Dossier travaux pratiques

Cycle 2: Dynamique

Consignes générales

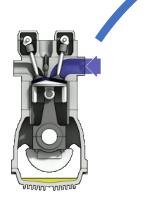
Préparation aux oraux : TP SI

Concours Mines-Ponts

Nature de l'épreuve	MP	MPI	PC	PSI
Épreuve de Mathématiques	12	11	8	9
Épreuve de Physique	10	7	10	9
Épreuve d'Informatique	-	6	-	-
Épreuve mixte de Physique ou de Chimie	-	-	6	-
Épreuve mixte de Physique ou de SI	-	-	-	6
Epreuve d'évaluation des TIPE	6	6	6	6
Épreuve de français	6	6	6	6
Épreuve de langue anglaise	5	5	5	5
Reprise épreuve écrite Informatique option ou SI	2	-	-	-
TOTAL	41	41	41	41

Concours CCINP

ÉPREUVE	CCINP	
Mathématiques	8	
Physique-Chimie	8	
TP Sciences industrielles de l'ingénieur	10	
_angue vivante A	6	
TIPE - épreuve commune	8	
Autres épreuves	-	
TOTAL ORAL	40	


Concours CentraleSupelec

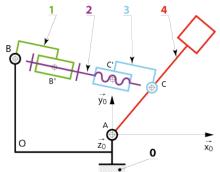
Concours Épreuve	CentraleSupélec Centrale Lyon SupOptique Centrale Lille Centrale Nantes Centrale Méditerranée	Centrale Casablanca*	CentraleSupélec étr. SupOptique étr. Cycle international (hors Centrale Casablanca)	Arts et Métiers	ESTP
Mathématiques	12	12	14	_	_
Mathématiques-informatique	12	12	14	20	_
Physique-chimie	12	12	14	_	_
Physique-chimie-informatique	12	12	14	_	_
TP de physique-chimie	14	14	16	_	_
TP de S2I	14	14	16	20	_
TIPE	11	11	12	20	10
Langue vivante obligatoire	13	13**	_	20	15
Entretien scientifique	_	_	_	20	_
Total	100	100	100	100	25

TP SI = Entre 14% et 25% des oraux

Roulement TP cycle 2

Soupape (SolidWorks)

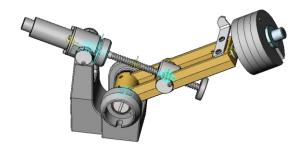
Maxpid



Slider Cam

Cordeuse de raquette

Système souhaité


Commanditaire Analyste Performances attendues

Système réel Laboratoire Expérimentateur Performances mesurées

Performances

simulées

Système simulé

Simulation *Simulateur*

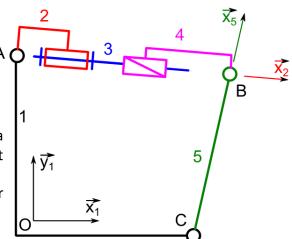
__

- Proposer une modélisation
- Prévoir et vérifier les performances
- > Analyser les écarts entre le souhaité, le réel et le simulé

carts

Dossier travaux pratiques

Maxpid



Trame analytique

On donne le schéma cinématique du système. On rappelle que la grandeur asservie est la position de l'axe : θ_{51} (= θ par la suite). La grandeur pilotée est la rotation de la vis par rapport au moteur : β_{32} .

Le rapport de réduction [vitesse de rotation de l'arbre moteur lié à la vis par rapport au stator moteur (3/2)] sur [vitesse de rotation du bras par rapport au bâti (5/1)] est régi par l'équation :

$$\frac{\mathring{\beta}}{\mathring{\theta}} = \frac{\omega_{32}}{\omega_{51}} = \frac{8.64 \sin \theta + 10.21 \cos \theta}{\sqrt{0.018 + 0.011 \cos \theta - 0.013 \sin \theta}}$$

La masse du bras 5 peut varier de $m_5=1$ kg à 3 kg en ajoutant les 2 masses additionnelles. $|CG_5|=d_5$ passe de 60 mm à 175 mm et l'inertie de 5 au point C, noté I_{5C_7} , passe de 11×10^{-3} kg.m² à 25×10^{-2} kg.m².

L'inertie de l'ensemble 3 I_{3Gz} (rotor + vis) est évaluée à 9×10^{-6} kg.m² au point G_3 (centre d'inertie de 3). On négligera par la suite les poids des solides 2, 3 et 4, et inerties 2 et 4. L'inertie de l'ensemble 3 = vis + rotor ne sera prise en compte que sur leur axe de rotation. On considérera en permanence que le Maxpid est à l'horizontal. On donne également |CB| = 8cm.

Question 1 : En vous plaçant à $\theta = \frac{\pi}{2}$ (et donc où $\overrightarrow{x_5} = \overrightarrow{y_1}$) , donner la relation entre ω_{32} et ω_{51} sous la forme $\omega_{32} = k.\omega_{51}$. On admettra par la suite que $\omega_{32} = k.\omega_{51}$

Question 2 : En isolant seulement le solide 5, et en supposant qu'il est dans la position où $\overrightarrow{x_5} = \overrightarrow{y_1}$ (donc $\theta = \frac{\pi}{2}$), déterminer l'effort $\overrightarrow{F_{4 \to 5}}$, en utilisant le TMD au point C en fonction de l'accélération (en G_5) de 5 par rapport à 1. En exploitant la relation donnée entre ω_{32} et ω_{51} , exprimer l'effort $\overrightarrow{F_{4 \to 5}}$ en fonction de ω_{32} (ainsi que d'autres paramètres constants). On considérera que l'action de 4 sur 5 est uniquement portée par $\overrightarrow{x_2} = \overrightarrow{x_1} : \overrightarrow{F_{4 \to 5}} = F_{45}.\overrightarrow{x_1}$.

Question 3 : En utilisant la relation Force-couple de la liaison hélicoïdale, donner la relation entre le couple $C_{3\to4}$ et $F_{3\to4}$. On admettra par la suite que $F_{3\to4}=F_{4\to5}$. En déduire la relation entre $C_{3\to4}$ et ω_{32} .

Question 4 : Proposer une forme de la matrice d'inertie de 3 au point G_3 (en se basant sur les hypothèses de l'énoncé). Après avoir isolé 3, proposer une équation dynamique issue du TMD selon $\overrightarrow{x_2}$ en G_3 . Vous considérerez le couple $C_{3\to 4}$, le couple frottement fluide nul $C_f=0\ N.\ m$ et frottement sec nul également $C_S=0N.\ m$.

Question 5: En déduire alors une écriture littérale de l'inertie équivalente J_{eq} ramené à l'axe moteur sous la forme : J_{eq} . $\omega_{32} = C_m$, avec J_{eq} à exprimer en fonction de k, le pas de la vis p, d et I_{3Gz} .

Question 6 : Donner la valeur numérique de Jeq pour 0, 1 et 2 masses ajoutées (privilégier un tableur / python pour faire les calculs).

Trame simulation

On considérera que le Maxpid est toujours en position horizontale. On donne l'équation suivante issue du théorème du moment dynamique (équation caractéristique du moteur à courant continu avec des hypothèses simplificatrices) :

$$J_{eq}.\frac{d\omega_{32}(t)}{dt} = C_m(t)$$

Avec J_{eq} l'inertie équivalente ramenée à l'axe moteur

Question 1: A partir de l'assemblage disponible sur cahier de prépa (ouvrir « ASSEMBLAGE MAXPID »), créer les pièces et les liaisons dans Meca3D. Ajouter ensuite un effort « moteur » : valeur de couple de $C_m=1$ N. m

Moteur

Question 2 : Clique droit sur analyse puis choisir « Analyse mécanique ». Choisir « Etude dynamique » puis l'algorithme « RKF45 adaptatif ». Lancer l'étude pour les paramètres suivants : liaison pivot vis-moteur en mouvement libre avec vitesse nulle, Positions = 100 et Durée = 0,05. Lancer l'étude, puis à partir de la courbe de vitesse de rotation de la liaison pivot vis-moteur, déterminer l'accélération correspondante ($\omega_{32}(t)$). Donner alors la valeur de l'inertie équivalente J_{eq} . Refaire le même essai pour un couple $C_m = 0,5$ N. m et confirmer la valeur de J_{eq} précédemment obtenu.

Question 3 : Comparer la valeur obtenue de J_{eq} avec celles du pole analytique et expérimentale, en déterminant les écarts en %. Identifier les raisons aux écarts obtenus.

Comparer les résultats obtenus et hypothèses posées avec les autres pôles et identifier les écarts

Trame expérimentateur

On considérera que le maxpid est toujours en position horizontale. On donne l'équation suivante issue du théorème du moment dynamique (équation caractéristique du moteur à courant continu) :

$$J_{eq} \cdot \frac{d\omega_{32}(t)}{dt} = C_m(t) - f \cdot \omega_{32} - C_s$$

Avec J_{ea} l'inertie équivalente ramenée à l'axe moteur

Question 1: Déterminer un protocole permettant d'obtenir la valeur de f et de C_s . Pour obtenir ces valeurs vous aurez besoin de vous placer dans une configuration où J_{eq} n'intervient pas. Vous aurez également besoin de faire plusieurs essais. Tips : vous pouvez vous intéresser à la courbe du courant en fonction de ω_{32}

Question 2 : Détailler les manipulations permettant de déterminer l'inertie équivalente J_{eq} ramenée à l'axe moteur. Déterminer la valeur numérique de cette grandeur pour 0 masse ajoutée puis 1 masse et 2 masses ajoutées. Vous ferez vos essais pour une même position du bras du maxpid.

Question 3 : Comparer la valeur obtenue de J_{eq} avec celles du pole analytique et simulation, en déterminant les écarts en %. Identifier les raisons aux écarts obtenus.

Comparer les résultats obtenus et hypothèses posées avec les autres pôles et identifier les écarts