n(n-1) x^n + 15 \sum_{n=1}^{+\infty} n x^n + \sum_{n=0}^{+\infty} x^n$$
soit $f(x) = 9x^2 \sum_{n=2}^{+\infty} n(n-1) x^{n-2} + 15x \sum_{n=1}^{+\infty} n x^n + \sum_{n=0}^{+\infty} x^n = 9x^2 g''(x) + 15x g'(x) + g(x)$ avec $g(x) = \sum_{n=0}^{+\infty} x^n = \frac{1}{1-x}$. (A finir).

Exercice 3 Soit
$$n \in \mathbb{N}^*$$
. On pose $H_n = \sum_{i=1}^n \frac{1}{i}$.

- 1. Montrer que pour tout $i \in \mathbb{N}$, l'intégrale généralisée $\int_0^1 u^i \ln(u)^2 du$ converge et vaut $\frac{2}{(i+1)^3}$.
- 2. Montrer que $\ln(n+1) \le H_n \le \ln(n) + 1$. En déduire que la série $\sum_{n\ge 1} \frac{H_n}{n^2}$ est convergente.
- 3. Montrer que la série $\sum_{k\geq 1} \frac{1}{k(n+k)}$ et a pour somme $\frac{H_n}{n}$.
- 4. Montrer que l'intégrale généralisée $\int_0^1 x^{n-1} \ln(1-x) dx$ converge.
- 5. Montrer que $\int_0^1 x^{n-1} \ln(1-x) dx = -\frac{H_n}{n}$
- 6. En déduire que $\sum_{n=1}^{+\infty} \frac{H_n}{n^2} = \int_0^1 \frac{\ln(1-x)^2}{x} dx = 2 \sum_{n=1}^{+\infty} \frac{1}{n^3}$.

Solution de l'exercice:

1: Effectuons sous réserve de convergence deux IPP

$$\int_0^1 u^i \ln(u)^2 du = \left[\frac{u^{i+1}}{i+1} \ln^2(u) \right]_0^1 - \int_0^1 \frac{u^i}{i+1} 2\ln(u) du = -\int_0^1 \frac{u^i}{i+1} 2\ln(u) du$$

$$= -2 \left(\left[\frac{u^{i+1}}{(i+1)^2} 2\ln(u) \right]_0^1 - \int_0^1 \frac{u^i}{(i+1)^2} du \right) = 2 \int_0^1 \frac{u^i}{(i+1)^2} du = \frac{2}{(i+1)^3}.$$

Justification: Les limites des crochets existent et sont finies donc toutes les intégrales sont de même nature et la dernière est convergente donc la première aussi..

2: Par croissance de l'intégrale, $\frac{1}{i+1} \leq \int_i^{i+1} \frac{1}{t} dt \leq \frac{1}{i}$ donc $\ln(i+1) - \ln(i) \leq \frac{1}{i}$ et donc $\ln(n+1) - \ln(1) = \frac{1}{i}$ $\sum_{i=1}^{n} \ln(i+1) - \ln(i) \le H_n \text{ et si } i \ge 2, \frac{1}{i} \le \ln(i) - \ln(i-1) \text{ donc } \sum_{i=2}^{n} \frac{1}{i} \le \ln(n) \text{ donc } \ln(n+1) \le H_n \le \ln(n+1)$

Donc
$$0 \le \frac{H_n}{n^2} \le \frac{\ln(n)}{n^2} + \frac{1}{n^2}$$
. Or $\frac{\frac{\ln(n)}{n^2}}{\frac{1}{n^{3/2}}} = \frac{\ln(n)}{\sqrt{n}} \rightarrow_{n \to +\infty} 0$ donc $\frac{\ln(n)}{n^2} = o_{n \to +\infty} \left(\frac{1}{n^{3/2}}\right)$ donc par comparaison

avec une SATP convergente, $\sum \frac{\ln{(n)}}{n^2}$ converge absolument donc $\sum \frac{H_n}{n^2}$ converge.

3: $\frac{1}{k(n+k)} \sim_{k\to+\infty} \frac{1}{k^2}$ donc la série converge.

De plus,
$$\frac{1}{k(n+k)} = \frac{1}{n} \left(\frac{1}{k} - \frac{1}{(n+k)} \right)$$
 donc

$$\sum_{k=1}^{N} \frac{1}{k(n+k)} = \frac{1}{n} \sum_{k=1}^{N} \left(\frac{1}{k} - \frac{1}{(n+k)} \right) = \frac{1}{n} \left(\sum_{k=1}^{N} \frac{1}{k} - \sum_{k=n}^{n+N} \frac{1}{k} \right) = \frac{1}{n} \left(\sum_{k=1}^{n} \frac{1}{k} - \sum_{k=N+1}^{n+N} \frac{1}{k} \right) \to_{N \to +\infty} \frac{H_n}{n}$$

$$\operatorname{car} \ 0 \leq \sum_{k=N+1}^{n+N} \frac{1}{k} \leq \frac{n}{N} \to_{N \to +\infty} 0. \text{ On a donc } \sum_{k=1}^{+\infty} \frac{1}{k \left(n+k\right)} = \frac{H_n}{n}$$

4: $x \mapsto x^{n-1} \ln (1-x)$ est continue sur [0,1[. Le changement de variable u = 1-x donne, sous réserve de convergence, $\int_0^1 x^{n-1} \ln (1-x) \, dx = \int_0^1 (1-u)^{n-1} \ln (u) \, du$ et et $(1-u)^{n-1} \ln (u) \sim_{u\to 0} \ln (u)$ et $u \mapsto \ln (u)$ est intégrable sur [0,1] donc $\int_0^1 (1-u)^{n-1} \ln (u) \, du$ converge donc $\int_0^1 x^{n-1} \ln (1-x) \, dx$ converge.

5: Pour $x \in [0,1[$, $x^{n-1} \ln (1-x) = -x^{n-1} \sum_{k=1}^{+\infty} \frac{x^k}{k} = \sum_{k=1}^{+\infty} -\frac{x^{n+k-1}}{k}$.

5: Pour
$$x \in [0, 1[, x^{n-1} \ln (1-x)] = -x^{n-1} \sum_{k=1}^{+\infty} \frac{x^k}{k} = \sum_{k=1}^{+\infty} -\frac{x^{n+k-1}}{k}$$
.

Posons $u_k(x) = -\frac{x^{n+k}}{k}$

On a $\int_0^1 |u_k(x)| dx = \left[\frac{x^{n+k}}{k(n+k)}\right]_0^1 = \frac{1}{k(n+k)} \sim_{k\to+\infty} \frac{1}{k^2}$ donc la série $\sum \int_0^1 |u_k(x)| dx$ est convergente donc (les deux autres hypothèses du th d'interversion série intégrale sur I quelconque sont à vérifier), on a

$$\int_{0}^{1} x^{n-1} \ln \left(1-x\right) dx = \int_{0}^{1} \sum_{k=1}^{+\infty} u_{k}\left(x\right) dx = -\sum_{k=1}^{+\infty} \int_{0}^{1} u_{k}\left(x\right) dx = -\sum_{k=1}^{+\infty} \frac{1}{k\left(n+k\right)} = -\frac{H_{n}}{n} \text{ d'après la question } 3.$$

6: On a donc
$$\sum_{n=1}^{+\infty} \frac{H_n}{n^2} = \sum_{n=1}^{+\infty} \frac{-1}{n} \int_0^1 x^{n-1} \ln(1-x) dx = \sum_{n=1}^{+\infty} \int_0^1 v_n(x) dx$$
 avec $v_n(x) = \frac{-1}{n} x^{n-1} \ln(1-x)$.

On a pour $x \in]0,1[v_n(x) = \frac{\ln(1-x)}{x} \times \frac{-x^n}{n}$ donc la série $\sum v_n(x)$ converge et a pour somme $\frac{\ln(1-x)^2}{x}$

Appliquons le théorème d'interversion série intégrale sur]0,1[.

- v_n est intégrable sur [0,1[et $\int_0^1 |v_n(x)| dx = \int_0^1 v_n(x) dx = \frac{H_n}{n^2}$
- la série de fonctions $\sum v_n$ converge simplement sur]0,1[et a pour somme $x\mapsto \frac{\ln(1-x)^2}{x}$ qui est continue par morceaux car continue.
- La série $\sum \int_0^1 |v_n(x)| dx$ converge (d'après la deuxième question).

On en déduit que
$$x \mapsto \frac{\ln(1-x)^2}{x}$$
 est intégrable sur $]0,1[$ et $\int_0^1 \frac{\ln(1-x)^2}{x} dx = \sum_{n=1}^{+\infty} \frac{H_n}{n^2}.$

Or
$$\int_0^1 \frac{\ln(1-x)^2}{x} dx = \int_0^1 \frac{\ln(u)^2}{1-u} du = \int_0^1 \left(\sum_{n=0}^{+\infty} u^n \ln(u)^2\right) du$$
.

et
$$\int_0^1 |u^n \ln(u)|^2 du = \frac{2}{(n+1)^3}$$
 (première question) donc la série $\sum \int_0^1 |u^n \ln(u)|^2 du$ converge

donc d'après le théorème d'interversion série intégrale,

$$\sum_{n=1}^{+\infty} \frac{H_n}{n^2} = \int_0^1 \frac{\ln(u)^2}{1-u} du = \sum_{n=0}^{+\infty} \left(\int_0^1 u^n \ln(u)^2 du \right) = 2 \sum_{n=1}^{+\infty} \frac{1}{n^3}.$$

Exercice 4 On pose, pour x réel, $f(x) = \sum_{n=1}^{+\infty} \frac{\operatorname{Arctan}(nx)}{n^2}$.

- 1. Montrer que f est définie et continue sur \mathbb{R} .
- 2. Montrer que f est de classe C^1 sur \mathbb{R}^* .
- 3. Trouver un équivalent de f'(x) quand x tend vers 0^+ . La fonction f est-elle dérivable en 0?
- 4. Trouver un équivalent de f(x) quand x tend vers 0^+ .
- 5. Tracer la courbe représentative de f.

Solution de l'exercice:

- .1: Pour $n \in \mathbb{N}^*$, soit $f_n : \mathbb{R} \to \mathbb{R}$ définie par $f_n(x) = \frac{\operatorname{Arctan}(nx)}{n^2}$. Alors $|f_n(x)| \leqslant \frac{\pi}{2n^2}$ donc, par comparaison et critère de RIEMANN, la série $\sum_{n\geqslant 1} f_n(x)$ converge pour tout réel x. Ainsi, $\sum_{n\geqslant 1} f_n$ converge simplement sur \mathbb{R} : f est définie sur \mathbb{R} . La majoration précédente montre même que f_n est bornée sur \mathbb{R} et que $||f_n||_{\infty,\mathbb{R}} \leqslant \frac{\pi}{2n^2}$ (on a même égalité car $\lim_{x\to +\infty} f_n(x) = \frac{\pi}{2n^2}$) et la série $\sum_{n\geqslant 1} \frac{\pi}{2n^2}$ converge donc la série $\sum_{n\geqslant 1} f_n$ converge normalement sur \mathbb{R} . Comme toutes les fonctions f_n sont continues sur \mathbb{R} , par théorème, la fonction somme f est aussi continue sur \mathbb{R} .
- 2: Utilisons le théorème de dérivation des séries de fonctions :
- (H_1) On vient de voir que $\sum_{n\geqslant 1} f_n$ converge simplement sur \mathbb{R}^* (et même sur \mathbb{R}).
- (H_2) Pour tout entier $n \ge 1$, f_n est de classe C^1 sur \mathbb{R} avec $f'_n(x) = \frac{1}{n(1+n^2x^2)}$.
- (H₃) Soit a > 0, posons $J_a = [a; +\infty[$, on $a \forall x \in J_a, \forall n \geqslant 1, |f'_n(x)| \leqslant f'_n(a) \text{ donc } ||f'_n||_{\infty,J_a} = f'_n(a) \sim \frac{1}{n^3 a^2} \text{ donc},$ par comparaison, $\sum_{n\geqslant 1} ||f'_n||_{\infty,J_a}$ converge ce qui justifie que la série de fonctions $\sum_{n\geqslant 1} f'_n$ converge normalement sur J_a et a > 0 est quelconque.

Ainsi,
$$f$$
 est de classe C^1 sur \mathbb{R}_+^* et $\forall x \neq 0, f'(x) = \sum_{n=1}^{+\infty} \frac{1}{n(1+n^2x^2)}$.

On fait de même sur $]-\infty, a]$

3: On effectue une comparaison série-intégrale. Si x > 0 est fixé, la fonction $g_x : t \mapsto \frac{1}{t(1+t^2x^2)}$ est continue et décroissante sur \mathbb{R}_+^* donc, pour $n \ge 2$, on a $\int_n^{n+1} g_x(t)dt \le g_x(n) = f'_n(x) \le \int_{n-1}^n g_x(t)dt$. On somme pour n allant de 1 à p pour l'inégalité de gauche et pour n allant de 2 à p pour celle de droite et on obtient par CHASLES $\int_0^{p+1} g_x(t)dt \le \int_0^p f'(x) \le f'(x) + \int_0^p g_x(t)dt$

CHASLES
$$\int_{1}^{p+1} g_{x}(t)dt \leqslant \sum_{n=1}^{p} f'_{n}(x) \leqslant f'_{1}(x) + \int_{1}^{p} g_{x}(t)dt$$
.
Or, $\frac{1}{t(1+t^{2}x^{2})} \frac{(1+t^{2}x^{2})-t^{2}x^{2}}{t(1+t^{2}x^{2})} = \frac{1}{t} - \frac{tx^{2}}{1+t^{2}x^{2}}$

Pour $y \ge 1$, on a $\int_1^y g_x(t)dt = \int_1^y \left(\frac{1}{t} - \frac{x^2t}{2(1+x^2t^2)}\right) dt = \left[\ln(t) - \frac{1}{2}\ln(1+x^2t^2)\right]_1^y = \frac{1}{2}\ln(1+x^2) - \frac{1}{2}\ln\left(\frac{1+x^2y^2}{y^2}\right)$ donc $\lim_{y\to+\infty} \int_1^y g_x(t)dt = \frac{1}{2}\ln(1+x^2) - \ln(x)$. Ainsi, en passant à la limite quand p tend vers $+\infty$ dans l'encadrement ci-dessus, on parvient à $\frac{1}{2}\ln(1+x^2) - \ln(x) \le f'(x) \le \frac{1}{1+x^2} + \frac{1}{2}\ln(1+x^2) - \ln(x)$. Par encadrement, on en déduit l'équivalent $f'(x) \sim -\ln(x)$.

donc $\lim_{x\to 0^+} f'(x) = +\infty$.

D'autre part f est continue en 0 donc (th limite de la dérivée), le graphe de f admet donc en 0^+ une tangente verticale et f n'est pas dérivable en 0.

4 L'idée de cette question est de montrer, en s'inspirant de la question précédente que $f(x) \sim \int_0^x (-\ln(t)) dt$.

Pour x>0, comme $f(x)=f(a)+\int_a^x f'(t)dt$ pour a>0 par le théorème fondamental de l'intégration, en faisant tendre a vers 0, par continuité de f en 0, on a $f(x)=\int_0^x f'(t)dt$. Comme $f'(t) \underset{0}{\sim} -\ln((t)$, on a $f'(t)+\ln(t)=\inf_0 o(\ln(t))$. Pour $\varepsilon>0$, il existe donc $\alpha>0$ tel que $\forall x\in]0; \alpha[,|f'(t)+\ln(t)|\leqslant \varepsilon|\ln(t)|$. Ainsi, $\left|\int_0^x \left(f'(t)+\ln(t)\right)dt\right|\leqslant \varepsilon\int_0^x (-\ln(t))dt$. Il vient donc $|f(x)+x\ln(x)-x|\leqslant \varepsilon|x\ln(x)-x|$, ce qui garantit que $f(x)+x\ln(x)-x=0$ ($x\ln(x)-x$), ou encore que $x\ln(x)-x$ 0 mais comme $x\ln(x)+x$ 1 multiple of $x\ln(x)$ 2 multiple of $x\ln(x)$ 3 multiple of $x\ln(x)$ 4 multiple of $x\ln(x)$ 5 multiple of $x\ln(x)$ 6 multiple of $x\ln(x)$ 7 multiple of $x\ln(x)$ 6 multiple of $x\ln(x)$ 6 multiple of $x\ln(x)$ 6 multiple of $x\ln(x)$ 7 multiple of $x\ln(x)$ 7 multiple of $x\ln(x)$ 8 multiple of $x\ln(x)$ 9 multiple o

5: a: Comme toutes les f_n sont croissantes comme la fonction Arctan, la fonction f est croissante sur \mathbb{R} . On pouvait aussi utiliser la continuité de f sur \mathbb{R} et l'expression de sa dérivée positive vue précédemment.

b. en $+\infty$: Appliquons le th de la double limite:

 $\sum_{n\geqslant 1} f_n$ converge normalement sur \mathbb{R} . Or les fonctions f_n admettent des limites finies en $\pm \infty$. Par le théorème de la double limite, $\lim_{x\to +\infty} f(x) = \sum_{n=1}^{+\infty} (\lim_{x\to +\infty} f_n(x)) = \sum_{n=1}^{+\infty} \frac{\pi}{2n^2} = \frac{\pi}{2} \times \frac{\pi^2}{6}$. Comme f est impaire car toutes les fonctions f_n le sont, on a aussi $\lim_{x\to -\infty} f(x) = -\frac{\pi^3}{12}$.

Conclusion: La fonction f est impaire, croissante et on a $\lim_{x\to+\infty} f(x) = \frac{\pi^3}{12} \sim 2,58$ et $\lim_{x\to-\infty} f(x) = -\frac{\pi^3}{12}$. Son graphe ressemble donc à celui de la fonction Arctan, avec deux asymptotes horizontales d'équation $y = \pm \frac{\pi^3}{12}$, mais avec une tangente verticale en 0.

Exercice 5 Ccinp: Montrer que la fonction de la variable réelle définie par $f(x) = \frac{ch(x) - 1}{x^2}$ admet un prolongement de classe C^{∞} sur \mathbb{R} .

Exercice 6 (Ccinp psi) Pour $x \ge 0$, on pose $F(x) = \int_0^{+\infty} \frac{1 - e^{-xt^2}}{t^2} dt$.

1. Montrer que F est bien définie sur $[0, +\infty[$.

- 2. Montrer que F est de classe C^1 sur $]0, +\infty[$
- 3. Déterminer F(x) sachant que $\int_0^{+\infty} e^{-t^2} dt = \frac{\sqrt{\pi}}{2}$.

Solution de l'exercice: 1:On pose $f(x,t) = \frac{1 - e^{-xt^2}}{t^2}$ et $I =]0, +\infty[$

Si x > 0, alors $\frac{1 - e^{-xt^2}}{t^2} \sim_{t \to +\infty} \frac{1}{t^2}$ donc $t \mapsto f(x, t)$ est intégrable sur $[1, +\infty[$ et $\frac{1 - e^{-xt^2}}{t^2} = \frac{1 - (1 - xt^2 + o_{t \to 0}(t^2))}{t^2}]$ x donc $t \mapsto f(x,t)$ est prolongeable par continuité en 0 donc intégrable sur [0,1] donc sur I donc F(x) existe. 2: Appliquons le théorème de dérivation sous le signe \int .

 (H_1) : Si x > 0, la fonction $t \mapsto f(x,t)$ est continue par morceaux et intégrable sur $]0,+\infty[$.

 (H_2) : La fonction $t \mapsto f(x,t)$ admet une dérivée partielle $\frac{\partial f}{\partial x}(x,t) = e^{-xt^2}$.

 (H_3) : Si x>0, la fonction $t\mapsto \frac{\partial f}{\partial x}(x,t)$ est continue par morceaux sur $]0,+\infty[$.e

 (H_4) : Si t > 0, la fonction $x \mapsto \frac{\partial x}{\partial f}(x,t)$ est continue $]0,+\infty[$ (d'après les th usuels sur la continuité). (H_4) : Domination pour $x \in [a,+\infty[$ avec a > 0

 $\left|\frac{\partial f}{\partial x}(x,t)\right| \leq e^{-at^2} = \varphi(t)$ et φ est continue par morceaux et intégrable sur $]0,+\infty[$ donc F est de classe C^1 sur $[a, +\infty[$ avec a > 0 quelconque donc sur $]0; +\infty[$ et $F'(x) = \int_0^{+\infty} e^{-xt^2} dt$

2: Si x > 0 alors $F'(x) = \int_0^{+\infty} e^{-(\sqrt{x}t)^2} dt = \frac{1}{\sqrt{x}} \int_0^{+\infty} e^{-(u)^2} du = \frac{\sqrt{\pi}}{2\sqrt{x}}$ $(t \mapsto \sqrt{x}t \text{ est affine donc une bijection})$ stricement monotone de classe C^1 de $[0; +\infty[$ sur $[0; +\infty[)$. On en déduit que $F(x) = \sqrt{\pi x} + C$.

Pour déterminer C, on va chercher à étendre la définition et la continuité de F à $[0, +\infty[$ pour exploiter l'égalité F(0) = 0. On a bien F définie en 0 et F(0) = 0. Montrons que F est continue sur $[0, +\infty[$. Si $x \ge 0$, la fonction $t\mapsto f\left(x,t\right)$ est continue par morceaux sur $]0,+\infty[$ et si t>0, la fonction $x\mapsto f\left(x,t\right)$ est continue $[0,+\infty[$.

L'inégalité $e^u \ge 1 + u$ entraı̂ne que $0 \le 1 - e^{-xt^2} \le xt^2$ donc $|f(x,t)| \le x$. Par ailleurs $|f(x,t)| \le \frac{2}{t^2}$. Supposons

 $x \in [0,1]$ et posons $\varphi(t) = 1$ si $t \in [0,1[$ et $\varphi(t) = \frac{2}{t^2}$ si $t \ge 1$. La fonction φ est continue par morceaux et intégrable sur $[0, +\infty[$ donc F est continue sur [0, 1]. Ön en déduit que $\lim_{x\to 0} F(x) = F(0) = 0$ donc C = 0 et donc $F(x) = \sqrt{\pi x}$.

Exercice 7 Soit $p \in \mathbb{N}^*$. Déterminer le rayon de convergence de la série entière $\sum_{n \geq p} \binom{n}{p} x^n$ et calculer sa somme.

Solution de l'exercice: Posons $u_n = \binom{n}{p} x^n = \frac{n(n-1) \times \cdots \times (n-p+1)}{n!} x^n = \frac{x^p}{n!} \times n(n-1) \times \cdots \times n$ $(n-p+1) x^{n-p}$.

On reconnait la dérivée $p^{i n m e}$ de la série géométrique $\sum x^n$.

Posons $f(x) = \frac{1}{1-x} = (1-x)^{-1}$.

D'une part, en dérivant p fois terme à terme la série entière $f^{(p)}(x) = \sum_{n=k}^{+\infty} n(n-1) \times \cdots \times (n-p+1) x^{n-p}$

On montrer par récurrence que $f^{(p)}(x) = p! \times (1-x)^{-p-1} = \frac{p!}{(1-x)^{p+1}}$.

On a donc $\sum_{n=0}^{+\infty} {n \choose p} x^n = \frac{x^p}{n!} f^{(p)}(x) = \frac{p!}{(1-x)^{p+1}}$

Exercice 8 (Mines ponts) Soit E un ensemble non vide.

Une partition de E est un ensemble \mathcal{P} non vide de parties de E telle que si j est le cardinal de \mathcal{P} et que $\mathcal{P} = \{A_1, A_2, \dots, A_j\}$ alors \mathcal{P} vérifie les trois conditions:

- pour tout $i \in [[1, j]]$, A_i est non vide
- pour tout $(i, i') \in [[1, j]]^2$ tel que $i \neq i'$, on a $A_i \cap A_{i'} = \emptyset$.
- $-E = A_1 \cup A_2 \cup \cdots \cup A_j$

On pose $T_0 = 1$. Pour $n \in \mathbb{N}^*$, on note T_n le nombre de partitions d'un ensemble de [[1, n]].

- 1. Montrer que $\forall n \in \mathbb{N}, T_{n+1} = \sum_{k=0}^{n} {n \choose k} T_k$.
- 2. Montrer qu'il existe R > 0 tel que $\forall x \in]-R, R[, \sum_{n=0}^{+\infty} \frac{T_n}{n!} x^n = e^{e^x 1}.$
- 3. En déduire que $\forall n \in \mathbb{N}, T_n = \frac{1}{e} \sum_{k=0}^{+\infty} \frac{k^n}{k!}$.

Solution de l'exercice:

- 1: On admet que le nombre de partitions d'un ensemble fini E ne dépend que du cardinal de E. Soit \mathcal{E} l'ensemble des partitions de [[1, n+1]] et $\mathcal{P} \in \mathcal{E}$.
- Soit A la partie [[1, n+1]] appartenant à contenant n+1. On a donc $\mathcal{P} = \{A\} \cup \mathcal{P}'$ où \mathcal{P}' est une partition de $[[1, n+1]] \setminus A$.
- Soit $k \in [[0, n]]$ fixé. Si card(A) = k + 1, $0 \le k \le n$, alors $card([[1, n + 1]] \setminus A) = n k$ donc il existe T_{n-k} différentes valeurs de \mathcal{P}' . La valeur de k étant fixé, il existe $\binom{n}{k}$ valeurs de A: en effet, la partie A, de cardinal k + 1 et contenant n + 1, est déterminée par $A \cap [[1, n]]$, partie quelconque de [[1, n]] de cardinal k. Il y a donc $\binom{n}{k}T_{n-k}$ partitions p avec card(A) = k.
- Comme k peut varier de 0 à n, on en déduit (cardinal d'une union disjointe) que $T_{n+1} = \sum_{k=0}^{n} {n \choose k} T_{n-k} =$

$$\sum_{k=0}^{n} \binom{n}{n-k} T_k = \sum_{k=0}^{n} \binom{n}{k} T_k \operatorname{car} \binom{n}{n-k} = \binom{n}{k}.$$

- 2: a Soit R le rayon de convergence de $\sum \frac{T_n}{n!}x^n$. Montrons que $\frac{T_n}{n!} \leq 1$. Cette relation est vraie pour n = 0. Supposons la vraie pour $k \in [[0, n]]$, montrons la pour n + 1:.
- $\frac{T_{n+1}}{(n+1)!} = \frac{\sum_{k=0}^{n} \binom{n}{k} T_k}{(n+1)!} = \sum_{k=0}^{n} \frac{1}{(n+1)(n-k)!} \frac{T_k}{k!} \le \sum_{k=0}^{n} \frac{1}{(n+1)(n-k)!} \le \sum_{k=0}^{n} \frac{1}{(n+1)} = 1 \text{ d'où le résultat.}$

La série entière $\sum 1x^n$ est de rayon 1 et $\left|\frac{T_n}{n!}\right| \le 1$ donc la série entière $\sum \frac{T_n}{n!}x^n$ est de rayon $R \ge 1$.

- b: Posons $a_n = \frac{T_n}{n!}$. On a d'après le calcul précédent $(n+1)a_{n+1} = \sum_{k=0}^n \frac{1}{(n-k)!}a_k = \sum_{k=0}^n a_k b_{n-k} = c_n$ avec $b_n = \frac{1}{n!}$.
- La série $\sum b_n x^n$ est de rayon $R' = +\infty$. Pour $|x| < \min(R, R')$, la série $\sum c_n x^n$ converge absolument et $\sum_{n=0}^{+\infty} c_n x^n = +\infty$

$$\sum_{n=0}^{+\infty} a_n x^n \sum_{n=0}^{+\infty} b_n x^n = e^x f(x).$$

Par ailleurs si |x| < 1, $\sum_{n=0}^{+\infty} (n+1) a_{n+1} x^n = f'(x)$ donc $f'(x) = e^x f(x)$.

On en déduit qu'il existe $\lambda \in \mathbb{R}$ tel que $\forall x \in](R, R[, f(x) = \lambda e^{e^x}, \lambda \in \mathbb{R}. \text{ Comme } f(0) = 1, \text{ donc } \lambda = \frac{1}{e} \text{ donc } f(x) = \frac{1}{e} e^{e^x} = e^{e^x - 1}.$

3: D'après les propriétés des séries entières, f est de classe C^{∞} sur]-R,R[et $\forall n \in \mathbb{N}, a_n = \frac{T_n}{n!} = \frac{f^{(n)}(0)}{n!}$ donc $f^{(n)}(0) = T_n$.

On a
$$f(x) = \frac{1}{e}e^{e^x} = \frac{1}{e}\sum_{k=0}^{+\infty} \frac{(e^x)^k}{k!}$$
. Posons $u_k(x) = \frac{e^{kx}}{k!}$.

- Pout tout $k \in \mathbb{N}$, u_k est de classe C^{∞} sur]-1,1[. et $u_k^{(n)}(x) = \frac{k^n e^{kx}}{k!}$.
- On a donc $\|u_k^{(n)}\|_{\infty}^{]-1,1[} \leq \frac{k^n e^k}{k!}$. Or $k^n = \underset{k \to +\infty}{o} \left(e^k\right)$ donc $\frac{k^n e^k}{k!} = o_{k \to +\infty} \left(\frac{e^{2k}}{k!}\right)$ et $\sum \frac{e^{2k}}{k!}$ SATP qui converge (série exponentielle en e^2)

donc la série de fonctions $\sum_{k=0}^{\infty} u_k^{(n)}$ converge normalement donc uniformément sur]-1,1[donc f est de classe C^{∞} sur [-1,1] et $f^{(n)}(x) = \frac{1}{e} \sum_{k=0}^{+\infty} u_k^{(n)}(x) = \frac{1}{e} \sum_{k=0}^{+\infty} \frac{k^n e^{kx}}{k!}$ donc $T_n = f^{(n)}(0) = \frac{1}{e} \sum_{k=0}^{+\infty} \frac{k^n}{k!}$.