DS3 standard mercredi 20/11/25 (urce sn)

Le sujet comporte 3 pages

N.B. : Le candidat attachera la plus grande importance a la clarté, a la précision et la concision de la rédaction.
St un candidat est amené a repérer ce qui lui semble étre une erreur d’énoncé, il le signalera sur sa copie et
devra poursuivre sa composition en expliquant les raisons des initiatives qu’il a été amené a prendre.
| Les calculatrices sont interdites |

Lorsqu’un raisonnement utilise le résultat d’une question précédente, il est demandé au candidat
d’indiquer précisément le numéro de la question utilisée.

Les questions doivent étre rédigées dans ’ordre (quitte & laisser de la place pour revenir sur
une question ultérieurement).

UTILISER DE PREFERENCE UN STYLO NOIR NON EFFACABLE NE PAS UTILISER DE BLANCO.

Exercice 1

1 -2 =2
Soit la matrice A= |0 2 1
0 1 2

Q 1 Calculer A? et en déduire un polynéme annulateur de A de degré 2.
Q 2 En déduire que A est diagonalisable et sp (A) = {1,3}.
Q 3 Soit n € N. Déterminer le reste dans la division euclidienne de X™ par X? — 4X + 3.

Q 4 En déduire la matrice A™.

Exercice 2

Soit A € M,, (R). On suppose que A% + A% + A = 0.
Q 5 Justifier que A est diagonalisable dans M,, (C).

Q 6 Montrer que rg (A) est pair et rg (A) + 2tr (A) = 0.

Exercice 3

Le but de l'exercice est de déterminer d = inf \/ fol (\ﬁ —at — b)2 dt.
(a,b)eR?

Q 7 Soit (a,b) € R%. On pose, pourt € [0,1], f(t) = 1.

Ecrire le réel \/fol (ﬂ —at — b)2 dt a larde de f et d’une norme euclidienne d’un espace préhilbertien E que ['on
précisera.

Q 8 Ecrire le réel d sous la forme d(f, F) ou F est un sous-espace vectoriel de E & préciser.

PeF

Q9 Soit P € E. Justifier que P est le projeté othogonal sur F' si et seulement si { f_pPept

Q 10 En déduire le projeté orthogonal de f sur F.

Q 11 Conclure.



Probléme:

1
On considére E = R[X] et on pose pour (P,Q) € E?, (P | Q) = / P(z)Q (z)dx.
-1
Pour n € N, on pose E,, = R, [X], F,, = vect ({X*, i € N,0<2i <n}) et
G, =vect ({X¥ i €N, 0<2i+1<n}).

Préliminaire: un calcul d’intégrale
On pose, pour k € [[0,n]], T = [*, (¢ = 1)" " (x +1)""* da.
Q 12 Calculer I,.

n—k

Q 13 Pour k € [[0,n — 1]], montrer que I}, = _m.[k+1.

) . 92n+1 (n!)2
Q 14 En déduire que [ (2* —1)"dz = (-1)" 2n+ 1)

Premiére partie

Q 15 Justifier précisement que VP € E, (P| P)=0= P =0.

1
On admet dans la suite que 1'égalité (P | Q) = / P (z) Q (x) dz définit un produit scalaire de E donc sur E,,.

-1

Q 16 Soit P € E,,. Justifier que les deux assertions (i) et (ii) sont équivalentes:
(i) : Ve € [-1,1], P(—x) = P (x).

(i1) : P € F,.

Citer sans démonstration un résultat similaire concernant G,,.

Q 17 On se place dans l’espace euclidien E,,.
Montrer que G,, = (Fn)L (on pourra faire un changement de variable et on ne se contentera pas d’une simple
inclusion).

Soit P =>"a; X" € E,. Déterminer le projeté orthogonal de P sur F,,.
i=0

Q 18 Dans cette question on suppose que n =3 et on pose P =1+ X + X% 4+ X3.

1
Déduire de la question précédente la valeur de o = ( ir)lf / (P (z) — (a + ba?))* dz.
a,b GRQ —1

Deuxiéme partie

On veut établir, pour tout n € N, I'existence et 'unicité d’une famille (P, P, ..., P,) de E, vérifiant:
(1) : Yk € [[0,n]], deg(Py) = k et Py est de coefficient dominant égal a 1,

(Cn) : 2) -V (7.7 2 . . .
(2) :V(4,5) € [[0,n]]", i # j = (B F;) = 0.

Q 19 Montrer ce résultat par récurrence sur n € N*,
On pourra supposer qu’une famille (Py, P1, ..., P,) de E, vérifie (C,) et s’intéresser a la
dimension de vect (Py, Py, ..., Pn)L dans l’espace E, 1.



La construction précédente étant valable pour tout n € N, on peut donc en déduire qu’il existe une unique
suite (P,), oy de R [X] vérifiant:
(©) : { (1) : Vn € N, deg (P,) = n et P, est de coefficient dominant égal a 1

() :V(,4) EN? i #£ = (B|P) =0 ’

Q 20 Montrer que st n est pair alors P, € F, et si n impair alors P, € G,,.
Soit n > 2.

Q 21 Montrer que P, — XP, € E,.
Déduire de la question précédente que P, — XP, € E, 1.

Q 22 Montrer que, P,y — X P, est orthogonal a E, .

Q 23 Déduire des questions précédentes qu’il existe A, € R tel que P,.1 = XP, + A\, P, _1.

Troisiéme partie: Expression des polyndémes P,
Pour n € N, on pose A, = (X2 —1)" et L, = A",
Q 24 Montrer que L,, est un polynoéme de degré n et déterminer son coefficient dominant.

Q 25 En utilisant la formule de Leibniz, calculer L, (1) et L, (—1).
Q 26 Soit (m,n) € N2, Montrer que si k < m — 1, alors (A&Ln+k)|A§,T_k)> = — (A&”*“”|A£,§”"“‘”).
Q 27 On suppose que n < m. montrer que (L,|L,,) = 0.

Q 28 En déduire que pour tout n € N, il existe o, € R* tel que P, = a, L,,.

Q 29 Montrer que ||Ly,|” = (=1)" x (2n)! x f_ll A, (z) dz et en déduire la valeur de ||L,||”.

Quatriéme partie: racines des polynoémes L,

On suppose que n € N*

Q 30 Soitn € N* et P € E,,_y. Montrer que (P|L,) = 0.

Q 31 En utilisant la nullité de (1|L,,), justifier que L,, admet une racine a; €] — 1, 1].

Q 32 On suppose que n > 2. On note k le nombre de racines de L, appartenant & | — 1,1] et qui ont une
multiplicité impaire. Montrer que k = n. (on pourra supposer k < n et introduire un polynéme P € E, 1 bien
choisi).

Conclusion: L, est scindé dans R et & racines simples appartenant a |—1, 1].

Q 33 Retrouver le résultat précédent en utilisant le théoréme de Rolle au polynéme A,,.
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Exercice 1

1 -2 =2 1 -8 -8
R1OnaA?=1|0 2 1 =10 5 4 | =4A—-3I5 donc A> —4A+ 315 =0 donc X? —4X + 3 est un
0 1 2 0 4 5

polynome annulateur de A.

R 2 Le polynome P = X? —4X +3 = (X —1) (X — 3) est scindé et a racines simples est est un polynome
annulateur de A donc A est diagonalisable et sp (A) C {1, 3}.

Si sp(A) était un singleton {\}, A serait semblable a \I3. On aurait P"'AP = X3 donc A = PA\I[3P~' = \I3,
ce qui n’est pas le cas donc sp (A) C {1,3}.

R 3 La division euclidienne de X" par P s’écrit X™ = PQ + R avec Q) et R polynomes et deg (R) < 2. Posons
R=aX +0.

= = 3" —1 3—3"
FEvaluons l’égalité X™ = PQQ + R en 1 et 3. Ona{ L=R(l)=a+b .

3" — R(3) = 30+ b donc a = 5 et b= 5

R 4 L’égalitée X™ = PQ + R entraine que
A" = (PQ+ R)(4) = (PQ) (A) + R(A) = P(A)Q(4) + R(4) = R(4).

3" — —3
On a donc A™ = aA + al; = 5 A+ 5 Is:
1 -2 -2 100 1 1-3" 1-3"
3" — 1 3—3n
At=—— (0 2 1 ) +——(0 1 0) = [0 33" 45 33"—3
0 1 2 001 0 33" —3 33"+ 3

Exercice 2:

R5P=X3+X?+X=X(X?+X +1) est un polynome annulateur de A.

—1+iV/3 - —1—i\/§
2

Les racines de X*> + X + 1 sont j = et j = donc P est scindé a racines simples dans C [ X]

donc A est diagonalisable dans M,, (C) et sp(A) C {O Js ]}

On a donc A semblable & A' = diag ([ 0,...0,7,...,5,7,...,7 | avec n; éventuellement nul.
nl fois n2 fois n3 fois

R6 Orrg(A) =rg(A) =ny+ngettr(A) =tr(A)=mnyxj+ngxj= —nQ;Ln?) —I—i\/§n2;n3 € R car
A e M, (R) donc ny = ng donc rg (A) est pair et

rg (A) + 2tr (A) = 2ny — 2ny = 0.
Exercice 3:

R 7 Soit E = C([0,1],R) muni du produit scalaire usuel défini par (f|g) = fo t)dt. Si(a,b) € R?, et
pourt € [0,1], f(t) =Vt et P(t)=at+b, alors |f — P||=+/(f = P|f —P) = \/fo —at—b)zdt.

R 8 Lorsque (a,b) décrit R%, P décrit le sous-espace vectoriel F de E des fonctions polynémiale de degré inférieur
ou égal a 1 donc d = IiDm;Hf — P||=d(f, F).
€



R 9 OnaF = vect(Py,Py) avec Py : t — 1 et Py : t — t donc P est le projeté orthogonal de [ sur F si et
seulement si il existe g € E telle que

f=P+4+qgavecPeF etge Ft

Orsi f=P+g< g= f— P donc P est le projeté orthogonal de f sur F' si et seulement si { f _PPGGFFL
J(a,b) e RVt € [0,1], P(t) =at +b
R 10 Ce qui revient a (f—P|FP) =0
(f=P|P) =0
Ona(f—PlR)= [y (Vt—at—b)dt=2~b—3laet(f—P|P)= [ (VI—at—b)tdt=2—1b—1a

2 1
=0+ 3a
Le systéme { R T

admet pour solution (a,b) = (%, 3£) donc P (t) = 2t + +f.

R 11 D’aprés le cours, d(f, F) = d(f,pr (f)) ot pr est la projection orthogonale sur f

2 _ 1 4 4\2 5, 1 1 N2 2

Probléme:

Préliminaire: un calcul d’intégrale

22n+1

1
R12 I, = ', (z+1)"dz = { (z + 1)2”“} =
1

on + 1 o 2n+ 17

R 13 On suppose 0 <k <n—1. On alp4 = f_ll (z—1)"" @+ 1)

1 - ! k41 B
done Ii1 = (=1 ’“<x+1>””““} SR s 1)
n+k+1 n—k
d Iy = ——-——1 it = —— " T
On a donc Iy, — x Soit I SRRl

R 14 On a donc f_ll (22 —=1)"dx =1, et

Iy = ——1I

o= (1) (n!) I (_1)n<
" (n+1)(n+2)x--x(2n)"

Premiére partie

1
R 15 Soit P € E supposons (P | P) =0. On a / P%(x)dz et P? est positive et continue donc Vr € [—1,1],
-1

P%(t) =0. On en déduit que P admet une infinité de racines donc est nul.



R 16 Posons P =Y a;X".Soit P € E,.
i=0
- siVr € [-1,1], P(—xz) = P (z) alors

Ve e [-1,1], > a (—x)l = > a;z" donc Y. a; (1 — (_Ui) = 0.
=0 i=0 i=0

n—1
i) ) 2 siaest impair _ % ' 241 B .
Or <1 (—1) ) = { 0 siiestpair Posons QQ = 2 z agi1 X* . On a done Vo € [-1,1], Q (z) =0 donc

=0
Q) admet une infinité de racines donc Vi € [[1; L”T_lﬂ], asir1 = 0 donc Q) € F,.
]
-si P€F, alors P =Y auX* doncVz € [-1,1], P(—z) = P (z).
i=0
On a de méme (i') < (ii') avec
- (@) : Ve e[-1,1], P(—z) = —P (x).
(i1) : P € G,.

R 17 Soit P € G,,. Montrons P € (F,)". Soit Q € F,.

1 1
On a (P|Q) = /—1P () Q(x)dx = / (=P (—2))Q (—z)dx d’aprés la question précédente.

-1
Le changement de variable u = —x donne (P|Q) = /_lP (u) @ (u) du = — (P|Q) donc (P|Q) = 0.

On en déduit que G,, C (F,)". 1

F, =wvect({X?%, i €N, 0<2i <n}) et G, =vect ({X*, ieN,0<2i+1<n}).

donc dim (F,) + dim (Gy,) = n+ 1 = dim (E,) et dim (F,) + dim ((Fn)L> = n+1 done dim (G,,) = dim ((Fn)L)
done G, = (F,)*.

Soit P = zn: an X" €E,. Ona P = Z an X + Z (91 X2 et G, = (F,)" donc p(F,) = P;.

=0 i€N, 2i<n i€N, 2i+1<n

J/ J/

TV TV
PieFy, PoeG,

1
R 18 Posons Q = a + bX?. On/ (P (z) = (a+b22)dx = |P— Q|* donc

-1

“ QEUechtl(l,X2) H QH ( ( ) 3))
D’apres le cours, d(P,F3) = ||[P—p(P)| = [|[P—P|| avec P = 1+ X + X* + X® et P, = 1+ X* donc

d(P, F3) = || X + X3
Or || X + X3)” = | X|I* + |X3)° + 2 (X|X?) et (X'|X) = [

2 2 2
done o= X + X*P = 2+ 242 - = i

pititl }1 1— (_1)i+j+1
-1

it+j+1 i+j+1

Deuxiéme partie

On veut établir, pour tout n € N, I'existence et 'unicité d’une famille (P, P, ..., P,) de E, vérifiant:
VEk € [[0,n]], deg(Px) = k et Py est de coefficient dominant égal a 1,
(Cn) . .. 2 . . .
V(i,j) € [[0,n]]", i # j = (P|P;) = 0.

R 19 Initialisation: On pose Py = 1.

Hérédité: Supposons que (P, Py, ..., P,) de E, vérifie (Cy,).

On se place dans l'espace euclidien E, 1.

SO’Lt (Ro, Rl, oo ,Rn+1) de En+1 ’UéTZ'ﬁG (Cn+1).

Les familles (P, Py, ..., P,) et (Ro, Ry, ..., R,) vérifie toutes les deux (C,) donc sont égales.

La famille (Py, Py, ..., P,) est de degré échelonné donc lé'bre donc dim (vect (Py, Py, ..., P,)) =n+1 et



dim (E,41) = n +2 donc vect (Py, Py, ..., P,)" est de dimension 1.
Soit Q) un générateur de vect (Py, Py, ... ,Pn)l et ¢(Q) son coefficient dominant.
On cherche P,y1 de coefficient dominant 1 dans vect (Py, Py, . . ., Pn)L = vect (Q).

1
1l existe un et un seul polynéme de coefficient dominant 1 colinéaire o () égal a Q) X Q) (ce qui achéve la partie
c

unicité)
De plus, deg (Q) = n+ 1 car sinon (Py, Py, ..., P,, Q) serait une famille orthogonale sans vecteur nul donc libre
de n + 2 vecteurs de R,, [X] qui est de dimension n + 1.
- Par hypothése (Py, P, ..., P,) est une famille orthogonale et
- X @ est orthogonal & vect (Py, Py, ..., P,)

c(Q) "

1
donc (P(], b,.... P, W X Q) est une famille orthogonale de E, 1 vérifiant la condition (Cy11), ce qui achéve
c

la récurrence.
Remarque La famille (Py, Py, ..., P,) résulte du procédé d’orthogonalisation de Schmidt sans normalisation a

partir de la base (1, X, X2, ..., X™).

R 20 Soit n € N*

Supposons que n est pair. Dans l’espace euclidien E,,, on a P, € vect (Py, P, ... ,Pn,l)l

et vect (Py, Py, ..., P,_1) = R, 1 [X] donec G,, C R,,_1 [X] car n est pair donc P, € (Gn)L =F,
De méme, si n impair alors P, € G,,.

R 21 Les conditions (C,11) donnent

- P, est de degré n+ 1 et de coefficient dominant 1.

- XP, est de degré n + 1 et de coefficient dominant 1.

On en déduit que deg (P41 — XP,) <n donc P,.1 — XP, € E,.

Supposons n pair. On a P,y1 € G411 et P, € F,, donc P,.1 — X P, est un polynome impair donc P,.1 — XP, €
G, C E,_1 car n est pair donc P,.1 — XP, € £, .

R 22 Soit Q € E,_5 = vect (Py,...,P,_2) L P,11 donc (P,+1|Q) = 0.

(XP,|Q) = /_ZxPn () Q (z) dz = /lpn (2) (2Q (2)) dz = (Po|XQ) et XQ € Ey y = vect (Py,..., Pay) L Py

-1

donc (XP,|Q) = (P,|XQ) =0 donc (Pyy1 — XP,|Q) = (Poy1]@) — (X P,|Q) = 0 donc
P,+1 — X P, est orthogonal a E,_».

R 23 On se place dans ’espace euclidien E,_;.

Ona Py —XP, € Ey_y et Pyiy — XP, € (Ey_s)" =vect (Py, Py,...,Py,_2)" et (Py, Pi,..., P, 1) est une base
orthogonale de E,_1 donc vect (Py, Py, . .. ,Pn,z)L = vect (Pn,l)L

donc il existe A\, € R tel que P, 1 — X P, =\, Pp_1.

Troisiéme partie: Expression des polyndmes P,
Pour n € N, on pose A, = (X2 —1)" et L, = A",

R 24 On a deg(L,) = deg(A,) —n = 2n —n = n et en développant par le binome, A, = X*" + B, avec

deg (B,) < 2n. On en déduit que AP = (2n) x 2n—1) x -+ x (n4+1) X" + B avec deg (B,) < 2n donc
(2n)!

deg (B,g")> < 2n —n =n donc le coefficient dominant de L, = A'" est 2n)x (2n—1)x---x (n+1) = —
n!



R 25 Posons U= (X —1)"etV=(X+1)" OnalL,=A"=@0v)" =% (MUY (=),
i=0

Or 1 est racine de U de mutiplicité n donc U® (1) =0 si k < n et U™ =nl.
On en déduit que L, (1) = (5)U™ (1) =nl x 2"
De méme, L, (—1) = ()V™ (1) = nl x (=2)".
R 26 Soit (m,n) € N2. On suppose que n < m.
On effectue une IPP avec ' (z) = A% (2) et v (z) = ATV (x)

1
(AR = [ AT (@) AR () de = (AT (@) ATV @)] - L AT (@) AT (@) de

et —1 et 1 sont racines de A, de mutiplicité m donc
Vi<m—1, A9 (1) =AD (1) =0doncsim—1>k>0 A7 * 1) =A7* Y (=1)=0.
On a donc (Aé”*’“HAgT"“)) = — fjl Al (x) Afp=h1) (x)dx = — (A%n+k+1)|A£;n_k_1)).

R 27 (Ln|L,) = (A%")|A§,T)> _ <A7(1n+1)‘A%nf1)> — = (1) (Aganrn)’A?("glfn)) _ (_1)n+1 <A%2n+1)|A7(£n7(n+1))>.
Or deg (A,) = 2n donc AY™™ =0 donc (L,|L) = 0.
R 28 De méme, (Ln|Ly) = (AS{”|A${”) . (AS?“MA&”‘”) == (1) (Aﬁ?”)mn)
(2n) (0) 1 n 921+ (pl)?
Or A" = (2n)! donc (L,|L,) = (—=1)" (2n)! <1|An ) = (=" @) [, (@*-1)"dx = (2n)!m donc
n !
92n+1 (n!)2
1l = =
1
R 29 La famille (Lo, Ly, ..., Ly,) vérifie Vi € [[0,n]] deg(L;) = i donc si on pose @Q; = mLi, La famille
(Qo, Q1, - .., Qn) vérifie la condition (C,). La famille (Py, Py, ..., P,) vérifie la condition (C,,) et d’aprés l'unicité
vue dans la partie précédente, (Qo, @1, - .., Qn) = (Fo, P1,..., P,) donc P, = 0 )Ln.
C\Lnp

Quatriéme partie: racines des polynomes L,

On suppose que n € N*
R 30 Pe E, | =vect(FPy, Pr,...,P,1) et (P, Pr,...,P,) est orthogonale donc (P|P,) =0 donc (P|L,) = 0.

R 31 1€ B, donc (1|L,) = 0 donc [*, L, (z) dz = 0.

Supposons que L, n’admette pas de racine dans | — 1,1[. Comme L,, est une fonction continue qui ne s’annule
pas sur | — 1,1[, la fonction L, ne change pas de signe sur | — 1,1[ (T'VI).

Supposons Vx € |—1,1[ L, (x) > 0, ce qui contredit fj1 L, (z)dx =0 donc L,, admet une de racine dans | — 1,1].

R 32 Soit ay, ..., ay les racines de L,, appartenant o | — 1,1] de multiplicité impaire.
La décomposition en irréductibles de L, est de la forme
k k k k
Ly =Cx [J(X =)™ x [T (X =8)" x [T (X —7)" x [T B avec
i=1 i=1 i=1 i=1
- m; TMpair.
- B, € 1-1,1[ et n; pair
- % ¢ ]_17 1[

- P; polynéome de degré 2 qui ne s’annule pas dans R.
k

Si k <n, posons P=[] (X — ;) € E,,_1. On a donc (P|L,) = fjl (P x L) (x)dz = 0.
i=1

k k k k
Or Px L, =0CxJ[ (X =)™ < TT (X = 8,)" x [T (X —~,)" x [[ P* avec m; +1 pair donc P x L, est de
i=1 =1

=1
signe constant sur |—1,1[, ce qui contredit f_ll (P x Ly) §:B) dx =0 (idem question précédente).

i=1 A



R 33 On applique le théoréme de Rolle a A,,:

A, (1)=A,(-1) =0 donc Ja; € |-1,1], A, (o) = 0.

Soit k < n. Supposons AW admet k racines distinctes Ty < Ty < -+ <z dans lintervalle |—1, 1].

Les réels —1 et 1 sont racines de A de multiplicité n — k > 0 donc, en appliquant le th de Rolle a AY sur les
k + 1 intervalles [—1,z4], [x1, 2], ..., [xr_1, 2k, [Tk, 1], on obtient k + 1 racines distinctes de A

On en déduit que P, = AU admet n racines distinctes dans |—1,1[ donc L, admet n racines distinctes dans
]_17 1[



