
PSI DS 4 (le mercredi 10 décembre 2025)
durée 4 h - calculatrices interdites

Les solutions devront être rédigés avec une encre foncée et présentées dans l’ordre de l’énoncé
(quitte à laisser des blancs pour compléter ultérieurement).

Le candidat attachera la plus grande importance à la clarté, à la précision et la concision de la rédaction.

Si un candidat est amené à repérer ce qui lui semble être une erreur d’énoncé, il le signalera sur sa copie et
devra poursuivre sa composition en expliquant les raisons des initiatives qu’il a été amené à prendre.

Lorsqu’un raisonnement utilise le résultat d’une question précédente, il est demandé au candidat d’indiquer
précisément le numéro de la question utilisée.

DEBUT DS4 standard

Exercice 1

L’espace vectoriel R3 est supposé muni de son produit scalaire usuel et orienté

Soit A =
1

7

2 6 3
6 3 2

3 2 6
et f l’endomorphisme canoniquement associé à A

Q 1 Soit E un espace euclidien et u un endomorphisme de E.
Montrer que si u est une isométrie et est un endomorphisme autoadjoint alors u est une symétrie orthogonale.

Q 2 Montrer que A est une matrice de rotation.

Q 3 Déterminer l’axe � de la rotation vectorielle f .

Q 4 Déduire des questions précédentes la nature de la rotation vectorielle f .

Exercice 2

On considère E = R[X] et on pose pour (P;Q) E2, (P Q) =
1

1

P (x)Q (x) dx.

On admet que cette égalité dé…nit un produit scalaire de E.
Pour P E, on pose u (P ) = (X2 1)P + 2XP .

Q 5 Montrer que pour tout (P;Q) E2, on a
1

1

(1 x2)P (x)Q (x) dx = (u (P ) Q).

Q 6 En déduire que (u (P ) Q) = (P u (Q)).

Q 7 Soit P E;P = 0 et � R. On suppose que u (P ) = �P . Montrer que � 0.
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DEBUT DS4 bis

Problème:

Pour n N , on dit qu’une matrice A Mn (R) est normale si et seulement si A AT = AT A.

Pour � R, on pose R� =
cos (�) sin (�)
sin (�) cos (�)

.

Préliminaires

Soit n N et A n (R).

Q 8 Soit A n (R). Dans les cas suivants, indiquer si A est normale

a A est symétrique.

b A est antisymétrique.

c A est une matrice orthogonale.

Q 9 Soit P On (R).
Montrer que si A est une matrice normale alors P 1AP est une matrice normale.

Q 10 Soit A n (R) et P R [X]. On suppose que A est une matrice normale.

a Montrer que P (A) AT = AT P (A).

b En déduire que P (A) est une matrice normale.

Q 11 Etude de R�.

a Déterminer le polynôme caractéristique de la matrice R�.

b Pour quelles valeurs de � la matrice R� est-elle diagonalisable dans 2 (R)?

c Justi…er que pour tout � R, R� est diagonalisable dans 2 (C) et donner une matrice D 2 (C) diagonale
et semblable à R�.

Q 12 Soit A n (R). On suppose que A est diagonalisable et qu’il existe p N tel que Ap = 0.
Montrer que A est la matrice nulle.

Q 13 Soit A n (R). On suppose que A2 A+ In = 0.

a Montrer que A est diagonalisable dans n (C).

b Justifer que n est pair et que la trace de A est un entier positif.

Q 14 Soit u et v deux endomorphismes de E. On suppose u v = v u.

a Montrer que ker (u) est stable par v.

b Montrer que Im (u) est stable par v.
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Matrices normales de taille 2

Soit A =
a c
b d 2 (R).

Q 15 Montrer que A est normale si et seulement si A est symétrique ou (a = d et c = b).

Q 16 Montrer que A est normale si et seulement si A est symétrique ou 
 > 0 et � R tels que A = 
 R�.

Q 17 Déterminer les matrices normales A 2 (R) véri…ant A2 A + I2 = 0.

Adjoint d’un endomorphisme

Dans la suite du problème, E est un espace eucliden de dimension n 1 dont le produit scalaire est noté : : .
On considère un endomorphisme f de E.

Q 18 Soit B0 est une base orthonormée de E. Soit A la matrice f dans la base B0.
Soit f l’endomorphisme dont la matrice dans la base B0 est AT .
Soit B une base orthonormée quelconque de E et M la matrice de f dans la base B.
Montrer que (M)T est la matrice de f dans la base B.

On en dé…nit l’adjoint de f comme l’endomorphisme f de E tel que, une base orthonormée, la matrice de
f est la transposée de la matrice de f (et cela ne dépend pas de la base orthonormée choisie d’après la question
précédente).

Q 19 Montrer que sp (f) = sp (f ).

Q 20 Montrer que: (x; y) E2; f(x) y = x f (y) .

Q 21 Soit g (E). On suppose que (x; y) E2; f(x) y = x g(y) .
Montrer que g = f .

Q 22 Soit F un sous-espace vectoriel de E stable par f et f .
Montrer que F est aussi stable par f et f .

Endomorphisme normal

On dit que l’endomorphisme f est normal si et seulement si f f = f f .

Q 23 Montrer que f est un endomorphisme normal si et seulement si la matrice de f dans toute base orthonormée
est une matrice normale.

Q 24 Montrer que si f est un endomorphisme normal alors x E; f(x) = f (x) .

Q 25 Réciproquement, on suppose que, pour tout x E, f(x) = f (x) :
Soit B0 = (e1; : : : ; en) une base orthonormée de E et A = matB0 (f). Soit B = AT A.

a Montrer que (x; y) E2, f (x) ; f (y) = f (x) ; f (y) .

b Exprimer f(ei) f (ej) à l’aide de la matrice B.

c En déduire que f est un endomorphisme normal.
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Matrices normales et polynômes annulateurs.

Soit n N et A n(R) une matrice normale

Q 26 On suppose qu’il existe p N véri…ant Ap = 0. On pose S = AT A.

a Justi…er que Sp = 0.

b En déduire que S = 0.

c En déduire que A = 0.

Q 27 On suppose qu’il existe P R[X] et q N tel que P q(A) = 0, montrer que P (A) = 0.

Q 28 Application: Soit M n(R) tel que M 2 +M MT = In.

a Déterminer un polynôme annulateur de M de degré 4.

b En déduire que (M In)
3 (M + In)

3 = 0.

c En déduire que M 2 = In puis, que M est une matrice symétrique.

Q 29 On suppose que A n’est pas la matrice nulle.

a Montrer que A admet un polynôme annulateur P R[X] non constant, scindé à racines simples dans C X
(on pourra utiliser la question 27).

b Que peut-on en déduire?

Réduction des endomorphismes normaux.

Q 30 On suppose dans cette question qu’il existe une base orthonormée de E dans laquelle la matrice de f

est diagonale par blocs de la forme ( ) :

�1 0 0

0
. . . . . .

...
...

. . . �p
. . . (0)

...
... (0) 
1R�1

. . .
...

...
. . . . . . 0

0 0 
sR�s

où �1; �2; : : : ; �p sont des réels,


1; 
2; : : : ; 
s sont des réels strictement positifs et �1; �2; : : : ; �s des réels.
(Les bloc diagonaux sont donc de taille 1 ou de taille 2 de la forme 
R�).
Montrer que f est un endomoprhisme normal.

Le but de la partie est de montrer une réciproque du résultat de la question précédente:
On suppose dans la suite que f est un endomorphisme normal de E et on cherche à montrer qu’il existe une base
orthonormée de E dans laquelle la matrice de f est de la forme ( ) donnée dans la question précédente.

Q 31 Montrer que ker (f) = ker (f ).

Q 32 Montrer que, pour � sp (f), ker(f �idE) = ker(f �idE).

Si F est un sous-espace vectoriel de E stable par f , on note fF l’endomorphisme induit par f sur F dé…ni

par: fF :
F F

x fF (x) = f (x)
.
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Q 33 Montrer que si F est un sous-espace vectoriel de E stable par f et f alors fF est un endomorphisme
normal de F et que (fF ) = (f )F .

Q 34 Soit Q R[X] et F = ker (Q(f)).
Montrer que F est un sous-espace vectoriel de E stable par f et f .

FIN DS4 standard

Q 35 Dans cette question, on suppose que f n’admet pas de valeurs propres (sp (f) = ).

a Montrer qu’il existe (a; b) R2 tel que f 2 + af + bidE n’est pas bijective
a2 4b < 0

.

On pose F = ker (f 2 + af + bidE) qui est stable par f et f d’après la question 14.
On pose g = fF + fF .

b Montrer que sp (g) = .

c Soit e un vecteur propre de g.
Montrer que vect (e; f (e)) est un sous-espace vectoriel de dimension 2 stable par f .

d Montrer que vect (e; f (e)) est stable par f .

Q 36 Montrer qu’il existe un sous-espace vectoriel de E de dimension 1 ou 2 stable par f et f .

Q 37 Montrer qu’il existe une base orthonormée de E dans laquelle la matrice de f est diagonale par blocs

de la forme :

�1 0 0

0
. . . . . .

...
...

. . . �p
. . . (0)

...
... (0)

. . . 
1R�1
. . .

...
...

. . . . . . 0
0 0 
sR�s

où �1; �2; : : : ; �p sont des réels, 
1; 
2; : : : ; 
s sont des réels

strictement positifs et �1; �2; : : : ; �s des réels.

Etude d’un exemple.

Dans cette partie, A est une matrice normale et inversible de n(R) telle que (A+ In)
7 = A7 + In.

On note P = (X + 1)7 X7 1:

Q 38 Dét’erminer les racines complexes multiples de P .

Q 39 En déduire la décomposition en irréductibles de P dans R[X].

Q 40 Montrer que A est une matrice orthogonale.

Q 41 Montrer qu’il existe un polynôme P R [X] tel que AT = P (A).

FIN DS4 bis

Exercice 3: A ne traiter que si toutes les questions du DS ont été
traitées.

Soit n N et E un ensemble …ni admettant n éléments. On s’intéresse qu nombre an d’applications f de E dans
E véri…ant f f = idE.
Donner une expression de an en fonction de n. 5



Correction DS 4 PSI

Exercice 1

R 1 Soit b une base orthonormée de E. Posons M = matb (u) L’endomorphisme u est une isométrie donc
M O (n) donc MTM = In et est un endomorphisme autoadjoint donc M est symétrique donc MT = M . On
en déduit que M2 = In donc u est une symétrie par rapport à F = E1 (u) parallèlement à G = E 1 (u) avec
F G = E.
Or u est un endomorphisme autoadjoint donc E1 (u) E 1 (u) donc E 1 (u) (E1 (u)) et dim (E 1 (u)) =

dim (E1 (u)) (car E1 (u) (E1 (u)) = E (dimension …nie).
u est donc une symétrie orthogonale.

R 2 On véri…e que (C1; C2; C3) est une BON de 3;1 (R) donc A O3 (R) et det(A) = +1 donc A est une
matrice de rotation.

R 3 La résolution de AX = A donc X = x3

3
2

1
donc � = vect (u) avec u = (3; 2; 1).

R 4 La matrice de A est symétrique donc f est aussi autoadjoint donc f est une symétrie orthogonale.
Or � = E1 (u) est de dimension 1 donc f est la symétrie orthogonale par rapport à la droite � c’est-à-dire la
rotation d’axe � et d’angle 	 (les deux orientations de � donne le même angle).

Exercice 2

R 5 Posons f (x) = (1 x2)P (x).

On a
1

1

(1 x2)P (x)Q (x) dx =
1

1

f (x)Q (x) dx = [f (x)Q (x)]1 1 .
1

1

f (x)Q (x) dx

=
1

1

(2xP (x) + (x2 1)P (x))Q (x) dx = (u (P ) Q).

R 6 En échangeant les rôles de P et Q dans la question précédente, on obtient
1

1

(1 x2)P (x)Q (x) dx = (u (Q) P ) donc (u (P ) Q) = (P u (Q)).

R 7 D’une part (u (P ) P ) = (�P P ) = � P 2.

D’autre part,
1

1

(1 x2) (P (x))2 dx = (u (P ) P ) et (1 x2) (P (x))2 0 si x [ 1; 1] donc (u (P ) P ) 0.

On en déduit que � P 2 0 donc � 0 car P est non nul.

Problème

Préliminaires

R 8 Cas particulers:

a Si A est symétrique alors A AT = A A = AT A donc A est normale.

b Si A est antisymétrique alors A AT = A ( A) = ( A) A = AT A donc A est normale.
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c Si A est une matrice orthogonale alors A est inversible d’inverse AT donc A AT = AT A = In donc A est
normale.

R 9 Soit A n (R) et P On (R). Posons B = P 1AP = P TAP .
On a BT B = P TAP

T
P TAP = P TATP P TAP = P TAT PP T AP = P TATAP

donc BT B = P TAATP car A est normale donc BT B = P TAP P TATP = B BT donc B est une
matrice normale.

R 10 On suppose que A est une matrice normale.

a On remarque que A2AT = A AAT = A ATA = AAT A = ATA A = ATA2.

Par récurrence immédiate, i N, AiAT = ATAi.

On pose P =
k

i=0

aiX
i.

On a P (A) AT =
k

i=0

aiA
i AT =

k

i=0

aiA
iAT =

k

i=0

aiA
TAi = AT

k

i=0

aiA
i = AT P (A).

c On a (P (A))T =
k

i=0

aiA
i

T

=
k

i=0

ai (A
i)

T (linéarité de la transposition) et comme (MN)T = NTMT , on a

(Ai)
T

= AT i
donc (P (A))T =

k

i=0

ai A
T i
.

On a donc P (A)T P (A) =
k

i=0

ai A
T i
P (A) et, comme AT P (A) = P (A) AT , on obtient AT i

P (A) = P (A) AT i
par récurrence (idem précédemment) donc P (A)T P (A) =

k

i=0

ai A
T i
P (A) =

k

i=0

aiP (A) AT i
= P (A)

k

i=0

ai A
T i

= P (A) (P (A))T .

donc P (A) est une matrice normale.

R 11 Etude de R�:

a �R�
(x) = det (xI2 R�) =

x cos (�) sin (�)
sin (�) x cos (�)

= x2 2x cos � + cos2 � + sin2 � = x2 2x cos � + 1.

On a � = 4 (cos2 (�) 1) = (2 sin (�))2.

b Si � 0 [2	], R� = I2 et si � 	 [2	], R� = I2 donc R� est diagonalisable.
Si � 0 [	], alors � < 0 donc sp (R�) = donc R� n’est pas diagonalisable dans 2 (R).

c Si � 0 [2	], R� est diagonale donc diagonalisable dans 2 (C).
Si � 0 [	], alors � < 0 et R� est une matrice de taille 2 et admet deux valeurs propres complexes

conjuguées distinctes
2 sin (�) 2i sin (�)

2
= e i� donc R� est diagonalisable dans 2 (C) et est semblable à

D =
ei� 0
0 e i� .

R 12 La matrice A est diagonalisable donc il existe P GLn (R) telle que D = P 1AP est diagonale.
On a Dp = (PAP 1)

p
= PApP 1 = 0 car Ap = 0.

Si D = diag (�1; : : : ; �n), alors Dp = diag (�p1; : : : ; �
p
n) = 0 donc �pi = 0 donc �i = 0 donc D = 0 donc A = 0.

Autre méthode: Xp est polynôme annulateur de A donc sp (A) 0 . A est diagonalisable donc semblable à une
matrice diagonale dont les éléments diagonaux sont nuls donc A est semblable à la matrice nulle donc est nulle.

R 13 Soit A n (R). On suppose que A2 A + In = 0.
7



a Le polynôme P = X2 X + 1 est un polynôme annulateur de A et son discriminant � = 3 < 0 donc
sp (A) = .

Les racines complexes de P sont �1 =
1 + i 3

2
et �2 =

1 i 3

2
donc P est scindé à racines simples dans

C [X] donc A est diagonalisable dans n (C) et sp (A) �1; �2 .

b La matrice A est semblable à D = diag �1; : : : ; �1

m1 fois

; �2; : : : ; �2

m2 fois

avec mi 0.

Les matrices A et D sont semblables donc �D = �A R [X] dont les racines complexes conjuguées ont même
multiplicité donc m1 = m2.
On en déduit que n = 2m1 est pair tr (A) = m1 (�1 + �2) = m1 N .

R 14 Soit u et v deux endomorphismes de E. On suppose u v = v u.

a Soit x ker (u). On a u (v (x)) = u v (x) = v u (x) = v (0) = 0 donc v (x) ker (u) donc ker (u) est stable
par v.
(ou on applique le théorème du cours: E0 (u) est stable par v).

b Soit x Im (u). t E; x = u (t). On a donc v (x) = v (u (t)) = u (v (t)) Im (u) donc Im (u) est stable par v.

Matrices normales de taille 2

R 15 On a

AAT = ATA
a c
b d

a b
c d

=
a b
c d

a c
b d

a2 + c2 ab+ cd
ab+ cd b2 + d2

=
a2 + b2 ac + bd
ac + bd c2 + d2

c2 = b2

ab+ cd = ac+ bd

c = b
ab+ bd = ab+ bd

ou
c = b
ab bd = ab+ bd

c = b ou
c = b
b (a d) = 0

c = b ou
c = b
b = 0

ou
c = b
a = d

Le deuxième cas est compris dans le premier cas, d’où :

A est une matrice normale ssi A =
a b
b d

ou A =
a b
b a

:

R 16 Pour (a; b) = (0; 0) ; a + ib = 0;donc � R; 
 > 0 = a+ ib = 
ei� soit
a = 
 cos (�)
b = 
 sin (�)

;

donc
a b
b a

=

 cos (�) 
 sin (�)

 sin (�) 
 cos (�)

= 
R�. Réciproquement toute matrice de la forme 
R�; avec 
 > 0;

est de la forme
a b
b a

; d’où :

A est une matrice normale ssi A est symétrique réelle ou bien 
 R+; � R = A = 
R�:

R 17 On a A2 A + I2 = 0 donc d’après la question 13 sp (A) = donc A n’est pas symétrique d’après le
théorème spectral.

De plus, spC (A) =
1 + i 3

2
;
1 i 3

2
et A = 
R� avec 
 > 0 donc d’après la question 11 spC (A) =

8




ei�; 
e i� . On en déduit que 
 = 1 et � ei
�
3 ; e i�

3 donc A = R�
3
ou A = R �

3
.

Réciproquement, si A = R�
3
ou A = R �

3
, A est diagonalisable dans 2 (C) et spC (A) = ei

�
3 ; e i�

3 donc
X ei

�
3 X e i�

3 est polynôme annulateur de A soit A2 A + I2 = 0 et A est normale.
Les solutions sont donc les matrices R�

3
et R �

3
.

Adjoint d’un endomorphisme

R 18 On a sons P = PB0 B n (R) car B0 et B sont orthonormée et M = matB (f).
On a A = matB0 (f) donc M = P 1AP = P TAP car P n (R) donc
(M)T = P TAP

T
= P TATP = P 1 AT P = matB (f ) car AT = matB0 (f ).

R 19 On a �f� (x) = det (xid f ) = det xIn AT = det (xIn A)T par linéarité de la transposition.

Or det (M) = det MT donc �f� (x) = det (xIn A) = �f (x) donc sp (f) = sp (f ).

R 20 Soit (x; y) E2 et X et Y les vecteurs colonne coordonnée de X et Y dans la base B0.
f (x) y = (AX)T Y = XT AT Y = X T ATY = x f (y) .

Donc (x; y) E; f (x) y = x f (y) .

R 21 Soit g (E) = (x; y) (E)2 ; f (x) y = x g (y) :
On a alors (x; y) (E)2 ; x f (y) = x g (y) ;
Soit y E: On a alors : x E; x f (y) g (y) = 0 par bilinéarité du produit scalaire,
donc f (y) g (y) (E) . Or (E) = 0 ; donc f (y) = g (y) :
L’égalité étant vrai pour y quelconque g = f :

Donc f est l’unique endomorphisme de E tel que : (x; y) (E)2 ; f (x) y = x f (y) :

R 22 Soit x F : Montrons que f (x) F . Soit y F .
D’après la question 20 f (x) y = x f (y) et F est stable par f ; donc f (y) F:
Comme x F ; on a x f (y) = 0:

Donc y F; f (x) y = 0; donc f (x) F donc F est stable par f:

On montre de même que F est stable par f :

Endomorphisme normal

R 23 Soit B une base orthonormée de E et A = matB (f). On a donc AT = matB (f ).
f est normal f f = f f AT A = A AT A est est une matrice normale.

R 24 Soit B une base orthonormée de E et A = matB (f).
L’endomorphisme f est normal donc A est une matrice normale.
Soit x E et X son vecteur colonne coordonnées dans la base B.
On a f (x) 2 = f (x) ; f (x) = (AX)T (AX) = XTATAX =

A est normale

XTAAT X.

Donc f (x) 2 = ATX
T

ATX = f (x) ; f (x) = f (x) 2 :

Donc x E; f (x) = f (x) :

R 25 Soit f (E) tel que x E; f (x) = f (x) .

a Soit (x; y) (E)2 :
f (x+ y) 2 =

f est linéaire

f (x) + f (y) 2 = f (x) 2 + f (y) 2 + 2 f (x) ; f (y) :
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De même, f (x+ y) 2 =
f� est linéaire

f (x) + f (y) 2 = f (x) 2 + f (y) 2 + 2 f (x) ; f (y) :

Or, par hypothèse f (x + y) = f (x+ y) ; f (x) = f (x) et f (y) = f (y) :
Donc (x; y) (E)2 ; f (x) ; f (y) = f (x) ; f (y) :

b On a A = matB0 (f) donc f(ei) =
n

i=1

ak;iek donc f(ei) f (ej) =
n

i=1

ak;iek
n

i=1

ak;jek =
n

i=1

ak;iak;j .

Et, en posant A = AT , on a bi;j =
n

i=1

ai;kak;j :
n

i=1

ak;iak;j donc f(ei) f (ej) = bi;j.

c En posant C = A AT = AT T
A, on obtient de même f (ei) f (ej) = ci;j donc B = C donc A est

normale
Donc f est un endomorphisme normal.

Matrices normales et polynômes annulateurs.

R 26 La matrice A n(R) est normale et Ap = 0.

a On a Sp = AT A
p
= AT A : : : AT A = AT p

Ap = 0 car A est normale.donc on peut permuter les
produits.

b Or ST = AT A
T

= A AT = S donc S est symétrique réelle donc diagonalisable (théorème spectral) donc,
d’après la question 12, on a S = 0.

c On en déduit que AT A = 0 donc en considérant le produit scalaire usuel de n (R), (A A) = tr AT A = 0
donc A = 0.

R 27 A n(R) est matrice normale donc P (A) est normale. De plus, P q(A) = P (A)q (propriété des
polynômes de matrices). D’après la question précédente, si (P (A))q = 0 alors P (A) = 0 car P (A) est nor-
male.

R 28 Application: Soit M n(R) tel que M2 +M MT = In.

a Par hypothèse,M2+M MT = In; doncMT = M2+M In:DoncM = (M 2 +M In)
T

= MT 2
+MT In =

(M2 +M In)
2
+ (M 2 +M In) In:

Les puissances de M commutant entre elles, on obtient en développant par la formule du binôme,
M = (M 4 +M 2 + In + 2M3 2M2 2M) + (M2 +M In) In:
Donc M4 + 2M3 2M In = 0:

Donc P = X4 + 2X3 2X 1 est un polynôme annulateur de M:

b On remarque que 1 et 1 sont des racines de P; donc P = (X2 1) (X2 + 2X + 1) = (X 1) (X + 1)3

Donc Q = (X 1)3 (X + 1)3 = (X 1)2 P donc Q (M) = (M In)
2 P (M) = 0 donc Q est aussi un

polynôme annulateur de M : (M In)
3 (M + In)

3 = 0:

c On a MT = M2 +M In donc MT est un polynôme en M donc commute avec M donc M est une matrice
normale. En posant Q = (X 1) (X + 1), on a Q3 (M) = 0 donc Q (M) = 0 donc M2 = In . On en déduit

MT =M2 +M In =M donc M est une matrice symétrique réelle. .

R 29 A est une matrice non nulle, donc A admet un polynôme annulateur non nul noté R:
Supposons alors R constant égal à �: On a alors R (A) = �In: Or � = 0 car R polynôme non nul, donc R (A) = 0.
On obtient une contradiction avec R polynôme annulateur. Donc R est un polynôme annulateur non constant de
A: D’après le théorème de factorisation dans R [X] ; on a :
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R = a
p

j=1

(X �j)
kj

s

m=1

(X2 + �mX + �m)
lm ;où �1; :::; �p sont les p racines réelles deux à deux distinctes de R

et k1; :::; kp leurs multiplicités respectives, a est le coe¢cient dominant de R, et où les polynômes du second degré
à coe¢cients réels X2 + �mX + �m n’ont pas de racine réelle, mais des racines complexes non réelles conjuguées
(ce qui se traduit par �2m 4�m < 0).

Posons P =
p

j=1

(X �j)
s

m=1

(X2 + �mX + �m) et q = max (k1; k2; :::; kp; l1; :::; ls) : q N car deg (R) > 1:

On a alors R divise P q et si on note Q le polynôme tel que P q = Q R; on a P q (A) = Q (A) R (A)

=0

= 0:

On a donc A matrice normale, P polynôme et q N tels que P q (A) = 0:
Donc, d’après la question 27; P (A) = 0:
Pour m [[1; s]] ; X2 + �mX + �m admet deux racines complexes conjuguées (distinctes) que l’on note zm et zm:

D’où : P =
p

j=1

(X �j)
s

m=1

(X zm) (X zm) :

R étant non constant, p ou s est un entier supérieur ou égal à 1; donc P est de degré au moins 1 et n’admet que
des racines complexes simples. Donc :
P est un polynôme annulateur de R [X] ; de degré au moins 1

et dont toutes les racines complexes sont de mutiplicité 1:

On en déduit que A est diagonalisable dans n (C).

Réduction des endomorphismes normaux

R 30 On suppose que B est une base orthonormée et A = matB (f) =

�1 0 0

0
. . . . . .

...
...

. . . �p
. . . (0)

...
... (0)

. . . 
1R�1
. . .

...
...

. . . . . . 0
0 0 
sR�s

.

On a (A )T =

�1 0 0

0
. . . . . .

...
...

. . . �p
. . . (0)

...
... (0)

. . . 
1R �1
. . .

...
...

. . . . . . 0
0 0 
sR �s

. On a R �iR�i = I2 = R �iR�i donc (en faisant le produit

de latricees diagonales par blocs, (A )T A = A (A )T donc f est un endomorphisme normal.

R 31 f est un endomorphisme normal, donc d’après la question 24
x E; f (x) = f (x) : Soit x E:
x ker (f) f (x) = 0 f (x) = 0

f normal

f (x) = 0 f (x) = 0 x ker (f ) :

Donc ker (f) = ker (f ) :

R 32 Si B0 est une base orthonormée et A = matB (f). Posons B = matB0 (f �idE) = A �In = P (A) avec
P = X �. La matrice B est normale d’après la question 10. On en déduit que f �idE est un endomorphisme
normal.
On a matB0 ((f �idE) ) = BT = (A �In)

T = AT �In = matB0 (f �idE). On en déduit que (f �idE) =
f �idE.
donc ker(f �idE) = ker ((f �idE) ) = ker(f �idE) d’après la question précédente.
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R 33 On suppose F stable par f et f .

On a (x; y) F 2, f (x) y = x f (y) donc fF
F F
y f (y)

est l’unique g endomorphisme de F véri…ant

(x; y) F 2, fF (x) y = x g (y) . On a donc (fF ) = fF .
fF (fF ) (x) = f f (x) = f f (x) = (fF ) (fF ) (x).
Donc fF (fF ) = (fF ) (fF ) ; et fF est un endomorphisme normal de F:

R 34 On a Q (f) f = (Q X) (f) = (X Q) (f) = f Q (f) donc
d’après la question 14 F = ker (Q (f)) est stable par f:
L’endomorphisme f est normal donc f f = f f . On en déduit (raisonnement déjà vu pour les matri-
ces) que pour tout i N, f f i = f i f et donc que f Q (f) = Q (f) f donc on obtient de même
F = ker (Q (f)) est stable par f:

R 35 On suppose sp (f) =

a D’après la question 29, f admet un polynôme annulateur P =
p

j=1

(X �j)
s

m=1

X2 + �mX + �m

�<0

.

donc P (f) = (f �1idE) (f �pidE) (f 2 + �1f + �1idE) (f 2 + �sf + �sidE) = 0 (E).
La composée d’isomorphismes est un isomorphisme donc un des endomorphismes (f �jidE) et
(f 2 + �mf + �midE) n’est pas un isomorphisme.
Comme sp (f) = , l’endomorphisme f �jidE est injectif donc bijectif (dimension …nie).
On en déduit qu’il existe m [[1; s]] tel que f2 + �mf + �midE n’est pas bijectif donc pour lequel
ker (f 2 + �mf + �midE) = 0 .

b On a g = fF + fF . Soit B une base orthonormée de F .
On a matB (g) = matB (fF ) +matB (fF ) =M +MT avec M = matB (fF ).
Or M +MT T

=M +MT donc M +MT
n (R) donc, d’après le théorème spectral,

sp (g) = sp M +MT = .

c Posons G = V ect (e; f (e)). Le vecteur f (e) n’est pas colinéaire à e car sp (f) = donc dim (G) = 2.
Par hypothèse, e F = ker (f 2 + af + bidE) donc f 2 (e) + af (e) + be = 0 donc f 2 (e) = af (e) be.
On a f (e) G et f (f (e)) G donc G est stable par f
(si x = �e + �f (e) alors f (x) = �f (e) + �f 2 (e) G).

d On a g (e) + g (e) = �e; donc f (e) = �e f (e) G
et f (f (e)) =

f est normal

f (f (e)) G car f (e) G qui est stable par f d’après la question précédente.

On en déduit que G est stable par f .

R 36 Si sp (f) = , la question précédente montre qu’il existe un sous-espace de dimension 2 stable par f et f .
Si sp (f) = et e est un vecteur propre de f , alors e est un vecteur propre de f d’aprés la question 32 et vect (e)
sous-espace de dimension 1 stable par f et f

R 37 Montrons par récurrence sur dim (E) = n N la propriété ( n) :
Si f est un endomorphisme normale de E, il existe une base orthonormée de E dans laquelle la matrice de

f est diagonale par blocs de la forme :

�1 0 0

0
. . . . . .

...
...

. . . �p
. . . (0)

...
... (0)

. . . 
1R�1
. . .

...
...

. . . . . . 0
0 0 
sR�s

où �1; �2; : : : ; �p sont des réels,
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1; 
2; : : : ; 
s sont des réels strictement positifs et �1; �2; : : : ; �s des réels.
Pour n = 1: Toute matrice de 1 (R) est de la forme (�) ; donc 1 est vraie.
Pour n = 2: Alors d’après la question 16; la matrice A de f (endomorphisme normal) dans une base orthonormale
est soit symétrique réelle, soit de la forme 
R�:
- Si A symétrique réelle alors sp (f) = sp (A) = donc il existe e1 vecteur propre unitaire de f . Le sous-espace
vect (e1) est stable par f et f donc vect (e1) est stable par f et est de dimension 1. Soit e2 un générateur unitaire
vect (e1) . On a f (e2) vect (e1) = vect (e2) donc e2 est vecteur propre de f et mat(e1;e2) (f) est diagonale:
(on peut aussi appliquer le théorème spectral).
- Si A est de la forme 
R� la conclusion est vraie donc 2 est vraie.

Soit n N : On suppose n et n+1 vraies.
Soit f un endomorphisme de E avec dim (E) = n+ 2.
D’après la question 36 il existe un sous-espace vectoriel F de E de dimension 1 ou 2 stable par f et f :
- Si dim (F ) = 1: Alors il existe une base orthonormée 1 de F telle que mat 1 (fF ) = (�).
Dans ce cas dim F = n+ 1; et F est stable par f et f d’après la question 22
et fF? est un endomorphisme normal de F :
Donc, par n+1; on peut trouver une base orthonormée 2 de F , telle quemat 2 (fF?) soit de la forme demandée.
F et F sont orthogonaux et supplémentaires, donc en juxtaposant 1 et 2; on a bien une base orthonormée
telle que mat (f) soit de la forme demandée.
- Si dim (F ) = 2 alors, d’après 2; il existe une base orthonormée 1 de F telle que mat 2 (fF ) soit diagonale ou
de la forme 
R�. On a dim F = n; et par n et les mêmes arguments qu’au point précédent, on peut trouver
une base orthonormée 2 de F , telle que mat 2 (fF?) soit de la forme demandée.
On juxtapose 2 et 1, et on trouve bien une base orthonormée telle que mat (f) soit de la forme demandée.
Donc n+2 est vraie ce qui achève la démonstration.

Etude d’un exemple.

R 38 On note P = (X + 1)7 X7 1: On a donc P = 7 (X + 1)6 7X6:

Soit z C: On a P (z) = 0
P (z) = 0

(z + 1)7 z7 = 1

7 (z + 1)6 7z6 = 0

(z + 1) z6 z7 = 1

(z + 1)6 = z6
donc

P (z) = 0
P (z) = 0

z6 = 1

(z + 1)6 = z6

Or
z6 = 1

(z + 1)6 = z6
z = 1
z + 1 = z

et z + 1 = z Re (z) = 1
2
(mettre au carré et passer à la partie réelle et imaginaire).

Donc
z6 = 1

(z + 1)6 = z6
z = 1

2
+ i 3

2
= j ou z = 1

2
+ i 3

2
= j2.

Réciproquement si z = j, z6 = (j3)
2
= 1 et (z + 1)6 = ( j2)

6
= 1 donc j est racine multiple de P .

On en déduit que j2 = j est racine de même multiplicité de P car P R [X].

R 39 On remarque que 0 et 1 sont deux racines évidentes de P .
En développant avec Newton, on trouve que deg (P ) = 6 et que le coe¢cient dominant de P est 7.

On en déduit que P = 7X (X + 1) X e
2i�
3

2

X e
2i�
3

2

.

Or X e
2i�
3 X e

2i�
3 = X2 2 cos 2�

3
X + 1; d’où P = 7X (X + 1) (X2 +X + 1)

2.

R 40 Comme A est inversible et 7A (A+ In) (A
2 + A+ In)

2
= 0 donc (A+ In) (A

2 + A+ In)
2
= 0

donc sp (A) 1; j; j2 .
Si f est canoniquement associée à A, f est un endomorphisme normale donc il existe une base orthonormée de
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E dans laquelle la matrice de f est de la forme M =

�1 0 0

0
. . . . . .

...
...

. . . �p
. . . (0)

...
... (0)

. . . 
1R�1
. . .

...
...

. . . . . . 0
0 0 
sR�s

avec �i R.

On a d’une part sp (M) = sp (A) 1; j; j2 et d’autre part �i sp (M) et sp (
1R�1) sp (M)
(car 
1R�1 est la matrice d’un endomorphisme induit par f sur un sous-espace vectoriel stable par F de dimension
2).
On en déduit que �i = 1 et 
ie

i�i = j ou j2 donc 
i = 1 et �i 2�
3

[2	].

On a donc M =

1 0 0

0
. . . . . .

...
...

. . . 1
. . . (0)

...
... (0)

. . . R1

. . .
...

...
. . . . . . 0

0 0 Rs

avec Ri = R 2�
3
ou Ri = R 2�

3
.

On notera M = diag ( 1; :::; 1; R1; :::; Rs) même si H n’est pas diagonale mais juste ”diagonale par blocs”,
puisque R est une matrice de 2 (R) :

On aMTM = diag ( 1; :::; 1; R1; :::; Rs)
T diag ( 1; :::; 1; R1; :::; Rs) = diag ( 1)2 ; :::; ( 1)2 ; (R1)

T R1; :::; (Rs)
T

In car (R1)
T R1 = In.

d’ou M On (R) donc f isométrie vectorielle donc A On (R).

Exercice 3:

Indication: discussion suivant le cardinal de l’ensemble des points …xes de f . Résultat sous forme de somme avec
coe¢cients binômiaux et puissances.
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