PSI DS 4 (le mercredi 10 décembre 2025)

durée 4 h - calculatrices interdites

e Les solutions devront étre rédigés avec une encre foncée et présentées dans ’ordre de ’énoncé
(quitte a laisser des blancs pour compléter ultérieurement).

e Le candidat attachera la plus grande importance a la clarté, o la précision et la concision de la rédaction.

e Si un candidat est amené o repérer ce qui lui semble étre une erreur d’énoncé, il le signalera sur sa copie et
devra poursuivre sa composition en expliquant les raisons des initiatives qu’il a été amené & prendre.

Lorsqu’un raisonnement utilise le résultat d’une question précédente, il est demandé au candidat d’indiquer
précisément le numéro de la question utilisée.

IDEBUT DS4 standard |

Exercice 1

L’espace vectoriel R? est supposé muni de son produit scalaire usuel et orienté

2 -6 3
Soit A== —6 —3 —2 | et f ’endomorphisme canoniquement associé a A
3 -2 —6

Q 1 Soit E un espace euclidien et u un endomorphisme de E.
Montrer que si u est une isométrie et est un endomorphisme autoadjoint alors u est une symétrie orthogonale.

Q 2 Montrer que A est une matrice de rotation.
Q 3 Déterminer l'axe A de la rotation vectorielle f.

Q 4 Déduire des questions précédentes la nature de la rotation vectorielle f.

Exercice 2

1

On considere £ = R[X] et on pose pour (P,Q) € E? (P | Q) = / P (2)Q (x)dx.
-1

On admet que cette égalité définit un produit scalaire de F.

Pour P € E, on pose u (P) = (X? —1)P" +2XP'.
1
Q 5 Montrer que pour tout (P, Q) € E?, on a / (1—2?) P (2)Q (z)dr = (u(P)|Q).
-1

Q 6 En déduire que (u(P)|Q) = (Plu(Q)).

Q7 Soit Pe E,P#0 et A€ R. On suppose que u(P) = AP. Montrer que A\ > 0.



IDEBUT DS4 bis|

Probléme:

Pour n € N*, on dit qu'une matrice A € M, (R) est normale si et seulement si A x AT = AT x A.

Pour € on s = 010 0 )

Préliminaires

Soit n € N* et A € M,, (R).

Q 8 Soit A € M,, (R). Dans les cas suivants, indiquer si A est normale
a A est symétrique.

b A est antisymétrique.

c A est une matrice orthogonale.

Q 9 Soit P € O, (R).

Montrer que si A est une matrice normale alors P~ AP est une matrice normale.
Q 10 Soit A € M, (R) et P € R[X]. On suppose que A est une matrice normale.
a Montrer que P (A) x AT = AT x P (A).

b En déduire que P (A) est une matrice normale.

Q 11 Ftude de Ry.

a Déterminer le polynome caractéristique de la matrice Ry.

b Pour quelles valeurs de 0 la matrice Ry est-elle diagonalisable dans My (R)?

c Justifier que pour tout 0 € R, Ry est diagonalisable dans My (C) et donner une matrice D € My (C) diagonale
et semblable o Ry.

Q 12 Soit A € M,, (R). On suppose que A est diagonalisable et qu’il existe p € N* tel que AP = 0.
Montrer que A est la matrice nulle.

Q 13 Soit A € M, (R). On suppose que A> — A+ 1, =0.

a Montrer que A est diagonalisable dans M, (C).

b Justifer que n est pair et que la trace de A est un entier positif.
Q 14 Soit u et v deux endomorphismes de E. On suppose u o v = v 0 u.

a Montrer que ker (u) est stable par v.

b Montrer que Tm (u) est stable par v.



Matrices normales de taille 2

a cC

SoitAz(b d)eMg(]R).

Q 15 Montrer que A est normale si et seulement si A est symétrique ou (a = d et ¢ = —b).
Q 16 Montrer que A est normale si et seulement si A est symétrique ou 3p > 0 et 30 € R tels que A = p X Ry.

Q 17 Déterminer les matrices normales A € Mo (R) vérifiant A2 — A+ I, = 0.

Adjoint d’un endomorphisme

Dans la suite du probléme, E est un espace eucliden de dimension n > 1 dont le produit scalaire est noté ( . | . ).
On considére un endomorphisme f de F.

Q 18 Soit By est une base orthonormée de E. Soit A la matrice f dans la base By.
Soit f* l’endomorphisme dont la matrice dans la base By est AT.

Soit B une base orthonormée quelconque de E et M la matrice de f dans la base B.
Montrer que (M)" est la matrice de f* dans la base B.

On en définit 'adjoint de f comme I’endomorphisme f* de E tel que, une base orthonormée, la matrice de
/* est la transposée de la matrice de f (et cela ne dépend pas de la base orthonormée choisie d’aprés la question
précédente).

Q 19 Montrer que sp (f) = sp (f*).
Q 20 Montrer que: ¥(z,y) € E?, (f(2)|y) = (|f*(y))-

Q 21 Soit g € L(E). On suppose que ¥(x,y) € E* (f(z)|y) = (z|g(y)).
Montrer que g = f*.

Q 22 Soit F' un sous-espace vectoriel de E stable par f et f*.
Montrer que F* est aussi stable par f et f*.

Endomorphisme normal

On dit que I’endomorphisme f est normal si et seulement si f*o f = fo f*.

Q 23 Montrer que f est un endomorphisme normal si et seulement si la matrice de f dans toute base orthonormée
est une matrice normale.

Q 24 Montrer que si f est un endomorphisme normal alors Vx € E, | f(z)| = ||f*(2)]|.

Q 25 Réciproquement, on suppose que, pour tout v € E, ||f(z)]| = || f*(z)] .
Soit By = (e1, ..., e,) une base orthonormée de E et A = matp, (f). Soit B = AT x A.

a Montrer que ¥ (z,y) € E?, (f*(z), f*(y)) = (f (z), f (1))
b Exprimer (f(e;)|f (e;)) a laide de la matrice B.

c En déduire que f est un endomorphisme normal.



Matrices normales et polyndémes annulateurs.

Soit n € N* et A € M,,(R) une matrice normale

Q 26 On suppose qu’il existe p € N* vérifiant AP = 0. On pose S = AT x A.
a Justifier que S? = 0.

b En déduire que S = 0.

c En déduire que A = 0.

Q 27 On suppose qu’il existe P € R[X]| et ¢ € N* tel que P1(A) = 0, montrer que P(A) = 0.
Q 28 Application: Soit M € M, (R) tel que M?> + M — MT = 1,,.

a Déterminer un polynéme annulateur de M de degré 4.

b En déduire que (M — 1,)° (M + 1,)* = 0.

¢ En déduire que M? = I,, puis, que M est une matrice symétrique.

Q 29 On suppose que A n’est pas la matrice nulle.

a Montrer que A admet un polynéme annulateur P € R[X]| non constant, scindé a racines simples dans C {X}
(on pourra utiliser la question 27).

b Que peut-on en déduire?

Réduction des endomorphismes normaux.

Q 30 On suppose dans cette question qu’il existe une base orthonormée de E dans laquelle la matrice de f

N0 e e 0
0 )
. Ao e (0) . .
est diagonale par blocs de la forme (R) : ol A1, A, ..., A, sont des réels,
(O) p1R61
: . . 0
0 «+v cee .. 0 p.Ro,
P15 Py - -+ Ps SONE des réels strictement positifs et 01,05, ...,0, des réels.

(Les bloc diagonauzx sont donc de taille 1 ou de taille 2 de la forme pRy).
Montrer que f est un endomoprhisme normal.

Le but de la partie est de montrer une réciproque du résultat de la question précédente:
On suppose dans la suite que f est un endomorphisme normal de E et on cherche a montrer qu’il existe une base
orthonormée de F dans laquelle la matrice de f est de la forme (R) donnée dans la question précédente.

Q 31 Montrer que ker (f) = ker (f*).

Q 32 Montrer que, pour A € sp(f), ker(f — Nidg) = ker(f* — Nidg).

Si F' est un sous-espace vectoriel de E stable par f, on note fr ’endomorphisme induit par f sur F' défini
F—F

par:fpi{meF(m):f<x). )



Q 33 Montrer que si F' est un sous-espace vectoriel de E stable par f et f* alors fr est un endomorphisme
normal de F' et que (fr)" = (f*)p.

Q 34 Soit Q € R[X] et F' = ker (Q(f))-
Montrer que F' est un sous-espace vectoriel de E stable par f et f*.

|FIN DS4 standard |

Q 35 Dans cette question, on suppose que f n’admet pas de valeurs propres (sp(f) =0).

f2+af + bidg n'est pas bijective

a? —4b <0 ’

On pose F = ker (f2 + af + bidg) qui est stable par f et f* d’aprés la question 14.
On pose g = fr+ f5.

b Montrer que sp(g) # 0.

a Montrer qu’il existe (a,b) € R? tel que {

c Soit e un vecteur propre de g.
Montrer que vect (e, f (e)) est un sous-espace vectoriel de dimension 2 stable par f.

d Montrer que vect (e, f (€)) est stable par f*.
Q 36 Montrer qu’il existe un sous-espace vectoriel de E de dimension 1 ou 2 stable par f et f*.

Q 37 Montrer qu’il existe une base orthonormée de E dans laquelle la matrice de f est diagonale par blocs

N O e e 0
0 )
: A -~ (0) : N 5 5
de la forme : . . ' . oU A1, Aa, ..., Ay sont des réels, py,py,...,ps sont des réels
: (O) " p1R91
: e .. 0
0 N e RN 0 psRas
strictement positifs et 01,05, ...,0, des réels.

Etude d’un exemple.

Dans cette partie, A est une matrice normale et inversible de M,,(R) telle que (A + I,,)" = A" + I,,.
Onnote P= (X +1)" - X7 - 1.

Q 38 Dét’erminer les racines complexes multiples de P.
Q 39 En déduire la décomposition en irréductibles de P dans R[X].

Q 40 Montrer que A est une matrice orthogonale.

Q 41 Montrer qu’il existe un polynome P € R [X] tel que AT = P (A).

|FIN DS4 bis|

Exercice 3: A ne traiter que si toutes les questions du DS ont été
traitées.

Soit n € N* et E un ensemble fini admettant n éléments. On s’intéresse qu nombre «a,, d’applications f de E dans
E vérifiant f o f = idg.
Donner une expression de a,, en fonction de n.



Correction DS 4 PSI

Exercice 1

R 1 Soit b une base orthonormée de E. Posons M = mat, (u) L’endomorphisme u est une isométrie donc
M € O(n) donc MTM = I,, et est un endomorphisme autoadjoint donc M est symétrique donc M* = M. On
en déduit que M* = I, donc u est une symétrie par rapport « F = FE; (u) parallelement ¢ G = E_; (u) avec
FeG=FE.

Or u est un endomorphisme autoadjoint donc Ey (u) L E_y (u) donc E_y (u) C (Ey (u))" et dim (E_; (u)) =

dim ((El (u))l> (car By (u) ® (Ey (u))" = E (dimension finie).

u est donc une symétrie orthogonale.

R 2 On vérifie que (C1,Cy,C3) est une BON de M3, (R) donc A € O3(R) et det(A) = +1 donc A est une
matrice de rotation.

3
R 3 La résolution de AX = A donc X =x3 | —2 | donc A =vect (u) avec u = (3,—2,1).
1

R 4 La matrice de A est symétrique donc f est aussi autoadjoint donc f est une symétrie orthogonale.
Or A = E; (u) est de dimension 1 donc f est la symétrie orthogonale par rapport a la droite A c’est-a-dire la
rotation d’aze A et d’angle @ (les deux orientations de A+ donne le méme angle).

Exercice 2
R 5 Posons f(z)=(1—a2) P (x). . 1
On a /_1 (1—=2%) P'(2)Q (x)de = /_lf(x) Q' (z)dr = [f (2) Q (2)]", _'/_1]” () Q (x) do

- / (2eP' (2) + (22 — 1) P" (2)) Q () dx = (u (P) |Q).

1

R 6 FEn échangeant les roles de P et () dans la question précédente, on obtient

[ (1—22) P () @ (x) dx = (u(Q) |P) done (u(P)|Q) = (Plu(Q))-

R 7 D’une part‘l(u (P)|P) = (A\P|P) = \|| P|°.
D’autre part, /1 (1—22) (P ())*dx = (u(P)|P) et (1—a2) (P (2))* > 0 si x € [~1,1] donc (u(P)|P) > 0.

On en déduit que \||P||* > 0 donc A >0 car P est non nul.

Probléme
Préliminaires
R 8 Cas particulers:

a Si A est symétrique alors A x AT = Ax A= AT x A donc A est normale.

b Si A est antisymétrique alors A x AT = Ax (=A) = (=A) x A= AT x A donc A est normale.

6



c Si A est une matrice orthogonale alors A est inversible d’inverse AT donc A x AT = AT x A =1, donc A est
normale.

R9 Soit Ac M, (R) et P € O, (R). Posons B= P AP = PTAP.

On a BT x B = (PTAP)T X (PTAP) = (PTATP) X (PTAP) = PTAT (PPT) AP = PTATAP

donc BT x B = PTAATP car A est normale donc BT x B = (PTAP) (PTATP) = B x BT donc B est une
matrice normale.

R 10 On suppose que A est une matrice normale.
a On remarque que A?AT = A (AAT) = A (ATA) = (AAT) A= (ATA) A = AT A%
Par recurrence immédiate, Vi € N | ATAT = AT AY.

On pose P = Z a; X",

1=0

k k
Ona P (A) x AT = (Z aiA’) Z a; ATAT = Z a;ATA = AT S a; A" = AT x P (A).
i=0 =0
k
c Ona (P(A)" (Z aZAl) => a; T (linéarité de la transposition) et comme (MN)" = NTMT, on a
1:0

(AN" = (A ) done (P (A))" Z a; (AT)

On a donec P (A)" x P(A) = Z a; (AT) P (A) et, comme AT x P(A) = P(A) x AT, on obtient (AT)i X
=0
. k .
P(A) = P(A)(A")" par récurrence (idem précédemment) donc PA" x P(A) = Ya (AT)' P (A) =

Zaz (4) (4 )Z’=P<A>ii0ai(AT)i=P<A><P<A>>T.

donc P (A) est une matrice normale.
R 11 Ftude de Ry:

a Xp, (r) = det (zI; — Ry) = m:sfr(l)s(éf) T ilréég)(g)

On a A =4(cos®(f) — 1) = — (2sin (9))*.

=22 —2xcosf + cos? 0 +sin?0 = 22 — 2z cosf + 1.

b Si0 =027, Ry =15 et si 0 =7 [2w|, Ry = —1I5 donc Ry est diagonalisable.
Si 0 £ 0[n], alors A <0 donc sp(Ry) = 0 donc Ry n’est pas diagonalisable dans Mz (R).

c Si0=0[27], Ry est diagonale donc diagonalisable dans M (C).

Si 0 # 0[r], alors A < 0 et Ry est une matrice de taille 2 et admet deuzr valeurs propres complexes
25sin (A) £ 2isin (0)
2

conjuguées distinctes = e¢* donc Ry est diagonalisable dans My (C) et est semblable

R 12 La matrice A est diagonalisable donc il existe P € GL, (R) telle que D = P~'AP est diagonale.

On a DP = (PAP™Y = PAPP~1 =0 car AP = (.

Si D = diag (M1, ..., \n), alors DP = diag (\,...,\2) =0 donc X! =0 donc \; =0 donc D =0 donc A = 0.
Autre méthode: XP est polynome annulateur de A donc sp (A) C {0}. A est diagonalisable donc semblable o une
matrice diagonale dont les éléments diagonaux sont nuls donc A est semblable o la matrice nulle donc est nulle.

R 13 Soit A € M,, (R). On suppose que A* — A+ I, :70.



a Le polynome P = X? — X + 1 est un polynéome annulateur de A et son discriminant A = —3 < 0 donc

sp(A) = 0.
1+iv3 1—1iv3

Les racines complexes de P sont \; = et Ay =
C[X] donc A est diagonalisable dans M, (C) et sp(A) C {A1, A2}.

donc P est scindé a racines simples dans

b La matrice A est semblable & D = diag | A, ..., )\1,\)\2, ...y A | avec m; > 0.

Vv
my fois mo fois

Les matrices A et D sont semblables donc x, = x4 € R[X] dont les racines complezes conjuguées ont méme
multiplicité donc my = mo.
On en déduit que n = 2my est pair tr (A) = my (A + Ag) = my € N*.

R 14 Soit u et v deux endomorphismes de E. On suppose u o v = v o u.

a Soit x € ker (u). Onau(v(z)) =uov(x)=vou(xr)=wv(0) =0 doncv(zx) € ker (u) donc ker (u) est stable
par v.
(ou on applique le théoréme du cours: Fqo(u) est stable par v).

b Soitz € Im(u). It € E;x =wu(t). Onadoncv(x) =v(u(t)) =u(v(t)) € Im(u) doncIm (u) est stable par v.

Matrices normales de taille 2

R 15 Ona
T AT a c a b\ (a b a c
A4 AA(:)(b d)(c d><c d)(b d)
a?+c® ab+cd\ [ a®+0 ac+bd
ab+cd b*+d* ) \ ac+bd -+ d?

2 =0
(:){ ab + cd = ac + bd

=

o c=b c=—b
ab+bd=ab+bd "\ ab—bd = —ab+ bd

c=-b
Sc=b ou {b(a—d)zo

c=-b c=-b
Sce=b ou {b:O ou {a:d

Le deuxiéme cas est compris dans le premier cas, d’ot :

A est une matrice normale ssi A = a b ou A= a —b )
b d b a

a = pcos(0)
b= psin(6) ’

a —b\ [ pcos(d) —psin(f) \ . .
donc < b oa ) = ( psin(6)  peos (6) = pRy. Réciproquement toute matrice de la forme pRy, avec p > 0,

R 16 Pour (a,b) # (0,0), a+ib# 0,donc 30 € R, Ip >0 / a + ib = pe'? soz’t{

b

A est une matrice normale ssi A est symétrique réelle ou bien Ip € RY, 0 € R / A = pRy.

est de la forme ( “ _ab ) , d’ot :

R 17 On a A2 — A+ I, = 0 donc d’aprés la question 13 sp(A) = 0 donc A n'est pas symétrique d’apres le

théoréme spectral.
1+iv3 1—14v3
De plus, spc(A) = { +22\/_, 22\/_}

et A = pRy avec p > 0 donc d’aprés la question 11 spc (A) =
8



{pew,pe_w}. On en déduit que p=1 et 0 € {ei%,e_’%} donc A= Rz ou A=R_z.

Réciproquement, si A = Rz ou A = R_z, A est diagonalisable dans M (C) et spc(A) = {e’%,e_’%} donc
(X — e’%) (X — e‘i%) est polynome annulateur de A soit A2 — A+ I, =0 et A est normale.

Les solutions sont donc les matrices Rg et R_%.

Adjoint d’un endomorphisme

R 18 On a sons P = Pp, .5 € O, (R) car By et B sont orthonormée et M = matg (f).
On a A =matg, (f) donc M = P~*AP = PTAP car P € O, (R) donc

(M) = (PTAP)T = PTATP = P71 (AT) P = matp (f*) car (AT) = matp, (f*).

R 19 On a x;. (z) = det (zid — f*) = det (z1,, — AT) = det ((:L’In - A)T) par linéarité de la transposition.
Or det (M) = det (MT) donc x;. (v) = det (zI, — A) = x; () donc sp (f) = sp (f*).

R 20 Soit (z,y) € E? et X etY les vecteurs colonne coordonnée de X etY dans la base By.

(f(@)]y) = (AX)" x YV = (XTAT) Y = X7 x (ATY) = (2] " (y))-

Done |V (x,y) € E, (f (2) |y) = (2] ())-

) y) = (zlg (y)) -
)

(y
g (y)) = 0 par bilinéarité du produit scalaire,
done f* (y) = g (y)-

R 21 Soit g € L(E) /¥ (z,y) € e (E?, (f
On a alors ¥ (x,y) € (E)*, (z[f* (y)) = (=
Soit y € E. On a alors Nx € E, {(x|f*(y) —
done f* (4) = 9(y) € (E)*. Or (B)” = {0},
L’égalité étant vrai pour y quelconque

Done | f* est Vunique endomorphisme de E tel que : V (x,y) € (E)*, (f (x)|y) = (z|f* (y)).

(v
g

R 22 Soit x € F*+. Montrons que f (x) € F+. Soity € F.
D’apres la question 20 (f (z)|y) = (z|f* (y)) et F est stable par f*, donc f*(y) € F.
Comme x € F*, on a {x|f*(y)) = 0.

DoncVy € F, {(f (z)|y) = 0, donc f (x) € F+ donc | F*+ est stable par f.

On montre de méme que | F+ est stable par f*.

Endomorphisme normal

R 23 Soit B une base orthonormée de E et A= matp (f). On a donc AT = matg (f*).
festnormal & f*of=fof*e AT x A= Ax AT & A est est une matrice normale.

R 24 Soit B une base orthonormée de E et A = matg (f).

L’endomorphisme [ est normal donc A est une matrice normale.

Soit x € E et X son vecteur colonne coordonnées dans la base B.

On a ||f(:v)||2 =(f(z), f(x)) = (AX)T X (AX)=XTATAX NP XTAAT X
A est normale

Done ||f (@)|* = (ATX)" x (ATX) = (f* (2), f* (2)) = | /* (@)

Donc|Vz € E, ||f (z)| = |/ ()]

R 25 Soit f € L(E) tel que Vx € E, ||f (z)|| = ||f* ()]

a Soit (z,y) € (J}g)2 ) ) ,
I e+l” = @+ LI =17 @I+ I+ 20 (@), f )

f est linéaire

9



De meme, |[f*(@+ylI° = 1@+ @I =1 @I + 1/ @I +2( (@), f* (1)) -

—~—

f* est linéaire

Or, par hypothese ||f* (z + y)ll = IIf (x + Il If* @)l = If @) et [lF~ @)l = If W)l
Done ¥ (z,y) € (E)", (f*(x), /" (y)) = {f (), (v)) -

b On a A= matg, (f) donc f(e;) = arex donc (f(e;)|f (e;)) = <z agierl > ak7jek> = 0k
: i=1 i=1 i=1

i=1
Et, en posant A' = A", on a bij = Y af par;. Y apgar; done (f(e)|f (e;)) = bi;.
i=1 i=1
¢ En posant C = A x AT = (AT)T x A, on obtient de méme (f*(e;)|f* (e;)) = ¢;j donc B = C donc A est
normale
Donc | f est un endomorphisme normal.|

Matrices normales et polyndémes annulateurs.

R 26 La matrice A € M, (R) est normale et AP = 0.

a Ona SP = (A" x A)p = (AT x A)... (AT x A) = (AT)p AP =0 car A est normale.donc on peut permuter les
produits.

b Or ST = (AT X A)T = Ax AT = 8 donc S est symétrique réelle donc diagonalisable (théoréme spectral) done,
d’aprés la question 12, on a S = 0.

¢ On en déduit que AT x A = 0 donc en considérant le produit scalaire usuel de M, (R), (A|A) =tr (AT x A) =0
donc A = 0.

R 27 A € M,(R) est matrice normale donc P (A) est normale. De plus, P1(A) = P (A)? (propriété des
polynémes de matrices). D’aprés la question précédente, si (P (A))? = 0 alors P(A) = 0 car P (A) est nor-
male.

R 28 Application: Soit M € M, (R) tel que M?> + M — MT = I,.

a Par hypothése, M*+M —MT = I,,, donc MT = M*+M —1,.Donc M = (M? + M — In)T = (MT)2+MT—]n =
(M24+M -1, + (M*+ M —1,) — I,.
Les puissances de M commutant entre elles, on obtient en développant par la formule du binéme,
M= (M*"+M?*+1,+2M3 —2M? —2M) + (M?*+ M — I,,) — I,.
Done M* +2M3 —2M — I, = 0.
Donc |P = X* +2X3 —2X — 1 est un polynéme annulateur de M.

b On remarque que 1 et —1 sont des racines de P, donc|P = (X?—1)(X24+2X +1) = (X —1) (X +1)?
Done Q = (X =1 (X +1)° = (X —=1)>P donc Q(M) = (M —1,)> P(M) = 0 donc Q est aussi un
polynéme annulateur de M: | (M — I1,)° (M + I1,)* = 0.

c OnaM? = M?+ M — I, donc M7 est un polynéme en M donc commute avec M donc M est une matrice

normale. En posant Q@ = (X —1) (X + 1), on a Q* (M) = 0 donc Q (M) = 0 donc . On en déduit
MT = M?+ M — 1, = M donc | M est une matrice symétrique réelle. |

R 29 A est une matrice non nulle, donc A admet un polynome annulateur non nul noté R.

Supposons alors R constant égal & . On a alors R (A) = al,. Or a # 0 car R polynéme non nul, donc R (A) # 0.
On obtient une contradiction avec R polynome annulateur. Donc R est un polynéme annulateur non constant de
A. D’aprés le théoréme de factorisation dans R [X], on. g :



p s

H (X —a;)% [] (X2+8,,X + v )" ot an, ..., o, sont les p racines réelles deuz o deux distinctes de R
7j=1 m=1

et ki, ..., k, leurs multiplicités respectives, a est le coefficient dominant de R, et ou les polynomes du second degré

a coeﬁiczents réels X* + 3,,X +,, n'ont pas de racine réelle, mais des racines complexes non réelles conjuguées

(ce qui se tmduzt par 52 — 4’ym <0).

Posons P = H (X —ay) H (X2 + 8, X +7,,) et ¢ =max (ki, k..., kp, l1, ..., [s) . ¢ € N* car deg (R) > 1.

J=1 m=1
On a alors R divise P? et si on note Q le polynome tel que P! =@ x R, on a P1(A) = Q (A) x R(A) =0.
——
=0
On a donc A matrice normale, P polynome et q € N* tels que P?(A) = 0.
Done, d’aprés la question 27, P (A) = 0.
Pourm e [1,s], X?+ 3,,X +7,, admet deuz racines complezes conjuguées (distinctes) que l'on note z,, et Z,,.
p s
Douw:P=][(X—qa;) [[ (X—2n)(X—-Zn).
=1 m=1
R étant non constant, p ou s est un entier supérieur ou égal a 1, donc P est de degré au moins 1 et n’admet que
des racines complexes simples. Donc :

P est un polynome annulateur de R [X], de degré au moins 1

et dont toutes les racines complexes sont de mutiplicité 1.

On en déduit que A est diagonalisable dans M, (C).

Réduction des endomorphismes normaux

A1 0 0
0 -
, : : Ap (0)
R 30 On suppose que B est une base orthonormée et A’ = matp (f) = '
(O) ,01R61 ’
. 0
0 0 pSRes
A1 0 0
B
NT : Ap . (0) . .
Ona(A) = _ . Ona R_g,Ry, = Iy = R_y, Ry, donc (en faisant le produit
(O) T le—91
: . 0
0 o0 .. 0 p.R_g.

de latricees diagonales par blocs, (A')" x A’ = A’ x (A" done f est un endomorphisme normal.

R 31 f est un endomorphisme normal, donc d’aprés la question 24
Ve e E, || f(z)| = [If* ()] . Soit x € E
veker(f) o f(z) =0 f(@)]=0 & [/ @=0s [ (2)=0execke(f).

f nm”m(zl

Donc |ker (f) = ker (f*).

R 32 Si By est une base orthonormée et A = matg (f). Posons B = matpg, (f — Nidg) = A — X\, = P (A) avec
P =X — \. La matrice B est normale d’apreés la question 10. On en déduit que f — Nidg est un endomorphisme
normal.

On amatg, ((f — Midg)*) = BT = (A= A\I,)" = AT =X, = matp, (f* — Nidg). On en déduit que (f — Nidp)* =
[ = Nidg.

donc ker(f — Nidg) = ker ((f — Nidg)*) = ker(f* — )\z'dEl)l d’apres la question précédente.



R 33 On suppose F stable par f et f*.
Ona¥(a.9) € P, (7 (@) lo) = Galp* ) done g { E 70
V(z,y) € F%, (fr(z)|y) = (x|g (y)). On a donc ((fr)" =14

fro(fr) (x) = fo f (x)=f"of(x)=(fr)" o(fF)(z).
Donc fro (fr) = (fr) o (fr), et | fr est un endomorphisme normal de F|

R34 0naQ(f)of =(QxX)(f)= (X x Q) () = [oQ(f) done
d’aprés la question 14 |F = ker (Q (f)) est stable par f.
L’endomorphisme f est normal donc f*o f = fo f*. On en déduit (raisonnement déja vu pour les matri-
ces) que pour tout i € N, f*o fi = fio f* et donc que f* o Q(f) = Q(f) o f* donc on obtient de méme
F =%ker (Q(f)) est stable par f.

est l'unique g endomorphisme de F' vérifiant

R 35 On suppose sp(f) =10

p
a D’apres la question 29, f admet un polynome annulateur P = [[ (X — «;)
j=1

I

m

(X2 + B X + 7).
AZ0
donc P (f) = (f — anidg) o --- o (f — ayidg) o (f* + B1f +vyidg) o --- o (f* + B, f +7,idr) = Or(m)-
La composée d’isomorphismes est un isomorphisme donc un des endomorphismes (f — ajidg) et
(f2+ B, f +Ymidg) n'est pas un isomorphisme.
Comme sp (f) = 0, Uendomorphisme [ — ajidg est injectif donc bijectif (dimension finie).
On en déduit qu’il existe m € [[1, s]] tel que 2 + B,,f + Vmidr n'est pas bijectif donc pour lequel
ker (f2+ B,,.f + vmide) # {0}.

b Onag= fr+ fr. Soit B une base orthonormée de F'.
On a matg (g) = matg (fr) + matp (f3) = M + MT avec M = matp (fr).
Or (M + MT)T =M + MT donc M + MT € S, (R) done, d’aprés le théoréme spectral,
sp(g) =sp(M+MT) #0.

1

¢ Posons G = Vect (e, f (€)). Le vecteur f (e) n’est pas colinéaire a e car sp(f) =0 donc dim (G) = 2.
)

Par hypothese, e € F = ker (f? + af + bidg) donc f2(e) + af (e) + be =0 donc f?(e) = —af?e — be.
Ona f(e) €G et f(f(e)) € G donclG est stable par [ |
(six = cae+ Bf (e) alors f(x) = af (e) + Bf%(e) € G).
d Onag(e)+g*(e) = Ne, donc f*(e) =Xe— f(e) € G
et f*(f(e)) =, f(f*(e) €G car f*(e) € G qui est stable par f d’aprés la question précédente.

~—

f est normal

On en déduit que G est stable par f*.

R 36 Sisp(f) =0, la question précédente montre qu’il existe un sous-espace de dimension 2 stable par f et f*.
Sisp(f) =10 ete est un vecteur propre de f, alors e est un vecteur propre de f* d’aprés la question 32 et vect (e)
sous-espace de dimension 1 stable par f et f*

R 37 Montrons par récurrence sur dim (E) =n € N* la propriété (H,) :
St f est un endomorphisme normale de E, il existe une base orthonormée de E dans laquelle la matrice de

MO e e 0
0 - . )
f est diagonale par blocs de la forme : ; M - O ; ol A1, Ag, ..., A\, sont des réels,
. . ) ) P
: (O) leel
. 0
0 - 0 p.R,



P1s Pas - - -, Ps SONL des réels strictement positifs et 01,04, . ..,0, des réels.

Pour n = 1. Toute matrice de My (R) est de la forme (X), donc H; est vraie.

Pour n = 2. Alors d’aprés la question 16, la matrice A de f (endomorphisme normal) dans une base orthonormale
est soit symétrique réelle, soit de la forme pRy.

- Si A symétrique réelle alors sp (f) = sp(A) # 0 donc il existe e; vecteur propre unitaire de f. Le sous-espace
vect (eq) est stable par f et f* donc vect (el)L est stable par f et est de dimension 1. Soit es un générateur unitaire
vect (e1)™. On a f (e2) € vect (ey)™ = vect (e3) donc ey est vecteur propre de f et mat e, ) (f) est diagonale.
(on peut aussi appliquer le théoréme spectral).

- Si A est de la forme pRy la conclusion est vraie donc Hs est vraie.

Soit n € N*. On suppose H,, et H,, 1 vraies.
Soit f un endomorphisme de £ avec dim (E) = n + 2.
D’apres la question 36 il existe un sous-espace vectoriel F' de E de dimension 1 ou 2 stable par f et f*.
- Si dim (F) = 1. Alors il existe une base orthonormée B; de F telle que matg, (fr) = ().
Dans ce cas dim (F*) =n+ 1, et F* est stable par f et f* d’aprés la question 22
et fp1 est un endomorphisme normal de F-.
Donc, par H,,, 1, on peut trouver une base orthonormée B, de F'*, telle que matg, (fr.) soit de la forme demandée.
F et F'* sont orthogonaux et supplémentaires, donc en juxtaposant B; et By, on a bien une base orthonormée B
telle que matg (f) soit de la forme demandée.
- Si dim (F) = 2 alors, d’aprés Ha, il existe une base orthonormée By de F' telle que matg, (fr) soit diagonale ou
de la forme pRy. On a dim (F L) = n, et par ‘H,, et les mémes arguments qu’au point précédent, on peut trouver
une base orthonormée B, de F'*, telle que matg, (fr.) soit de la forme demandée.
On juxtapose Bj et By, et on trouve bien une base orthonormée B telle que matg (f) soit de la forme demandée.
Donc H,, 12 est vraie ce qui acheve la démonstration.

Etude d’un exemple.

R 38 Onnote P= (X +1)"—X"—1. On a donc P = 7(X +1)° — 7X8.

‘ P(z)=0 (z4+1)"—2"=1 (z+1)26-2"T=1
Soit z € C. Ona{P’(z)O {7(,2—1—1)6—7260 & (z+1)6:z6 donc
P(z)=0 N 25=1
P (2)=0 (z+1)0 =28
=1 |z =1
07“{ (z+1)° =2 :‘{ |2+ 1] = |z|
et |z+ 1| = |z| © Re(z) = —3 (mettre au carré et passer a la partie réelle et imaginaire).

A6 — 1 ‘ ‘ ‘ .
DO”C{ (z41)° = 28 =>ZZ—%+Z\/7§:] ouz:—%—i—z%g:]?.

Réciproquement si z = j, 25 = (j3)° =1 et (z+1)° = (—j2)° = 1 donc j est racine multiple de P.
On en déduit que j* = j est racine de méme multiplicité de P car P € R[X].

R 39 On remarque que 0 et —1 sont deux racines évidentes de P.
En développant avec Newton, on trouve que deg (P) = 6 et que le coefficient dominant de P est 7.

N2 N2
On en déduit que | P =TX (X + 1) (X — ele”) (X — 6—2’%) .

Or (X—ez’%> (X—e—%) = X2~ 2c0s (Z) X +1, d'oi | P = 7X (X + 1) (X2 + X + 1)°.

R 40 Comme A est inversible et TA(A+ 1,) (A2 4+ A+ 1,)> =0 donc (A+ 1) (A2 + A+ 1,)* =0

done sp(A) C {~1.j,7*}.

Si f est canoniquement associée a A, f est un endomorphisme normale donc il existe une base orthonormée de
13



Ap o (0)
(O) B ,01R91

E dans laquelle la matrice de [ est de la forme M = avec \; € R.
: . . 0
0 v er ... 0 p.Ry.
On a d’une part sp (M) = sp(A) C {—1,4,5%} et d’autre part \; € sp (M) et sp(p;Ry,) C sp (M)

(car p,Re, est la matrice d’un endomorphisme induit par f sur un sous-espace vectoriel stable par F' de dimension

2).

On en déduit que \; = 1 et p;e’ = j ou j* donc p; =1 et 0; = +2 [2r].

1 0 v cer e 0
0 .
On a donc M = -1 (0) avec R; = R2x ou R, = R_2x.
(0) R, ’ ’
: . -0
0 -+ - -« 0 R,
On notera M = diag(—1,...,—1, Ry, ..., Rs) méme si H n’est pas diagonale mais juste “diagonale par blocs”,

puisque R est une matrice de My (R).

Ona MTM = diag (—1, ..., —1, Ry, ..., R)) xdiag (—1,...,—1, Ry, ..., R,) = diag ((—1)2 e (=12 (RO Ry, ooy (R)T

1, car (Rl)T R, =1,.
d’ou M € O,, (R) donc f isométrie vectorielle donc A € O,, (R).

Exercice 3:

Indication: discussion suivant le cardinal de I’ensemble des points fixes de f. Résultat sous forme de somme avec
coefficients bindmiaux et puissances.
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