EXERCICE 1:

Q 1 On considère $E = \mathbb{R}^3$ muni du produit scalaire usuel. Soit a = (1, 2, 1) et H le sous espace vectoriel de E défini par $(x_1, x_2, x_3) \in H \Leftrightarrow x_1 + 2x_2 + x_3 = 0$.

- 1. Déterminer la matrice dans la base canonique de la projection orthogonale p sur F = vect(a).
- 2. En déduire la matrice, dans la base canonique, de la symétrie orthogonale s par rapport à H.

EXERCICE 2:

Dans tout le problème, on considère un entier $n \in \mathbb{N}$, $n \geq 2$.

On note $E = \mathbb{R}_n[X]$. On pourra noter, pour $k \in [[0, n]]$, $F_k = \mathbb{R}_k[X]$.

Partie I - Produit scalaire sur E

I.1 - Généralités

Pour tout couple $(P,Q) \in \mathbb{R}_n[X]^2$, on note :

$$(P|Q) = \int_0^{+\infty} P(t)Q(t)e^{-t}dt.$$

- **Q 2** Montrer que, pour tout $k \in \mathbb{N}$, l'intégrale généralisée $\int_0^{+\infty} t^k e^{-t} dt$ est convergente.
- **Q** 3 En déduire que pour tout $R \in \mathbb{R}_n[X]$, l'intégrale généralisée $\int_0^{+\infty} R(t)e^{-t}dt$ est convergente.
- **Q 4** Montrer que l'application $\begin{cases} E \times E \to \mathbb{R} \\ (P,Q) \mapsto (P|Q) \end{cases}$ est un produit scalaire de E.

I.2 - Calcul d'un produit scalaire

Q 5 Soit $k \in [[1, n]]$. Etablir que :

$$\int_0^{+\infty} t^k e^{-t} dt = k \int_0^{+\infty} t^{k-1} e^{-t} dt.$$

- **Q** 6 En déduire la valeur de l'intégrale généralisée $\int_0^{+\infty} t^k e^{-t} dt$.
- **Q** 7 En déduire la valeur de $(X^i|X^j)$ pour tout $(i,j) \in [[0,n]]^2$.
- I.3 Calcul de $\inf_{(a,b)\in\mathbb{R}^2}\sqrt{\int_0^{+\infty}\left(t^2-at-b\right)^2e^{-t}dt}$

Dans cette partie, on suppose que n = 2. On pose $E = \mathbb{R}_2[X]$ et $F = \mathbb{R}_1[X] = vect(1, X)$ et, pour $(a, b) \in \mathbb{R}^2$, P = aX + b.

Q 8 Pour quelle valeur de $(a,b) \in \mathbb{R}^2$, le polynôme P vérifie-t-il le système d'équations suivant?

$$\begin{cases} (X^2 - P \mid 1) = 0 \\ (X^2 - P \mid X) = 0 \end{cases}$$

1

- ${f Q}$ ${f 9}$ En déduire le projeté orthogonal de X^2 sur F.
- **Q 10** Déterminer le réel $m = \inf_{(a,b) \in \mathbb{R}^2} \sqrt{\int_0^{+\infty} (t^2 at b)^2 e^{-t} dt}$.

I Problème:

Partie I - Produit scalaire sur $\mathbb{R}_n[X]$

I.1 - Généralités

R 1 La fonction $t \mapsto t^k e^{-t}$ est continue sur $[0, +\infty[$.

De plus, $\frac{t^k e^{-t}}{\frac{1}{t^2}} = t^{k+2} e^{-t} \to_{t \to +\infty} 0$ par croissances comparées donc $t^k e^{-t} = o_{t \to +\infty} \left(\frac{1}{t^2}\right)$.

 $Or \frac{1}{t^2} > 0 \text{ sur } [1, +\infty[\text{ et } \int_1^{+\infty} \frac{1}{t^2} dt \text{ est convergente donc } \int_1^{+\infty} t^k e^{-t} dt \text{ converge donc } \int_0^{+\infty} t^k e^{-t} dt \text{ converge.}$

R 2 • $t \mapsto R(t)e^{-t}$ est continue sur $[0, +\infty[$.

• Si R est un polynôme non nul de degré $p \in \mathbb{N}$ et a_p est son coefficient dominant, $R(t) \sim_{t \to +\infty} a_p t^p$ donc $R(t) e^{-t} \sim_{t \to +\infty} a_p t^p e^{-t}$ et $t \mapsto t^p e^{-t} \geq 0$ et $\int_0^{+\infty} t^p e^{-t} dt$ converge. par comparaison, l'intégrale généralisée $\int_1^{+\infty} R(t) e^{-t} dt$ converge.

R 3 • D'après la question précédente, pour tout $(P,Q) \in (\mathbb{R}_n[X])^2$, (P|Q) existe et est un réel.

• Pour tout $(P,Q) \in (\mathbb{R}_n[X])^2$,

$$(P|Q) = \int_0^{+\infty} P(t)Q(t)e^{-t}dt = \int_0^{+\infty} Q(t)P(t)e^{-t}dt = (Q|P),$$

donc (.|.) est symétrique.

• Pour tout $(P,Q,R) \in (\mathbb{R}_n[X])^3$, pour tout $(\lambda,\mu) \in \mathbb{R}^2$,

$$\begin{split} (\lambda P + \mu Q | R) &= \int_0^{+\infty} (\lambda P(t) + \mu Q(t)) R(t) e^{-t} dt \\ &= \lambda \int_0^{+\infty} P(t) R(t) e^{-t} dt + \mu \int_0^{+\infty} Q(t) R(t) e^{-t} dt \quad (par \ linéarit\'e \ de \ l'int\'egrale \ convergente) \\ &= \lambda (P | R) + (Q | R), \end{split}$$

donc (.|.) est linéaire à gauche.

- ullet (.|.) est linéaire à gauche et symétrique, donc bilinéaire.
- Pour tout $P \in \mathbb{R}_n[X]$, pour tout $t \in \mathbb{R}_+$, $P^2(t)e^{-t} \ge 0$.

D'où, par positivité de l'intégrale (qui converge et " $+\infty > 0$ "), on a :

$$(P|P) = \int_0^{+\infty} P^2(t)e^{-t}dt \ge 0.$$

(.|.) est donc positif.

• Enfin, pour tout $P \in \mathbb{R}_n[X]$, si (P|P) = 0, alors $\int_0^{+\infty} P^2(t)e^{-t}dt = 0$.

Or $t \mapsto P^2(t)e^{-t}$ est continue et positive sur \mathbb{R}_+ , "0 < +\infty" et $\int_0^{+\infty} P^2(t)e^{-t}dt$ converge, donc pour tout $t \in \mathbb{R}_+$, $P^2(t)e^{-t} = 0$, et donc $P^2(t) = 0$, puis P(t) = 0.

Le polynôme P a donc une infinité de racines (tous les éléments de \mathbb{R}_+), donc P=0.

(.|.) est donc bien défini.

• (.|.) définit donc bien un produit scalaire sur $\mathbb{R}_n[X]$.

I.2 - Calcul d'un produit scalaire

R 4 On pose $u(t) = t^k$ et $v(t) = -e^{-t}$ Les fonctions u et v sont de classe C^1 sur $[0, +\infty[$ et $u'(t) = kt^{k-1}$ et $v'(t) = e^{-t}$.

 $Comme\ u(t)v(t)=-t^ke^{-t}\underset{t\to +\infty}{\longrightarrow}0\ par\ croissances\ compar\'es\ et\ \int_0^{+\infty}t^ke^{-t}dt\ est\ convergente\ d'après\ la\ première$ question.

On peut donc intégrer par parties:

$$\int_0^{+\infty} t^k e^{-t} dt = \left[-t^k e^{-t} \right]_0^{+\infty} + \int_0^{+\infty} k t^{k-1} e^{-t} dt = k \int_0^{+\infty} t^{k-1} e^{-t} dt$$

R 5 Posons $I_k = \int_0^{+\infty} t^k e^{-t} dt$. On a $I_0 = \int_0^{+\infty} e^{-t} dt$ et $\int_0^x e^{-t} dt = [-e^{-t}]_0^x = 1 - e^{-x} \to_{x \to +\infty} 1$ donc $\int_0^{+\infty} e^{-t} dt = [-e^{-t}]_0^x = 1 - e^{-x} \to_{x \to +\infty} 1$

 $1 \times I_0 = k!$.

R 6 On
$$a(X^{i}|X^{k}) = \int_{0}^{+\infty} t^{i+j} e^{-t} dt = (i+j)!$$

I.0.1 I.3 - Calcul de
$$\inf_{(a,b)\in\mathbb{R}^2} \sqrt{\int_0^{+\infty} (t^2 - at - b)^2 e^{-t} dt}$$

Dans cette partie, on suppose que n=2. On pose $E=\mathbb{R}_2[X]$ et $F=\mathbb{R}_1[X]=vect(1,X)$ et, pour $(a,b)\in\mathbb{R}^2$, P = aX + b.

R 7 On $a(X^2 - P \mid 1) = (X^2 - aX - b \mid 1) = (X^2 \mid 1) - a(X \mid 1) - b(1 \mid 1) = 2! - a \times 1! - b \times 0! = 2 - a - b.et$ $(X^{2} - P \mid 1) = (X^{2} - aX - b \mid X) = (X^{2} \mid X) - a(X \mid X) - b(1 \mid X) = 3! - a \times 2! - b \times 1! = 6 - 2a - b.$ $On \ a \ donc \left\{ \begin{array}{c} (X^{2} - P \mid 1) = 0 \\ (X^{2} - P \mid X) = 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{c} a + b = 2 \\ 2a + b = 6 \end{array} \right. \Leftrightarrow (a, b) = (4, -2).$

R 8 Posons $P_0 = 4X - 2 \in vect(1, X)$. On $a \begin{cases} (X^2 - P_0 \mid 1) = 0 \\ (X^2 - P_0 \mid X) = 0 \end{cases}$ donc $X^2 - P_0 \in vect(1, X)^{\perp}$ donc $X^2 = P_0 + (X^2 - P_0)$ avec $P_0 \in F$ et $X^2 - P_0 \in F^{\perp}$ donc P_0 est le projeté orthogonal de X^2 sur F.

R 9 Si P = aX + b alors $\sqrt{\int_0^{+\infty} (t^2 - at - b)^2 e^{-t} dt} = \sqrt{(X^2 - P|X^2 - P)} = ||X^2 - P||$. On a donc $m = \inf_{(a,b) \in \mathbb{R}^2} \sqrt{\int_0^{+\infty} (t^2 - at - b)^2 e^{-t} dt} = \inf_{(a,b) \in \mathbb{R}^2} \|X^2 - P\| = \inf_{P \in F} \|X^2 - P\| = d(X^2, F).$ D'après le cours, $d(X^2, F) = ||X^2 - P_0|| = ||X^2 - 4X + 2||$. Or $||X^2 - 4X + 2||^2 = ||X^2||^2 + 16||X||^2 + 4||1||^2 - 8(X^2 | X) + 4(X^2 | 1) - 16(X | 1) = 4! + 16 \times 2! + 4 \times 0! - 4!$ $8 \times 3! + 4 \times 2! - 16 \times 1! = 4.$

On en déduit que m=2.