PSI DM6 pour le 3 novembre

EXERCICE 1: Exemple de trigonalisation de matrice

- **Q 1** Déterminer le polynôme caractéristique de la matrice $A = \begin{pmatrix} 2 & -1 & 2 \\ 10 & -5 & 7 \\ 4 & -2 & 2 \end{pmatrix}$.
- **Q 2** Déterminer le rang de A. En déduire que la matrice A n'est pas diagonalisable? (On citera précisemment le résultat de cours utilisé.)
- ${f Q}$ 3 Déterminer les sous-espaces propres de A. Un notera U_2 l'unique vecteur propre associé à la valeur propre 0 de première composante égale à 1.
- **Q** 4 Déterminer un vecteur U_3 vérifiant $AU_3 = U_2$.
- **Q 5** Déterminer un vecteur U_1 tel que (U_1, U_2, U_3) soit une base dans laquelle l'endomorphisme canoniquement associé à A admette une matrice triangulaire supérieure.

EXERCICE 2:

Première partie

Dans cette partie, a et b sont deux réels fixés, $a \neq 1$. On considère une suite $u = (u_n)_{n \in \mathbb{N}}$ définie par un terme initial u_0 et vérifiant la relation de récurrence:

$$\forall n \in \mathbb{N}, u_{n+1} = au_n + b$$

Q 6 Expression de u_n :

- **a** Déterminer un réel k tel que la suite $v = (v_n)_{n \in \mathbb{N}}$ définie par $\forall n \in \mathbb{N}, v_n = u_n k$ soit géométrique.
- **b** En déduire une expression de u_n en fonction de u_0 et n.

Pour z complexe, on définit, lorsque la série converge, $S(z) = \sum_{n=0}^{+\infty} u_n z^n$.

- **Q** 7 Rayon de convergence
- **a** On suppose que k = 0. Déterminer le rayon de convergence de la série entière $\sum u_n z^n$.
- **b** On suppose que $u_0 \neq \frac{b}{1-a}$ et $k \neq 0$. Déterminer le rayon de convergence de la série entière $\sum u_n z^n$.
- **c** On suppose que $u_0 = \frac{b}{1-a}$. Déterminer le rayon de convergence de la série entière $\sum u_n z^n$.
- **d** On pose $\rho = \min\left(1, \frac{1}{|a|}\right)$. Justifier que si $|z| < \rho$ alors S(z) est défini.
- **Q 8** On suppose que $|z| < \rho$. En partant de la relation évidente $\sum_{n=0}^{+\infty} (u_{n+1} au_n b) z^n = 0$, montrer que $S(z) = \frac{u_0}{1 az} + \frac{bz}{(1 z)(1 az)}$.

Pour x réel, on définit, lorsque la série converge, $G(x) = \sum_{n=0}^{+\infty} \frac{u_n}{n!} x^n$.

- **Q** 9 Déterminer le rayon de convergence ρ_G de la série entière $\sum \frac{u_n}{n!} x^n$.
- **Q 10** En partant de la relation évidente $\sum_{n=0}^{+\infty} \frac{(u_{n+1} au_n b)}{n!} x^n = 0$, montrer que G vérifie une équation différentielle du premier ordre sur l'intervalle $]-\rho_G, \rho_G[$. En déduire une expression de G(x) en fonction de x.
- **Q 11** Justifier que G est de classe C^{∞} sur $]-\rho_G$, $\rho_G[$ et exprimer $G^{(n)}(x)$ pour $x \in]-\rho_G$, $\rho_G[$ et $n \in \mathbb{N}$. Retrouver le résultat de la question 2.

Deuxième partie: utilisation de série entière pour le calcul du terme général d'une suite On considère la suite $(a_n)_{n\in\mathbb{N}}$ définie par $a_0=1$ et $\forall n\in\mathbb{N},\ a_{n+1}=\frac{1}{2}\sum\limits_{k=0}^n\binom{n}{k}a_ka_{n-k}$.

- **Q 12** Montrer que $\forall n \in \mathbb{N}, a_n \leq n!$.
- **Q 13** En déduire que le rayon de convergence R de la série entière $\sum \frac{a_n}{n!} x^n$ est strictement positif.

Pour
$$x \in]-R, R[$$
, on pose, $f(x) = \sum_{n=0}^{+\infty} \frac{a_n}{n!} x^n$.

- **Q 14** Pour $x \in]-R, R[$, exprimer $f^{2}(x)$ en fonction de f'(x).
- **Q 15** En déduire qu'il existe r > 0 tel que $\forall x \in]-r, r[, f(x) = \frac{1}{1 \frac{x}{2}}]$
- **Q 16** Exprimer a_n en fonction de n.

EXERCICE 3:

On considère la matrice $A=\begin{pmatrix} 0 & a & 1\\ a & 0 & 1\\ a & 1 & 0 \end{pmatrix}$ où a est un réel.

- Q 17 Calculer le déterminant de A. Déterminer le rang de A.
- **Q 18** Calculer le polynôme caractéristique P de la matrice A. Préciser P(-1). Déterminer le spectre de la matrice A.
- **Q 19** Justifier que si P admet trois racines distinctes si et seulement si $a \notin \left\{1, -2, -\frac{1}{2}\right\}$. En déduire que si $a \notin \left\{1, -2, -\frac{1}{2}\right\}$ alors A est diagonalisable.
- **Q 20** On suppose que a = 1. Préciser sp(A) et $rg(A + I_3)$. En déduire que A est diagonalisable.
- **Q 21** On suppose que a = 2. Préciser sp(A) et $rg(A + I_3)$. En déduire que A n'est diagonalisable.
- **Q 22** On suppose que $a = -\frac{1}{2}$. La matrice A est-elle diagonalisable?

EXERCICE 4:

On considère l'équation différentielle $(1-x^2)y'(x) - xy(x) = 1$: (\mathcal{E}) et un réel R > 0.

- **Q 23** Résoudre l'équation homogène $(1-x^2)y'(x) xy(x) = 0$: (\mathcal{H}) sur l'intervalle]-1,1[.
- **Q 24** Déterminer une solution particulière de (\mathcal{E}) sur l'intervalle]-1,1[à l'aide de la méthode de variation de la constante. En déduire l'ensemble des solutions de (\mathcal{E}) sur l'intervalle]-1,1[.
- **Q 25** Soit $\sum a_n x^{2n+1}$ une série entière de rayon de convergence R > 0.

On pose, pour $x \in]-R, R[, f(x) = \sum_{n=0}^{+\infty} a_n x^{2n+1}.$

- 1. Montrer que f est solution de (\mathcal{E}) si et seulement si $(a_0 = 1 \text{ et } \forall n \in \mathbb{N}, (2n+3) a_{n+1} = (2n+2) a_n)$.
- 2. Montrer que f est solution de (\mathcal{E}) si et seulement si $\forall n \in \mathbb{N}, \ a_n = \frac{4^n n!^2}{(2n+1)!}$.
- 3. Déterminer le rayon de convergence de la série entière $\sum \frac{4^n n!^2}{(2n+1)!} x^{2n+1}$.
- **Q 26** Justifier que la fonction $x \mapsto \frac{Arc\sin{(x)}}{\sqrt{1-x^2}}$ est développable en série entière sur]-1,1[et préciser ce développement.

EXERCICE 5:

- Soit a_1, \ldots, a_{n-1} des réels, $a_1 \neq 0$ et $M = \begin{pmatrix} 0 & \cdots & 0 & a_1 \\ \vdots & & \vdots & \vdots \\ 0 & \cdots & 0 & a_{n-1} \\ a_1 & \cdots & a_{n-1} & 0 \end{pmatrix} \in \mathcal{M}_n(\mathbb{R}).$
- $f: \mathbb{R}^n \to \mathbb{R}^n$ canoniquement associé à M et (e_1, \dots, e_n) la base canonique de \mathbb{R}^n .
- On pose $F = vect(e_n, f(e_n)), A = \begin{pmatrix} 0 & \sum_{i=1}^{n-1} a_i^2 \\ 1 & 0 \end{pmatrix}$ et $\lambda = \sqrt{\sum_{i=1}^{n-1} a_i^2}$.
- Q 27 Calculer le polynôme caractéristique de la matrice A.

Montrer que la matrice A est diagonalisable et déterminer les sous-espaces propres de A.

- Q 28 Déterminer le rang de M.
- ${f Q}$ 29 Montrer que F est stable par f.
- ${f Q}$ 30 Soit g l'endomorphisme induit par f sur F.

Justifier que $(e_n, f(e_n))$ est une base de F et déterminer la matrice de g dans cette base. Justifier que g est un isomorphisme.

- **Q 31** Justifier que $\{-\lambda, \lambda\} \subset sp(f)$ et donner un vecteur de propre de f associé à λ et à $-\lambda$.
- ${f Q}$ 32 En déduire que f est diagonalisable.
- **Q 33** Déterminer une base de $\ker(f)$.
- **Q 34** Déterminer une matrice $P \in GL_n(\mathbb{R})$ telle que $P_3^{-1}MP$ est diagonale.

PROBLEME:

Soit $n \in \mathbb{N}$, $n \geq 2$.

On pose, $k \in [[0, n-1]], \omega_k = e^{ik\frac{2\pi}{n}}$. Première partie: Puissances de K_n , éléments propres de K_n et application

Q 35 Soit f_n l'endomorphisme canoniquement associé à K_n et (E_1, \ldots, E_n) la base canonique de $\mathcal{M}_{n,1}(\mathbb{C})$. Déterminer, pour $j \in [[1, n]]$ l'image de E_j par f_n^2 . En déduire la matrice K_n^2 . Soit $i \in [[1, n]]$. Déterminer, pour $j \in [[1, n]]$ l'image de E_j par f_n^i . En déduire la matrice K_n^i .

Q 36 Soit $\lambda \in \mathbb{C}$ une valeur propre de K_n et $X \in \mathcal{M}_{n,1}(\mathbb{C})$ un vecteur propre associé. En calculant de deux manières $K_n^n \times X$, montrer que $\lambda^n = 1$. En déduire que $sp(K_n) \subset \{\omega_k, k \in [[0, n-1]]\}$

Q 37 Déterminer le polynôme caractéristique de K_n . En déduire que $sp(K_n) = \{\omega_k, k \in [[0, n-1]]\}$ et que K_n est diagonalisable dans $\mathcal{M}_n(\mathbb{C})$.

Préciser la dimension des sous-espaces propres.

Q 38 Déterminer le sous-espace propre de K_n associé à la valeur propre ω_k . On notera U_k un vecteur propre de K_n de première composante 1.

Q 39 Donner une matrice $P_n \in \mathcal{GL}_n(\mathbb{C})$ et une matrice $D_n \in \mathcal{M}_n(\mathbb{C})$ diagonale telle que

$$P_n^{-1}K_nP_n = D_n$$

Soit $f: \mathcal{M}_{7,1}(\mathbb{C}) \to \mathcal{M}_{7,1}(\mathbb{C})$ l'endomorphisme canoniquement associé à M et (E_1, \ldots, E_7) la base canonique de $\mathcal{M}_{7,1}(\mathbb{C})$.

- **Q** 40 Montrer que le sous-espace vectoriel vect (E_1, E_3, E_5) est stable par f.
- **Q 41** Montrer que la matrice M est semblable à la matrice diagonale par blocs $\left(\begin{array}{c|c} K_3 & 0 \\ \hline 0 & K_4 \end{array}\right)$.
- **Q 42** Justifier que la matrice $\left(\begin{array}{c|c} P_3 & 0 \\ \hline 0 & P_4 \end{array}\right)$ est inversible et exprimer son inverse à l'aide des matrices P_3 et P_4 .
- **Q 43** Montrer que la matrice M est semblable dans $\mathcal{M}_7(\mathbb{C})$ à une matrice diagonale à préciser.

Deuxième partie:

On pose $E = \mathcal{M}_{n,1}(\mathbb{C})$. Soit $Z = \begin{pmatrix} z_1 \\ \vdots \\ z_n \end{pmatrix} \in \mathcal{M}_{n,1}(\mathbb{C})$. et H le sous-espace vectoriel de E d'équation $z_1 + \cdots + z_n = 0$. On pose $B = \frac{1}{2} (I_n + I_n)$

Q 44 Justifier que pour $k \in [[0, n-1]]$, le vecteur U_k est un vecteur propre de B.

Q 45 Montrer que (U_1, \ldots, U_{n-1}) est une base de H.

Q 46 Montrer que si $Z \in H$, alors la suite $(B^p Z)_{p \in \mathbb{N}}$ converge vers $0_{\mathbb{C}^n}$. (On pourra utiliser la question précédente).

On considère un plan muni d'un repère orthonormé direct (O, \vec{u}, \vec{v}) . A tout point M de coordonnées (x, y), on associe le complexe $z_M = x + iy$ appelé affixe de M. Si M et N sont deux points du plan, le milieu du segment [MN] est le point d'affixe $\frac{1}{2}(z+z')$. On considère un polygone \mathcal{P}_0 à n sommets (A_1,A_2,\ldots,A_n) du plan. On note z_i , l'affixe du point A_i . Le centre du polygone est le point d'affixe $\frac{1}{n}(z_1+z_2+\cdots+z_n)$ et on suppose que ce centre est le point O. On définit par récurrence pour tout $k \in \mathbb{N}$ le polygone $\mathcal{P}_k = \left(P_1^{(k)}, P_2^{(k)}, \dots, P_n^{(k)}\right)$ de la manière suivante:

- maniere suivance.

 Pour $i \in [[1, n]]$, on a $P_i^{(0)} = A_i$ Le point $P_1^{(k+1)}$ est le milieu du segment $\left[P_n^{(k)}, P_1^{(k)}\right]$ et pour $i \in [|2, n|]$ le point $P_i^{(k+1)}$ est le milieu du segment $\left[P_{i-1}^{(k)}, P_i^{(k)}\right].$

Q 47 Représenter les polygones \mathcal{P}_0 , \mathcal{P}_1 , \mathcal{P}_2 sur une figure lorsque n=3 et \mathcal{P}_0 est le triangle de sommets les points d'affixes respectives 1, $e^{i\frac{2\pi}{3}}$, $e^{i\frac{4\pi}{3}}$.

Q 48 Soit r > 0. Montrer qu'il existe un entier k_0 tel que pour tout $k \geq k_0$, le polygone \mathcal{P}_k est à l'intérieur du disque de centre O et de rayon r.

Troisième partie: Déterminant circ

Soit
$$(a_0, a_1, \dots, a_{n-1}) \in \mathbb{C}^n$$
. Soit $A = \begin{pmatrix} a_0 & a_{n-1} & a_{n-2} & \cdots & a_1 \\ a_1 & a_0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & a_{n-2} \\ a_{n-2} & & \ddots & & a_{n-1} \\ a_{n-1} & a_{n-2} & \cdots & a_1 & a_0 \end{pmatrix}$.

Q 49 Exprimer la matrice A comme combinaison linéaire des matrices $I_n, K_n, K_n^2, \ldots, K_n^{n-1}$.

Q 50 En déduire que la matrice A est diagonalisable dans $\mathcal{M}_n(\mathbb{C})$ et préciser une matrice diagonale semblable à A.

Q 51 En déduire que det $(A) = \prod_{k=0}^{n-1} \left(\sum_{k=0}^{n-1} a_i \omega_k^i \right)$.

Correction du DM6

EXERCICE 1:

- **R** 1 On obtient $\chi_A(x) = \det(xI_2 A) = x^2(x+1)$. et donc $sp(A) = \{0, -1\}$.
- **R 2** La valeur $\lambda = 0$ est une valeur propre de A donc dim $(\ker(A)) = \dim(\ker(A 0I_3)) \ge 1$ donc par le th du rang, $rg(A) \le 2$. Or sa famille de colonnes (C_2, C_3) est libre donc $rg(A) \ge 2$ donc rg(A) = A. On en déduit que dim $(E_0(A)) = \dim(\ker(A)) = 1$. On a donc dim $(E_0(A)) = 1 < m(0) = 2$ (multiplicité de la valeur propre 0) donc la matrice A n'est pas diagonalisable car A est diagonalisable si et seulement si son polynôme caractéristique est scindé et pour tout $\lambda \in sp(A)$, on dim $(E_{\lambda}(A)) = 1 < m(\lambda)$.
- **R** 3 On vérifie que $E_{-1}(A) = vect(U_1)$ et $E_0(A) = vect(U_2)$ avec $U_1 = \begin{pmatrix} 1 \\ -1 \\ -2 \end{pmatrix}$ et $U_2 = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$.
- $\mathbf{R} \ \mathbf{4} \ Si \ U_{3} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}, \ AU_{3} = U_{2} \Leftrightarrow \begin{cases} 2a b + 2c = 1 \\ 10a 5b + 7c = 2 \\ 4a 2b + 2c = 0 \end{cases} \Leftrightarrow \begin{cases} 2a b + 2c = 1 \\ -3c = -3 \end{cases} \Leftrightarrow \begin{cases} 2a b = -1 \\ c = 1 \end{cases} \Leftrightarrow U_{3} = \begin{pmatrix} a \\ 2a + 1 \\ 1 \end{pmatrix}.$ $En \ prenant \ a = 0 \ on \ obtient \ par \ exemple \ U_{3} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$
- **R 5** Soit B_0 la une base canonique de \mathbb{R}^3 . On a $\det_{B_0}(U_1, U_2, U_3) = \begin{vmatrix} 1 & 1 & 0 \\ -1 & 2 & 1 \\ -2 & 0 & 1 \end{vmatrix} = 1 \neq 0$ donc $B = (U_1, U_2, U_3)$ est une base de \mathbb{R}^3 . Si f est canoniquement associé à A, on a $f(U_1) = AU_1 = -U_1$, $f(U_2) = AU_2 = 0$ et $f(U_3) = AU_3 = U_2$ donc $mat_B(f) = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} = T$ et donc $T = P^{-1}AP$ avec $P = P_{B_0}^B = \begin{pmatrix} 1 & 1 & 0 \\ -1 & 2 & 1 \\ -2 & 0 & 1 \end{pmatrix}$.

EXERCICE 2:

Première partie (D'après centrale 2008 PSI)

- **R 6** On remarque que $x = ax + b \Leftrightarrow x = \frac{b}{1-a} = k.car \ a \neq 1$. On a donc $\begin{cases} u_{n+1} = au_n + b \\ k = ak + b \end{cases}$. On a donc $u_{n+1} k = a (u_n k)$ donc la suite définie par $\forall n \in \mathbb{N}, \ v_n = u_n k$ est géométrique. On en déduit que $v_n = a^n v_0$ donc $u_n = k + a^n (u_0 k)$.
- R 7 Rayon
- a Si b=0, alors $u_n=a^nu_0.Si$ $u_0=0$, alors $R=+\infty$ et si $u_0\neq 0$ alors $\sum u_nz^n=\sum u_0\left(az\right)^n$ converge si et seulement si |az|<1. donc $R=\frac{1}{|a|}$.
- **b** $Si \ u_0 \neq k \ alors$
 - si |a| > 1 alors $u_n = k + a^n (u_0 k) \sim_{n \to +\infty} a^n (u_0 k)$ et $\sum a^n (u_0 k) z^n$ a même rayon de convergence (égal à $\frac{1}{|a|}$) donc $R = \frac{1}{|a|}$.

 si |a| < 1 alors $u_n = k + a^n (u_0 k) \sim_{n \to +\infty} k$ et $\sum a^n (u_0 k) z^n$ a même rayon de convergence (égal à
 - $-si |a| < 1 \ alors \ u_n = k + a^n (u_0 k) \sim_{n \to +\infty} k \ et \sum a^n (u_0 k) z^n \ a \ même \ rayon \ de \ convergence \ (égal à 1 |a|) \ donc \ R = \frac{1}{|a|}.$
 - $-si \ a = -1 \ alors \ u_n = k + (-1)^n (u_0 k) \ donc \ u_{2p} = k + (u_0 k) \ et \ u_{2p+1} = k (u_0 k) \ donc \ R = 1.$

- **c** Si $u_0 = \frac{b}{1-a} = k$. On a donc $\forall n, u_n = k$. Si k = 0 alors $R = +\infty$ et si $k \neq 0$ alors R = 1.
- $\mathbf{d} \ Si \ \rho = \min \left(1, \frac{1}{|a|} \right) \ alors \ d'après \ les \ questions \ précédentes, \ \rho < R \ donc \ si \ |z| < \rho \ alors \ S\left(z \right) \ est \ défini.$
- **R** 8 Soit $|z| < \rho$. On $a \sum_{n=0}^{+\infty} (u_{n+1} au_n b) z^n = 0$ or si $z \neq 0$, $\sum_{n=0}^{+\infty} u_{n+1} z^n = \frac{1}{z} \sum_{n=0}^{+\infty} u_{n+1} z^{n+1} = \frac{S(z) u_0}{z}$ et $\sum_{n=0}^{+\infty} b z^n = \frac{b}{1-z}$ donc $\frac{S(z) u_0}{z} aS(z) \frac{b}{1-z} = 0$ d'où $\frac{S(z) azS(z)}{z} = \frac{u_0}{z} + \frac{b}{1-z}$ donc $S(z) = \frac{u_0}{1-az} + \frac{bz}{(1-z)(1-az)}$. Cette égalité est aussi vraie pour z = 0.
- **R 9** On a $u_n = k + a^n (u_0 k)$ donc si |a| > 1 et $k \neq 0$, alors $u_n = O(a^n)$ donc $\frac{u_n}{n!} x^n = O\left(\frac{(ax)^n}{n!}\right)$. La série $\sum \frac{(ax)^n}{n!}$ est absolument convergente donc $\sum \frac{u_n}{n!} x^n$ converge donc $\rho_G = +\infty$. On raisonne de même en considérant tous les cas traités dans la question 3 et on obtient à chaque fois $\rho_G = +\infty$.
- $\mathbf{R} \ \mathbf{10} \ On \ a \sum_{n=0}^{+\infty} \frac{\left(u_{n+1} au_n b\right)}{n!} x^n = 0 \ et \sum_{n=0}^{+\infty} \frac{u_{n+1}}{n!} x^n = \sum_{n=0}^{+\infty} (n+1) \frac{u_{n+1}}{(n+1)!} x^n = \sum_{n=1}^{+\infty} n \frac{u_n}{n!} x^{n-1} = G'(x) \ car$ on peut dériver terme à terme la série entière sur $]-\rho_G, \rho_G[=\mathbb{R}.$ On en déduit que $G'(x) aG(x) = be^x$.

 On en déduit qu'il existe $\lambda \in \mathbb{R}$ tel que $G(x) = \underbrace{\lambda e^{ax}}_{eq \ ho} + \underbrace{\frac{b}{1-a} e^x}_{sol \ part}$. Comme $G(0) = u_0, \ \lambda = u_0 \frac{b}{1-a}$ donc
- $G(x) = \left(u_0 \frac{b}{1-a}\right)e^{ax} + \frac{b}{1-a}e^x.$
- $\mathbf{R} \ \mathbf{11} \ La \ fonction \ G \ r \'esulte \ d'op\'eration \ sur \ des \ fonctions \ de \ classe \ C^{\infty} \ donc \ est \ de \ classe \ C^{\infty} \ sur \ \mathbb{R}. \ On \ a \ G^{(n)}\left(x\right) = a^n \left(u_0 \frac{b}{1-a}\right) e^{ax} + \frac{b}{1-a} e^x. \ D'après \ le \ cours, \ \frac{u_n}{n!} = \frac{G^{(n)}\left(0\right)}{n!} \ donc \ u_n = a^n \left(u_0 \frac{b}{1-a}\right) + \frac{b}{1-a}.$

Deuxième partie

On considère la suite $(a_n)_{n\in\mathbb{N}}$ définie par $a_0=1$ et $\forall n\in\mathbb{N},\ a_{n+1}=\frac{1}{2}\sum_{k=0}^n\binom{n}{k}a_ka_{n-k}$.

- **R 12** $a_0 = 1 \le 0!$. Supposons que $\forall k \in [[0,n]]$, on $a \ a_k \le k!$. On $a \ alors \ a_{n+1} = \frac{1}{2} \sum_{k=0}^{n} \binom{n}{k} a_k a_{n-k} = \frac{n!}{2} \sum_{k=0}^{n} \frac{a_k a_{n-k}}{k! (n-k)!} \le \frac{n!}{2} (n+1) \le (n+1)!$. On en déduit que $\forall n \in \mathbb{N}$, $a_n \le n!$.
- **R 13** On $a \left| \frac{a_n}{n!} \right| \le 1$ donc $R \ge 1$, rayon de convergence de la série entière $\sum x^n$. Pour $x \in]-R, R[$, on pose, $f(x) = \sum_{n=0}^{+\infty} \frac{a_n}{n!} x^n$.
- **R 14** Pour $x \in]-R, R[$ on a $f^2(x) = \sum_{n=0}^{+\infty} w_n x^n$ avec $w_n = \sum_{k=0}^{n} \frac{a_k}{k!} \frac{a_{n-k}}{(n-k)!}$ (produit de Cauchy des série entière $\sum \frac{a_n}{n!} x^n$ avec elle même).
- On a donc $w_n = \frac{1}{n!} \sum_{k=0}^{n} \binom{n}{k} a_k a_{n-k} = 2 \frac{a_{n+1}}{n!}$. On a donc $f^2(x) = 2 \sum_{n=0}^{+\infty} \frac{a_{n+1}}{n!} x^n = 2 \sum_{n=0}^{+\infty} (n+1) \frac{a_{n+1}}{(n+1)!} x^n = 2 f'(x)$. car on peut dériver terme à terme sur]-R, R[.

R 15 On a $f(0) = \frac{a_0}{\Omega!} = 1$ donc f(0) > 0. La fonction f est continue en 0 (car C^{∞} sur]-R,R[) donc il existe donc r > 0 tel que $\forall x \in]-r, r[, f(x) > \frac{f(0)}{2} > 0$

(prendre $\varepsilon = \frac{f(0)}{2}$ dans la définition des limites).

On en déduit que si $x \in]-r, r[$ alors $\frac{f'(x)}{f^2(x)} = \frac{1}{2}$.

Une primitive de la fonction $\frac{f'(x)}{f^2(x)}$ sur]-r,r[est $\frac{-1}{f(x)}$ donc $\exists \lambda \in \mathbb{R}^*$ tel que si $x \in]-r,r[$ alors $\frac{-1}{f(x)} = \lambda + \frac{x}{2}$. soit $f(x) = \frac{1}{-\lambda - \frac{x}{2}}$. En prenant x = 0, on obtient que $\lambda = -1$ donc $f(x) = \frac{1}{1 - \frac{x}{2}}$.

R 16 On en déduit que, si $x \in]-r, r[$ alors $f(x) = \sum_{n=0}^{+\infty} \left(\frac{x}{2}\right)^n = \sum_{n=0}^{+\infty} \frac{a_n}{n!} x^n$ donc $a_n = \frac{n!}{2^n}$ par unicité du développement en série entière.en fonction de n.

EXERCICE 3:

R 17 Après calcul, on trouve det A = a(a+1). Si A

Premier cas: $a \neq 0$ et $a \neq -1$

Alors, $\det A \neq 0$ donc A est inversible.

 $Donc \operatorname{rg} A = 3.$

 $Deuxi\`eme\ cas: a=0$

$$A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} donc \ rgA = 2.$$

Troisième cas:
$$a = -1$$

$$A = \begin{pmatrix} 0 & -1 & 1 \\ -1 & 0 & 1 \\ -1 & 1 & 0 \end{pmatrix} donc \operatorname{rg} A \geqslant 2 \ car \ les \ deux \ premières \ colonnes \ de \ A \ sont \ non \ colinéaires.$$

 $Or \det A = 0 \ donc \ rgA \leq 2.$

On en déduit que rgA = 2.

R 18 Notons P le polynôme caractéristique de A.

$$P(x) = \det(xI_n - A) = \begin{vmatrix} x & -a & -1 \\ -a & x & -1 \\ -a & -1 & x \end{vmatrix}$$

Alors, en ajoutant à la première colonne la somme des deux autres puis, en soustrayant la première ligne aux deux autres lignes, on trouve successivement:

$$\det(xI_n - A) = \begin{vmatrix} x - a - 1 & -a & -1 \\ x - a - 1 & x & -1 \\ x - a - 1 & -1 & x \end{vmatrix} = (x - a - 1) \begin{vmatrix} 1 & -a & -1 \\ 1 & x & -1 \\ 1 & -1 & x \end{vmatrix} = (x - a - 1) \begin{vmatrix} 1 & -a & -1 \\ 0 & x + a & 0 \\ 0 & -1 + a & x + 1 \end{vmatrix}.$$

Donc, en développant par rapport à la première colonn

$$P(x) = \det(xI_n - A) = (x - a - 1)(x + a)(x + 1).$$

Donc
$$P = (X - a - 1)(X + a)(X + 1)$$
.

Les racines de P sont les valeurs propres de A donc $sp(A) = \{a+1, -a, -1\}$.

Remarque: On obtient donc P(-1) = 0 mais cela n'a pas servi car les combinaisons linéaires de colonnes et de ligne ont permis d'obtenir directement une forme factorisée.

R 19 On
$$a$$
 $a+1=-a \iff a=-\frac{1}{2}$ et $a+1=-1 \iff a=-2$ et $-a=-1 \iff a=1$ donc si $a \notin \left\{1,-2,-\frac{1}{2}\right\}$ le polynôme P admet trois racines distinctes.

Si $a \notin \left\{1, -2, -\frac{1}{2}\right\}$ A admet 3 valeurs propres distinctes $\lambda_1 = a + 1$, $\lambda_2 = -a$ et $\lambda_3 = -1$ vérifiant par définition $\dim (E_{\lambda_i}(A)) \ge 1$ donc $\sum_{i=1}^{3} \dim (E_{\lambda_i}(A)) \ge 3$ donc A est diagonalisable.

R 20 Si a = 1. On $a P = (X - 2)(X + 1)^2$ donc $sp(A) = \{-1, 2\}$.

$$Or\ A+\mathrm{I}_3=egin{pmatrix}1&1&1\\1&1&1\end{pmatrix}\ donc\ \mathrm{rg}(A+\mathrm{I}_3)=1\ et,\ en\ appliquant\ le\ th\'eor\`eme\ du\ rang,$$

 $\dim (E_{-1}(A)) = \dim (\ker (A + I_3)) = 2.$

De plus dim $(E_2(A)) \ge 1$ donc dim $(E_{-1}(A)) + \dim (E_2(A)) \ge 3$ donc A est diagonalisable.

R 21 Si a = -2 alors, $P = (X+1)^2(X-2)$ donc $sp(A) = \{-1, 2\}$

$$Or A + I_3 = \begin{pmatrix} 1 & -2 & 1 \\ -2 & 1 & 1 \\ -2 & 1 & 1 \end{pmatrix}$$

Les deux premières colonnes de $A + I_3$ ne sont pas colinéaires, donc $rg(A + I_3) \ge 2$.

De plus, -1 est valeur propre de A, donc dim $(\ker (A + I_3)) \ge 1$ donc $\operatorname{rg}(A + I_3) \le 2$.

Ainsi, $rg(A + I_3) = 2$ et dim $E_{-1}(A) = 1$.

Or l'ordre multiplicité de la valeur propre -1 dans le polynôme caractéristique est $2 > 1 = \dim E_{-1}(A)$. On en déduit que A n'est pas diagonalisable.

R 22 Si $a = -\frac{1}{2}$ alors $P = (X - \frac{1}{2})^2(X + 1)$ donc $sp(A) = \left\{-1, \frac{1}{2}\right\}$.

$$A - \frac{1}{2}I_3 = \begin{pmatrix} -\frac{1}{2} & -\frac{1}{2} & 1\\ -\frac{1}{2} & -\frac{1}{2} & 1\\ -\frac{1}{2} & 1 & -\frac{1}{2} \end{pmatrix}.$$

Les deux premières colonnes de $A - \frac{1}{2}I_3$ sont non colinéaires, donc $\operatorname{rg}(A - \frac{1}{2}I_3) \geqslant 2$.

De plus, $\frac{1}{2}$ est valeur propre donc $\operatorname{rg}(A - \frac{1}{2}I_3) \leqslant 2$.

Ainsi, $\operatorname{rg}(A - \frac{1}{2}I_3) = 2$ et $\dim E_{\frac{1}{2}}(A) = 1$.

Or l'ordre de multiplicité de la valeur propre $\frac{1}{2}$ dans le polynôme caractéristique est 2. On en déduit que A n'est pas diagonalisable.

EXERCICE 4:

R 23 On $a(H): (1-x^2)y'(x) - xy(x) = 0 \iff y'(x) - \frac{x}{1-x^2}y(x) = 0 \text{ sur }]-1,1[.$

Une primitive de $x \mapsto -\frac{x}{1-x^2}$ est $x \mapsto A(x) = \frac{1}{2} \ln(1-x^2)$. Les solutions de (H) sont les fonctions

$$x \mapsto \lambda e^{-A(x)} = \lambda e^{-\frac{1}{2}\ln\left(1-x^2\right)} = \lambda e^{\ln\left(\frac{1}{\sqrt{1-x^2}}\right)} = \frac{\lambda}{\sqrt{1-x^2}}, \ \lambda \in \mathbb{R}.$$

 ${\bf R}\ {\bf 24}\ L'\'equation\ diff\'erentielle\ est\ lin\'eaire\ du\ premier\ ordre.$

Appliquons la méthode de variation de la constante. Posons $y(x) = \frac{z(x)}{\sqrt{1-x^2}}$.

$$(1-x^2)y'(x) - xy(x) = 1 \iff (1-x^2)\frac{z'(x)}{\sqrt{1-x^2}} = 1.$$
 Or $z(x) = Arc\sin(x)$ convient et $y_P(x) = \frac{Arc\sin(x)}{\sqrt{1-x^2}}$ est

une solution particulière de l'équation.

Les solutions sont les fonctions
$$y(x) = \frac{Arc\sin(x)}{\sqrt{1-x^2}} + \frac{\lambda}{\sqrt{1-x^2}}$$
.

R 25 Soit $\sum a_n x^{2n+1}$ une série entière de rayon de convergence R. On pose, pour $x \in]-R, R[, f(x) =$ $\sum_{n=0}^{+\infty} a_n x^{2n+1}.$

1. On peut dériver terme à terme une série entière sur]-R,R[donc si $x\in]-R,R[$, $f'(x)=\sum_{n=0}^{+\infty}(2n+1)a_nx^{2n}$ (on garde n = 0 car $x^{2 \times 0 + 1} = x^1$).

$$(1-x^{2}) f'(x) - x f(x) = 1 \iff (1-x^{2}) \sum_{n=0}^{+\infty} (2n+1) a_{n} x^{2n} - x \sum_{n=0}^{+\infty} a_{n} x^{2n+1} = 1$$

$$\iff \sum_{n=0}^{+\infty} (2n+1) a_{n} x^{2n} - \sum_{n=0}^{+\infty} (2n+1) a_{n} x^{2n+2} - \sum_{n=0}^{+\infty} a_{n} x^{2n+2} = 1$$

$$\iff \sum_{n=0}^{+\infty} (2n+1) a_{n} x^{2n} - \sum_{n=1}^{+\infty} (2n-1) a_{n-1} x^{2n} - \sum_{n=1}^{+\infty} a_{n-1} x^{2n} = 1$$

$$\iff a_{0} + \sum_{n=1}^{+\infty} ((2n+1) a_{n} - (2n) a_{n-1}) x^{2n} = 1$$

$$\iff a_{0} = 1$$

$$\forall n \in \mathbb{N}^{*} (2n+1) a_{n} - 2n a_{n-1} = 0$$

$$donc \ f \ est \ solution \ de \ (\mathcal{E}) \ si \ et \ seulement \ si \ (a_{0} = 1 \ et \ \forall n \in \mathbb{N}, \ (2n+3) \ a_{n+1} = (2n+2) \ a_{n}).$$

- 2. Posons $b_n = \frac{4^n n!^2}{(2n+1)!}$. On $a b_0 = 1$ et $\frac{b_{n+1}}{b_n} = \frac{4^{n+1} (n+1)!^2}{(2n+3)!} \frac{(2n+1)!}{4^n (n!)^2} = \frac{4(n+1)^2}{(2n+3)(2n+2)} = \frac{2n+2}{2n+3}$ $donc\ (b_0 = 1\ et\ \forall n \in \mathbb{N}, (2n+3)\ b_{n+1} = (2n+2)\ b_n)$. Cette suite (b_n) est donc l'unique suite vérifiant les conditions de la question précédente. On en déduit que f est solution de (\mathcal{E}) si et seulement si $\forall n \in \mathbb{N}$, $a_n = \frac{4^n n!^2}{(2n+1)!}$
- 3. Posons $u_n = a_n x^{2n+1}$. Pour $x \neq 0$, $\frac{u_{n+1}}{u_n} = \frac{a_{n+1} x^2}{a_n} = \frac{2n+2}{2n+3} x^2$ donc $\lim_{n \to +\infty} \left| \frac{u_{n+1}}{u_n} \right| = x^2$. Si $x^2 < 1$ alors $\sum u_n$ converge et si $x^2 > 1$ alors $\sum u_n$ diverge. On en déduit que R =
- R 26 Comme on a raisonné par équivalence dans les questions 1 et 2, on en déduit que la fonction f est solution de l'équation (\mathcal{E}) sur]-1,1[. On peut appliquer le théorème de Cauchy à l'équation (\mathcal{E}) sur]-1,1[car $(1-x^2)$ ne s'annule pas sur cet intervalle. On a f(0) = 0 et si $y_P(x) = \frac{Arc\sin(x)}{\sqrt{1-x^2}}$ alors $y_P(0) = 0$. Les fonctions f et y_P sont solutions de (\mathcal{E}) donc $f = y_P$ donc $\forall x \in]-1,1[$, $\frac{Arc\sin(x)}{\sqrt{1-x^2}} = \sum_{n=0}^{+\infty} \frac{4^n n!^2}{(2n+1)!} x^{2n+1}$.

EXERCICE 5:

$$\mathbf{R} \ \mathbf{27} \ On \ a \ \chi_{A}(x) = \begin{vmatrix} x & -\sum_{i=1}^{n-1} a_{i}^{2} \\ 1 & x \end{vmatrix} = x^{2} - \sum_{i=1}^{n-1} a_{i}^{2} = (x - \lambda)(x + \lambda) \ avec \ \lambda = \sqrt{\sum_{i=1}^{n-1} a_{i}^{2}}.$$

$$Soit \ X = \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} \in \mathbb{R}. \ On \ a$$

$$AX = \lambda X \Leftrightarrow \begin{pmatrix} 0 & \lambda^2 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \lambda \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \Leftrightarrow \begin{cases} \lambda^2 x_2 = \lambda x_1 \\ x_1 = \lambda x_2 \end{cases} \Leftrightarrow X = x_2 \begin{pmatrix} \lambda \\ 1 \end{pmatrix} donc \ E_{\lambda}(A) = vect(U_1) \ avec(U_1)$$

$$U_1 = \begin{pmatrix} \lambda \\ 1 \end{pmatrix}$$
.

De même $E_{-\lambda}(A) = vect(U_2)$ avec $U_2 = \begin{pmatrix} -\lambda \\ 1 \end{pmatrix}$

R 28 Les colonnes C_1 et C_n sont non nulles et non proportionnelles. Les colonnes C_2, \ldots, C_{n-1} sont colinéaires à C_1 donc le rang de M est égal à 2.

R 29 Soit $x \in F$. On $a = x_1 e_n + x_2 f(e_n)$ donc $f(x) = x_1 f(e_n) + x_2 f^2(e_n)$. Or $f(e_n) = \sum_{i=1}^{n-1} a_i e_i$ donc $f^{2}(e_{n}) = \sum_{i=1}^{n-1} a_{i} f(e_{i}) = \left(\sum_{i=1}^{n-1} a_{i}^{2}\right) e_{n}.$ d'où $f(x) = x_{1} f(e_{n}) + x_{2} \left(\sum_{i=1}^{n-1} a_{i}^{2}\right) e_{n} \in F.$ On en déduit que F est stable

R 30 La famille $(e_n, f(e_n))$ est libre car $f(e_n) = \sum_{i=1}^{n-1} a_i e_i$ donc est une base de $F = vect(e_n, f(e_n))$.

On
$$a \begin{cases} g(e_n) = f(e_n) \\ g(f(e_n)) = f^2(e_n) = \left(\sum_{i=1}^{n-1} a_i^2\right) e_n \end{cases}$$
. On en déduit que $mat_{(e_n, f(e_n))}(g) = \begin{pmatrix} 0 & \sum_{i=1}^{n-1} a_i^2 \\ 1 & 0 \end{pmatrix} = A$.

 $Or \det (A) = -\sum_{i=1}^{n-1} a_i^2 \neq 0 \ car \ a_1 \neq 0 \ donc \ A \ est \ inversible \ donc \ g \ est \ un \ isomorphisme.$

R 31 On $a \ A \times \begin{pmatrix} \lambda \\ 1 \end{pmatrix} = \lambda \begin{pmatrix} \lambda \\ 1 \end{pmatrix}$ et $mat_{(e_n, f(e_n))}(g) = A$.

Posons $u_{\lambda} = \lambda e_n + f(e_n) \neq 0_E \ (car(e_n, f(e_n)) \ est \ libre).$

On a $f(u_{\lambda}) = g(u_{\lambda}) = \lambda u_{\lambda}$ donc u_{λ} est vecteur propre de f associé à λ .

De même si $u_{-\lambda} = -\lambda e_n + f(e_n)$, $u_{-\lambda}$ est vecteur propre de f associé à $-\lambda$.

R 32 On a rg(f) = rg(M) = 2 donc, par le théorème du rang, $ker(f) = E_0(f)$ est de dimension n-2. De plus, dim $(E_{\lambda}(f)) \ge 1$ et dim $(E_{-\lambda}(f)) \ge 1$ et $\lambda > 0$ donc $0, \lambda$ et $-\lambda$ sont des valeurs propres distinctes et $\dim (E_0(f)) + \dim (E_{\lambda}(f)) + \dim (E_{-\lambda}(f)) \ge n \ donc \ f \ est \ diagonalisable \ (et \dim (E_{\lambda}(f))) = \dim (E_{-\lambda}(f)) = 1).$

$$\textbf{R 33} \ \textit{On remarque que, pour } 2 \leq i \leq n-1, \left\{ \begin{array}{l} f\left(e_{1}\right) = a_{1}e_{n} \\ f\left(e_{i}\right) = a_{i}e_{n} \end{array} \right. donc \ a_{i}f\left(e_{1}\right) - a_{1}f\left(e_{i}\right) = 0 \ donc \ f\left(a_{i}e_{1} - a_{1}e_{i}\right) = 0. \\ \\ \begin{pmatrix} a_{i} \\ 0 \\ \vdots \\ 0 \\ -a_{1} \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

$$\leftarrow i$$

$$\text{La famille } (u_{2}, \ldots, u_{n-1}) \ \text{ est une famille \'echelonn\'ee } \left(\text{car } a_{1} \neq 0 \right)$$

donc libre de ker (f). Or rg(f) = rg(M) = 2 donc, par le théorème du rang, ker (f) est de dimension n-2 donc $admet (u_2, \ldots, u_{n-1}) comme base.$

Remarque: on peut aussi résoudre le système $A \times X = 0$ d'inconnue $X \in \mathcal{M}_{n,1}(\mathbb{R})$.

R 34 D'après ce qui précède,

- (u_{λ}) est une base de $E_{\lambda}(f)$,
- $(u_{-\lambda})$ est une base de $E_{-\lambda}(f)$,
- (u_2,\ldots,u_{n-1}) est une base de $E_0(f)$
- $\mathbb{R}^{n} = E_{\lambda}(f) \oplus E_{-\lambda}(f) \oplus E_{0}(f)$ car f est diagonalisable donc

$$(u_{\lambda}, u_{-\lambda}u_{2}, \dots, u_{n-1}) \text{ est une base de } \mathbb{R}^{n} \text{ et } mat_{(u_{\lambda}, u_{-\lambda}u_{2}, \dots, u_{n-1})}(f) = \begin{pmatrix} \lambda & 0 & \cdots & \cdots & 0 \\ 0 & -\lambda & \ddots & & \vdots \\ \vdots & \ddots & 0 & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & 0 & 0 \end{pmatrix} = D.$$

$$P = P_{(e_{1},\dots,e_{n})}^{(u_{0},\dots,u_{n-1})} = \begin{pmatrix} a_{1} & a_{1} & a_{2} & \cdots & a_{n-1} \\ & -a_{1} & 0 & \cdots & 0 \\ \vdots & \vdots & 0 & \ddots & \ddots & \vdots \\ & & \vdots & \ddots & & 0 \\ a_{n-1} & a_{n-1} & \ddots & \ddots & & -a_{n-1} \\ \lambda & -\lambda & 0 & \cdots & \cdots & 0 \end{pmatrix}$$

PROBLEME:

Notation 1 Si $\lambda_1, \ldots \lambda_n$ sont n scalaires, diag $(\lambda_1, \ldots \lambda_n)$ est la matrice carrée de taille n diagonale dont les éléments diagonaux sont, dans l'ordre, $\lambda_1, \ldots \lambda_n$.

Première partie: Puissances de K_n , éléments propres de K_n

R 35 Les images des vecteurs de la base canonique par f_n sont donnés par:

 $E_1 \mapsto E_2 \mapsto E_3 \mapsto \cdots \mapsto E_{n-1} \mapsto E_n \mapsto E_1 \ donc$

$$par f^{2} : \begin{cases} E_{1} & \mapsto & E_{3} \\ E_{2} & \mapsto & E_{4} \\ \vdots & \vdots & \vdots \\ E_{n-2} & \mapsto & E_{n} \\ E_{n-1} & \mapsto & E_{1} \\ E_{n} & \mapsto & E_{2} \end{cases} et K_{n}^{2} = mat_{(E_{1},\dots,E_{n})} (f_{n}^{2}) = \begin{pmatrix} 0 & 0 & & 1 & 0 \\ 0 & 0 & & & 0 & 1 \\ 1 & 0 & & & 0 & 0 \\ 0 & 1 & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 1 & 0 & 0 \end{pmatrix}$$

Soit $i \in [[1, n-1]]$; On obtient de même que,

$$par f^{i}: \begin{cases} E_{1} & \mapsto E_{i+1} \\ \vdots & \vdots & \vdots \\ E_{n-i} & \mapsto E_{n} \\ E_{n-i+1} & \mapsto E_{1} \end{cases} \quad donc \ K_{n}^{i} = mat_{(E_{1}, \dots, E_{n})} \left(f_{n}^{i}\right) \ peut \ \hat{e}tre \ \hat{e}crite \ par \ blocs: \left(\frac{0_{i, n-i} \mid I_{i}}{I_{n-i} \mid 0_{n-i, i}}\right) \\ \vdots & \vdots & \vdots \\ E_{n} & \mapsto E_{i} \end{cases}$$

et $\forall i \in [[1, n]], f_n^n(E_i) = E_i \ donc \ K_n^n = mat_{(E_1, \dots, E_n)}(f_n^n) = I_n$

R 36 X est vecteur propre de K_n associé à λ donc $K_nX = \lambda X$ d'où

 $(K_n)^2 X = K_n (K_n X) = K_n \lambda X = \lambda K_n X = \lambda^2 X$. Par récurrence immédiate, pour tout $i \in \mathbb{N}$, $(K_n)^i X = \lambda^i X$, $(K_n)^n = I_n \ donc \ (K_n)^n \times X = I_n \times X = X$.

On en déduit que $\lambda^n X = X$ et comme $X \neq 0$ car X vecteur propre; $\lambda^n = 1$.

D'après le cours, l'équation $z^n = 1$ admet comme ensemble de solutions complexes $\{\omega_k, k \in [[0, n-1]]\}$ donc $sp(K_n) \subset \{\omega_k, k \in [[0, n-1]]\}$.

R 37 Le polynôme caractéristique de K_n est défini par $P(x) = \det(xI_n - K_n) =$

$$\begin{vmatrix}
x & 0 & \cdots & 0 & -1 \\
-1 & x & \ddots & & 0 \\
0 & -1 & \ddots & & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & -1 & x
\end{vmatrix} = x \begin{vmatrix}
x & \ddots & & 0 \\
-1 & \ddots & & \vdots \\
\vdots & \ddots & \ddots & 0 \\
\cdots & 0 & -1 & x
\end{vmatrix} + (-1)^{n+2} \begin{vmatrix}
-1 & x & \ddots \\
0 & -1 & \ddots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & -1
\end{vmatrix}_{n-1}$$

Donc $P(x) = x^n - 1$ L'équation $x^n = 1$ admet n racines distinctes dans \mathbb{C} ($\omega_k = e^{ik\frac{2\pi}{n}}, k \in [[0, n-1]]$)

Pour tout $k \in [[0, n-1]]$, on a $1 \le \dim(E_{\omega_k}(K_n)) \le m(\omega_k) = 1$. On en $\sum_{k=1}^{n-1} \dim(E_{\omega_k}(K_n)) = n$ donc K_n est diagonalisable dans $\mathcal{M}_n(\mathbb{C})$ et ses sous-espaces propres sont de dimension 1.

$$\mathbf{R} \ \mathbf{38} \ Soit \ AX = \omega_k X \Leftrightarrow \begin{cases} x_n = \omega_k x_1 \\ x_1 = \omega_k x_2 \\ \vdots \\ x_{n-1} = \omega_k x_n \end{cases} \quad soit \begin{cases} x_1 = (\omega_k)^{-1} x_n \\ x_2 = (\omega_k)^{-1} x_1 \\ \vdots \\ x_n = (\omega_k)^{-1} x_n \end{cases} \quad En \ prenant \ x_1 = 1, \ X = \begin{pmatrix} 1 \\ \omega_k^{-1} \\ \vdots \\ (\omega_k^{-1})^{n-2} \\ (\omega_k^{-1})^{n-1} \end{pmatrix}$$

(noté U_k dans la suite), obtenu avec les n-1 dernières équations, et la première équation équivaut à $x_1 = (\omega_k^{-1})^n x_1$ qui est vérifiée car $\omega_k^n = 1$. On en déduit que $E_{\omega_k}(A) = vect(U_k)$.

R 39 La famille (U_0, \ldots, U_{n-1}) est libre car formée de vecteurs propres associés à des valeurs propres distinctes. Soit P_n la matrice de passage de la base canonique à cette base. On a $P_n = (U_0|\cdots|U_{n-1})$ et $P_n^{-1}K_nP_n = D_n$ avec $D_n = diag(1, \omega_1, \ldots, \omega_{n-1})$.

R 40 Soit $f: \mathbb{C}^7 \to \mathbb{C}^7$ l'endomorphisme canoniquement associé à M et (E_1, \ldots, E_7) la base canonique de \mathbb{C}^7 . Posons $F_1 = vect(E_1, E_3, E_5)$. On a $f(E_1) = E_3 \in F$, $f(E_3) = E_5 \in F$ et $f(E_5) = E_1 \in F$ donc F_1 est stable par f.

R 41 Posons $F_2 = vect(E_2, E_7, E_4, E_6)$. On montre de même que F_2 est stable par f. La famille $b = (E_1, E_3, E_5, E_2, E_6)$ est permutation de la base canonique donc est une base de \mathbb{C}^7 et en utilisant les images des vecteurs de cette base, $mat_b(f) = \begin{pmatrix} K_3 & 0 \\ \hline 0 & K_4 \end{pmatrix}$.

R 42 Soit $P = \begin{pmatrix} P_3 & 0 \\ \hline 0 & P_4 \end{pmatrix}$ et $R = \begin{pmatrix} P_3^{-1} & 0 \\ \hline 0 & P_4^{-1} \end{pmatrix}$. Les règles du produit par bloc donnent $PR = \begin{pmatrix} I_3 & 0 \\ \hline 0 & I_4 \end{pmatrix} = I_7$ donc P est inversible d'inverse R.

R 43 la matrice M est semblable est semblable à $M_1 = \left(\begin{array}{c|c} K_3 & 0 \\ \hline 0 & K_4 \end{array} \right)$ et les règles du produit par bloc donnent $P^{-1} \left(\begin{array}{c|c} K_3 & 0 \\ \hline 0 & K_4 \end{array} \right) P = \left(\begin{array}{c|c} P_3^{-1} K_3 P_3 & 0 \\ \hline 0 & P_4^{-1} K_4 P_4 \end{array} \right) = diag(1,j,j^2,1,i,-1,-i,-1) = D \ donc \ M$ est semblable à M (transitivité de la relation "est semblable à").

Deuxième partie:

R 44 On a $BU_k = \frac{1}{2} (I_n + K_n) U_k = \frac{1}{2} (U_k + K_n U_k) = \frac{1+\omega_k}{2} U_k$. On en déduit que U_k est un vecteur propre de B associé à la valeur propre $\frac{1+\omega_k}{2}$.

R 45 Si $k \in [[1, n-1]]$ pour $Z = U_k$, on a $z_1 + \cdots + z_n = 1 + (\omega_k^{-1}) + \cdots + (\omega_k^{-1})^{n-1} = \frac{1 - \omega_k^{-n}}{1 - \omega_k} = 0$ car $\omega_k \neq 1$ donc $U_k \in H$. La famille (U_1, \ldots, U_{n-1}) est libre et dim (H) = n - 1 (équation d'hyperplan de \mathbb{C}^n) donc (U_1, \ldots, U_{n-1}) est une base de H.

R 46 Soit $Z \in H$. On peut écrire $Z = \sum_{k=1}^{n-1} a_k U_k$ donc $B^p X = B^p \sum_{k=1}^{n-1} a_k X_k = \sum_{k=1}^{n-1} a_k B^p X_k = \sum_{k=1}^{n-1} a_k \left(\frac{1+\omega_k}{2}\right)^p X_k$. Or $\left|\frac{1+\omega_k}{2}\right| < 1$ (il n'y a pas égalité dans l'inégalité triangulaire car ω_k et 1 n'ont pas meme argument) donc $\lim_{p \to +\infty} \left(\frac{1+\omega_k}{2}\right)^p = 0$. On en déduit quela suite $(B^p Z)_{p \in \mathbb{N}}$ converge vers 0.

R 47 La figure ne présente pas de difficulté...

l'intérieur du disque de centre O et de rayon r.

R 48 Posons
$$Z_0 = \begin{pmatrix} z_1 \\ \vdots \\ z_n \end{pmatrix}$$
 (respectivement $Z_1 = \begin{pmatrix} t_1 \\ \vdots \\ t_n \end{pmatrix}$) le vecteur dont les composantes sont les affixes des points \mathcal{P}_0 (respectivement \mathcal{P}_1) dans l'ordre.. On a $t_1 = \frac{1}{2}(z_n + z_1)$, $t_2 = \frac{1}{2}(z_1 + z_2)$, ..., $t_n = \frac{1}{2}(z_{n-1} + z_n)$ donc $Z_1 = BZ_0$. De même, si Z_k est le vecteur dont les composantes sont les affixes des points \mathcal{P}_k , on a $Z_{k+1} = BZ_k$ et donc, par récurrence, on montrer que $Z_k = B^k Z_0$. Or $Z_0 \in H$ car le centre de \mathcal{P}_0 est le point O donc $\lim_{k \to +\infty} Z_k = 0_{\mathbb{C}^n}$. Soit $r > 0$. Posons $Z_k = \begin{pmatrix} z_1(k) \\ \vdots \\ z_n(k) \end{pmatrix}$. On a $\lim_{k \to +\infty} z_1(k)$ donc il existe $k_1 \in \mathbb{N}$ à partir duquel $|z_1(k)| < r$. On définit de même k_2, \ldots, k_n . En posant $k_0 = \max\{k_i, 1 \le i \le n\}$, si $k \ge k_0$, le polygone \mathcal{P}_k est à

Troisième partie: Déterminant circulant

R 49 D'après les calculs précédents sur les puissances de K_n , on a $A = a_0I_n + a_1K_n + \cdots + a_{n-1}K_n^{n-1}$.

R 50 On
$$a P_n^{-1} A P_n = P_n^{-1} \left(a_0 I_n + a_1 K_n + \dots + a_{n-1} K_n^{n-1} \right) P_n = \sum_{k=0}^{n-1} a_i P_n^{-1} K_n^i P_n = \sum_{k=0}^{n-1} a_i \left(P_n^{-1} K_n P_n \right)^i P_n^{-1} A P_n = \sum_{k=0}^{n-1} a_i D_n^i = diag(\sum_{k=0}^{n-1} a_i \omega_0^i, \sum_{k=0}^{n-1} a_i \omega_1^i, \dots, \sum_{k=0}^{n-1} a_i \omega_{n-1}^i).$$

R 51 On
$$a \det(A) = \det(P_n^{-1}AP_n) = \prod_{k=0}^{n-1} \left(\sum_{k=0}^{n-1} a_i \omega_k^i\right).$$