Semaines 5 et 6

I Contenu

- Eléments propres d'un endomorphisme et d'une matrice, polynôme caractéristique, multiplicité d'une valeur propre. Endomorphismes et matrices diagonalisables. Méthode de résolution d'un problème matriciel par changement de base, convergence dans \mathbb{R}^n et $\mathcal{M}_n(\mathbb{R})$ par passage aux composantes. Attention: les critères de diagonalisabilité utilisant les polynômes annulateurs ne sont pas à ce programme de colle.
- espaces préhilbertiens réels: produit scalaire, Cauchy-Schwarz, inégalité triangulaire, orthogonalité, procédé de Schmidt: révisions de première année

II Questions de cours

- 1. Révision du précédent programme de colle. Déterminer le rayon de convergence de la série $\sum n^2 x^n$ et calculer la somme de cette série entière.
- 2. x vecteur propre de f entraı̂ne x vecteur propre de f^k .
- 3. Les sous-espaces propres d'un endomorphisme sont en somme directe.
- 4. Soit $M = \begin{pmatrix} 1 & 3 \\ 1 & 3 \end{pmatrix}$. Montrer (sans passer par le polynôme caractéristique) que M est semblable à une matrice diagonale.
- 5. Soit $M \in \mathcal{M}_n(\mathbb{K})$. A quelle condition le vecteur $X = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$ est-il vecteur propre de M? Quelle est la valeur propre associée?
- 6. λ est valeur propre de f si est seulement si ker $(f \lambda Id) \neq \{0_E\}$. λ est valeur propre de f si est seulement si λ est racine du polynôme caractéristique de f.
- 7. Si $x \mapsto a_{i,j}(x)$ est une fonction affine, alors $\det((a_{i,j}(x))_n)$ est un polynôme de degré au plus n.
- 8. Polynôme caractèristique: définition, degré, coefficient dominant (démonstration à l'aide de la question précédente), coefficient constant. Valeur du coefficient de x^{n-1} (démonstration non demandée).
- 9. λ valeur propre de f si et seulement si λ est racine du polynôme caractéristique de f.
- 10. Etudier les éléments propres de la matrice $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \in \mathcal{M}_n(\mathbb{K})$. (distinguer $\mathbb{K} = \mathbb{R}$ et $\mathbb{K} = \mathbb{C}$).
- 11. Soit A une matrice diagonalisable. Montrer que pour tout $k \in \mathbb{N}$, A^k est diagonalisable.
- 12. Les sous-espaces propres de f sont en sommes directe. Si $n = \dim(E)$ alors f admet au plus n valeurs propres.
- 13. A quelle condition 0 est-il valeur propre de M? Dans ce cas, exprimer dim $(E_0(M))$ à l'aide du rang de M.
- 14. Définition d'un endomorphisme diagonalisable. (cinq formulations équivalentes).
- 15. Si f admet $n = \dim(E)$ valeurs propres distinctes, alors f est diagonalisable. Que peut-on préciser?
- 16. Si f est nilpotente, alors $sp(f) = \{0\}$.
- 17. Définition de la multiplicité des racines d'un polynôme et caractérisation par les dérivées successives (énoncé). Définition d'un polynôme scindé et caractérisation par les racines.
- 18. Montrer que $(X-1)^2$ divise $nX^{n+1} (n+1)X^n + 1$.

- 19. Définiton de la multiplicité d'une valeur propre. Si $m(\lambda)$ est la multiplicité de la valeur propre λ de A alors $\sum_{\lambda \in sp(A)} m(\lambda) \le n$.
- 20. Donner un exemple de matrice de taille n pour laquelle m(0) = n et dim $(E_0(M)) = 1$.
- 21. Si $m(\lambda)$ est la multiplicité de la valeur propre λ de f alors dim $(E_{\lambda}(f)) \leq m(\lambda)$.
- 22. $m(\lambda) = 1 \Rightarrow \dim(E_{\lambda}(M)) = 1$.
- 23. Somme et produit des valeurs propres:.énoncé seul. ATTENTION à l'hypothèse sur χ_f .
- 24. La matrice M est diagonalisable si et seulement si son polynôme caractéristique de M est scindé et pour toute valeur propre λ de M on a l'égalité dim $(E_{\lambda}(M)) = m(\lambda)$.
- 25. Si $\mathbb{K} = \mathbb{R}$, tout endomorphisme d'un espace vectoriel de dimension impair admet au moins une valeur propre.
- 26. Pour des matrices de taille adaptées, si (A_n) converge vers A et (B_n) converge vers B alors (A_nB_n) converge vers AB (continuité du produit matriciel) (on se limitera à des matrices 2-2 pour la démonstration).
- 27. Soit $A = \begin{pmatrix} 4 & -1 \\ 2 & 1 \end{pmatrix}$. Diagonaliser A.
- 28. Soit $A = \begin{pmatrix} 4 & -1 \\ 2 & 1 \end{pmatrix}$. On admet que $P^{-1}AP = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$ avec $P = \begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix}$ et $P^{-1} = \begin{pmatrix} -1 & 1 \\ 2 & -1 \end{pmatrix}$. On pose $M_n = \sum_{k=0}^n \frac{1}{k!} A^k$. Montrer que la suite (M_n) converge et déterminer sa limite.
- 29. Soit $M \in \mathcal{M}_n(\mathbb{R})$. M est semblable à $\lambda I_n \Leftrightarrow M = \lambda I_n$. La matrice $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ est-elle diagonalisable?
- $30. \text{ Soit } M = \begin{pmatrix} 0 & 0 & \cdots & 0 & a_0 \\ 1 & 0 & & 0 & a_1 \\ 0 & 1 & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & 0 & a_{n-2} \\ 0 & \cdots & 0 & 1 & a_{n-1} \end{pmatrix}. \text{ Montrer que les sous-espaces propres de la matrice } M \text{ sont de dimension } 1$
- 31. Déterminer le polynome caractéristique de la matrice M de la question précédente.
- 32. Définition d'un produit scalaire. Donner sans démonstration le développement de $\left(\sum_{i=1}^{p} \lambda_i u_i \mid \sum_{j=1}^{q} \mu_j v_j\right)$. Application au développement de $\left\|\sum_{i=0}^{n} u_i\right\|^2$.
- 33. Démontrer une identité de polarisation et l'identité du parallèlogramme.
- 34. Donner sans démonstration l'inégalité de Cauchy-Schwarz. L'appliquer au produit scalaire usuel de \mathbb{R}^n et au produit scalaire usuel de $C([a,b],\mathbb{R})$.
- 35. Soit $x_1, x_2, ... x_n$ des réels. Montrer que $(x_1 + x_2 + ... + x_n)^2 \le n \times (x_1^2 + x_2^2 + ... + x_n^2)$.
- 36. $\{v_1, v_2, ..., v_k\}^{\perp} = (vect(v_1, v_2, ..., v_k))^{\perp}$.
- 37. Une somme de sous-espace vectoriels orthogonaux est directe.
- 38. On pose, pour $p \in \mathbb{N}$, $f_p(x) = \cos(px)$ Montrer que la famille (f_p) est une famille orthogonale de $C([0, 2\pi], \mathbb{R})$ muni de son produit scalaire usuel.
- 39. Démontrer le théorème de Pythagore (développement de $\left\|\sum_{i=0}^n u_i\right\|^2$ pour des vecteurs deux à deux orhogonaux).
- 40. Dans \mathbb{R}^3 muni de son produit scalaire usuel, on pose $u_1 = (0,1,1)$, $u_2 = (1,0,1)$, $u_3 = (1,1,0)$. Justifier que (u_1, u_2, u_3) est une base de E. Appliquer le procédé de Schmidt pour obtenir une base orthonormée (v_1, v_2, v_3) à partir de la famille (u_1, u_2, u_3) .