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Le sujet comporte 3 pages

N.B. : Le candidat attachera la plus grande importance a la clarté, a la précision et la concision de la rédaction.
St un candidat est amené a repérer ce qui lui semble étre une erreur d’énoncé, il le signalera sur sa copie et
devra poursuivre sa composition en expliquant les raisons des initiatives qu’il a été amené a prendre.
|Les calculatrices sont interdites |

Lorsqu’un raisonnement utilise le résultat d’une question précédente, il est demandé au candidat
d’indiquer précisément le numéro de la question utilisée.

Les questions doivent étre rédigées dans ’ordre (quitte a laisser de la place pour revenir sur
une question ultérieurement).

UTILISER DE PREFERENCE UN STYLO NOIR NON EFFACABLE NE PAS UTILISER DE BLANCO.

Exercice:

IRn—l [X] - Rn—l [X}

P P(X+1) . On admet que u est linéaire.

SoitneN*etu:{

1 Déterminer le polynome caractéristique de ’endomorphime u.
Y

Q 2 En utilisant le théoréme de Cayley-Hamilton en déduire que:

n—1
J(ag,a1,...,an-1) € R" tel que VP € R,,_1 [X], P(X +n)+ > ;P (X +1i) =0.
i=0
Q 3 Montrer que Yk € [[0,n — 1]}, nF = — 3 (=1)"" (7)d*

Exercice:
Soit n € N* et (A, N) € M,, (C).
On suppose que AN = NA et qu'il existe k € N* tel que N* =0
On suppose dans les 4 questions suivantes que A inversible.
Q 4 Démontrer que AN = NA~L.
Q 5 Montrer que (A~'N)* = 0. En déduire que le spectre de (A= N) est le singleton {0}.
Q 6 En déduire que det (I, + A7IN) = 1.
Q 7 En déduire que det (A + N) = det (A).
On suppose A non inversible

Q 8 Justifier qu’il existe B € M,, (R) telle que (A + N)k = A x B.

Q 9 En déduire que det (A + N) = det (A).



Probléme:

1
On considére E = R[X] et on pose pour (P,Q) € E?, (P | Q) = / P(z)Q (z)dx.
-1
Pour n € N, on pose E,, = R, [X], F,, = vect ({X*, i € N,0<2i <n}) et
G, =vect ({X¥ i €N, 0<2i+1<n}).

Préliminaire: un calcul d’intégrale
On pose, pour k € [[0,n]], T = [*, (¢ = 1)" " (x +1)""* da.
Q 10 Calculer I,.

n—k

Q 11 Pour k € [[0,n — 1]], montrer que I}, = _m.[k+1.

) . 92n+1 (n!)2
Q 12 En déduire que [ (2* —1)" dz = (-1)" 2n+ 1)

Premiére partie

Q 13 Justifier précisement que VP € E, (P| P)=0= P =0.

1
On admet dans la suite que 1'égalité (P | Q) = / P (z) Q (x) dz définit un produit scalaire de E donc sur E,,.

-1

Q 14 Soit P € E,,. Justifier que les deux assertions (i) et (ii) sont équivalentes:
(i) : Ve € [-1,1], P(—x) = P (x).

(i1) : P € F,.

Citer sans démonstration un résultat similaire concernant G,,.

Q 15 On se place dans l’espace euclidien E,,.
Montrer que G,, = (Fn)L (on pourra faire un changement de variable et on ne se contentera pas d’une simple
inclusion).

Soit P =>"a; X" € E,. Déterminer le projeté orthogonal de P sur F,,.
i=0

Q 16 Dans cette question on suppose que n =3 et on pose P =1+ X + X% 4+ X3.

1
Déduire de la question précédente la valeur de o = ( ir)lf / (P (z) — (a + ba?))* dz.
a,b GRQ —1

Deuxiéme partie

On veut établir, pour tout n € N, I'existence et 'unicité d’une famille (P, P, ..., P,) de E, vérifiant:
(1) : Yk € [[0,n]], deg(Py) = k et Py est de coefficient dominant égal a 1,

(Cn) : 2) -V (7.7 2 . . .
(2) :V(4,5) € [[0,n]]", i # j = (B F;) = 0.

Q 17 Montrer ce résultat par récurrence sur n € N*,
On pourra supposer qu’une famille (Py, P1, ..., P,) de E, vérifie (C,) et s’intéresser a la
dimension de vect (Py, Py, ..., Pn)L dans l’espace E, 1.



La construction précédente étant valable pour tout n € N, on peut donc en déduire qu’il existe une unique
suite (P,), oy de R [X] vérifiant:
(©) : { (1) : Vn € N, deg (P,) = n et P, est de coefficient dominant égal a 1

() :V(,4) EN? i #£ = (B|P) =0 ’

Q 18 Montrer que st n est pair alors P, € F,, et si n impair alors P, € G,,.
Soit n > 2.

Q 19 Montrer que P,.1 — XP, € E,.
Déduire de la question précédente que P, — XP, € E, 1.

Q 20 Montrer que, P,y — X P, est orthogonal a E, 5.

Q 21 Déduire des questions précédentes qu’il existe A, € R tel que P,.1 = XP, + A\, P,_1.

Troisiéme partie: Expression des polyndémes P,
Pour n € N, on pose A, = (X2 —1)" et L, = A",
Q 22 Montrer que L,, est un polynéme de degré n et déterminer son coefficient dominant.

Q 23 En utilisant la formule de Leibniz, calculer L, (1) et L, (—1).
Q 24 Soit (m,n) € N%. Montrer que si k < m — 1, alors (A&Ln+k)|A§,T_k)> = — (A&”*“”|A£,§”"“‘”).
Q 25 On suppose que n < m. montrer que (L,|L,,) = 0.

Q 26 En déduire que pour tout n € N, il existe o, € R* tel que P, = a, L,,.

Q 27 Montrer que ||Ly,|” = (=1)" x (2n)! x f_ll A, (z) dz et en déduire la valeur de ||L,||”.

Quatriéme partie: racines des polynoémes L,

On suppose que n € N*

Q 28 Soitn € N* et P € E,,_y. Montrer que (P|L,) = 0.

Q 29 En utilisant la nullité de (1|L,,), justifier que L,, admet une racine oy €] — 1, 1].

Q 30 On suppose que n > 2. On note k le nombre de racines de L, appartenant & | — 1,1] et qui ont une
multiplicité impaire. Montrer que k = n. (on pourra supposer k < n et introduire un polynéme P € E, 1 bien
choisi).

Conclusion: L, est scindé dans R et & racines simples appartenant a |—1, 1].

Q 31 Retrouver le résultat précédent en utilisant le théoréme de Rolle au polynéme A,,.
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Exercice 1:

Xn—l)

?

R1Onau(X)=(X+1)=X"+ Z ())X* donc la matrice M de u dans la base canonique (1,X,...

est triangulaire supérieure a coeﬁ?czents diagonaux valant 1.
On en déduit que x, = xn = (X —1)".

R 2 Le théoréme de Calyey-Hamilton entraine que Py = (X — 1)".est un polynéme annulateur de u. Or Py =
i (L)" (M) X done Py (u) = i )" () = Orm)

15?1 en déduit que VP € F, =

Oru(P)= P (X +1) doncu®(P) =u(P(X + 1)) = P (X +2) et, par récurrence immédiate, u' (P) = P (X +1).
On a done; VP € E, (Py(u)) (P) =3 (1" (")ui (P) = 0

=0

n—1 .
soit Z( ) ( JP (X +1i) =0 soit P(X +n)+ > (1)"" (1) P (X +1i)=0.
i=0
n—1 .
R 3 Soit k € [[0,n — 1]]. En prenant P = X* on obtient (X +n)" = — 3 (1) (M (X + 0¥ et en évaluant en
i=0
n—1 .
0t = =5 (1 (1)
i=0

Exercice 2:
R4 AN = NA donc AP AN = A"'NA soit N= A" 'NA donc NA~' = A"INAA-1 = A-IN.

R5 Dot (AN = A NX A INX - x AIN=ATx A x- . x AL x Nx---x N = (A" x N¥ =0,
D’ot X*.est polynome annulateur de (A~1N) et 0 est l'unique racine de X* donc sp (A~1N) C {0}.
De plus A~*N € M,, (C) donc sp(A7IN) # 0 donc sp(AIN) = {0}

R 6 Or A7'N € M,, (C) est trigonalisable donc semblable a T triangulaire supérieure
et donc sp(A™'N) = sp(T) = {0}

Or xp = [ (X —t:;) donc Vi € [[1,n]], t;; = 0.
i=1
Soit P € GL,, (C) telle que P7* (ATIN)P =T
ona P I, + A 'N)P =P Y (I[,)P+ P YA 'N)P = I, + T qui est triangulaire de coefficients diagonaux

valant tous 1
(I, +T) et I, + A"'N sont semblables donc det (I, + T) = det (I, + A N) donc det (I, + T) = 1.

R7 A+ N=A+AA'N=A(I,+ A7IN) donc det (A+ N) = det (A) x det (I, + A7IN) = det (A).

R 8 On suppose A non inversible.
k k k

(A+ N =32 (F)ANF— = 3° () ANF— — (Z (F) A1 V- ) car N* = 0
=0 =1 =1

donc (A+ N)* = A x B avec B = Z()AZ LNk=E,

1=

R 9 On a doncdet (A+ N)=det (A x B) =det (A)det (B) =0 =det (A) car A n’est pas inversible.
4



Probléme:

Préliminaire: un calcul d’intégrale

22n+1

1 1
R10 I, = [* 12" de = 1 = .
ffl(ﬂ )" de {2n+1($Jr ) . 2n+1

R 11 On suppose 0 <k <n—1. On alp4 = f_ll (z— 1" @+ 1)

1 - ! k+1 )
done Ii1 = (=1 ’“<x+1>””““} R s 1)
n+k+1 n—k
done Ty — — " 2 oit [, = —— "
On a donc Iy, & g soit I, P ol

R 12 On a donc f_ll (22 —=1)"dx = Iy et

Ly = ——1

n—1 1
— X...X|——11,
( n + 2) ( Qn)
(n))? o 22771 (n))?

Iy=(—1)" () I,=(-1)" SRR

m+1)(n+2)x---x(2n)

Premiére partie

1
R 13 Soit P € E supposons (P | P) =0. On a / P?(z)dx et P? est positive et continue donc Vxr € [—1,1],
-1

P2 (t) =0. On en déduit que P admet une infinité de racines donc est nul.

R 14 Posons P =Y a;X".Soit P € E,,.
i=0
-siVe e [-1,1], P(—x) = P (x) alors
Ve e [-1,1], Y a(—2) =S at done S as (1 - (—1)") 2 =0
i=0 i=0 i=0
n—1

v ) 2 sid est impair _ 2 A 241 B _
Or (1 ( 1))—{ 0 sii est pair . Posons QQ =2 ;) a2i1 X* . On a done Vo € [-1,1], Q (z) =0 donc

@ admet une infinité de racines donc Vi € [[1; L”T’lﬂ], Zang =0 donc Q € F,.

n

-si P€F, alors P= Y ayX* doncVx € [-1,1], P(—z) = P (x).
i=0

On a de méme (i') < (i1i') avec

- (") :Vx e [-1,1], P(—z) = =P (2).

(i) : P € G,

R 15 Soit P € G,,. Montrons P € (F,)". Soit Q € F,.
1

On a (P|Q) = /11P () Q(x)dx = / (=P (—2))Q (—z)dx d’aprés la question précédente.



Le changement de variable u = —x donne (P|Q) = / 1P (u) @ (u) du = — (P|Q) donc (P|Q) = 0.

On en déduit que G, C (F,)". 1

F, =wvect ({X?, i e N, 0<2i <n}) et G, =vect ({X* ieN,0<2i+1<n}).

donc dim (F,) + dim (G,,) = n+1 = dim (E,) et dim (F,) + dim ((Fn)i) — n+1 donc dim (G,,) = dim ((Fnﬁ).
donc G, = (F,)*.

Soit P = Zn%anX" €k, OnaP = Z an X% + Z A2 1 X2 et G, = (Fn)L donc p (F,) = P.

€N, 2i<n 1€N, 2i+1<n
NS NS

J J

N~ N~
Plan P2EG7L

1
R 16 Posons Q = a + bX?. On/ (P (2) — (a+b22))dz = |P — Q|* donc

-1

“ Qev61£(1,x2) H QH ( ( ) 3))
D’apres le cours, d(P,F3) = ||[P—p(P)|| = |P—P| avec P = 1+ X + X?+ X3 et P, = 1 + X? donc

d(P,F3) = || X + X3|.

. . xi+j+1 1 1—(=1 i+j+1
Or 1 + X = IXIF + 10+ 201 e (i =[] Lo
-1

i+j+1 i+j+1
g2 2, 2 2 iy
donc a = || X + X°|| :§+?+2XS:1_05'
Deuxiéme partie
On veut établir, pour tout n € N, I'existence et 'unicité d’une famille (P, P, ..., P,) de E, vérifiant:

() { VEk € [[0,n]], deg(Py) = k et Py est de coefficient dominant égal a 1,
" V(7)€ 0], i # ) = (BiIP;) = 0.

R 17 Initialisation: On pose Py = 1.

Hérédité: Supposons que (P, Py, ..., P,) de E, vérifie (Cy,).

On se place dans l'espace euclidien E, .

Soit (Ro, Ry, ..., Rn11) de E,q vérifie (Cpi1).

Les familles (FPy, Py, ..., P,) et (Ro, Ry, ..., Ry,) vérifie toutes les deux (C,) donc sont égales.

La famille (Py, Py, ..., P,) est de degré échelonné donc libre donc dim (vect (Py, Py,...,P,)) =n+1 et
dim (E,41) = n +2 donc vect (Py, Py, ..., P,)" est de dimension 1.

Soit Q) un générateur de vect (Py, Py, .. ., Pn)l et ¢ (Q) son coefficient dominant.

On cherche P,y1 de coefficient dominant 1 dans vect (Py, P, . . ., Pn)l = vect (Q).

1
1l existe un et un seul polynéme de coefficient dominant 1 colinéaire a () égal a Q) X @ (ce qui achéve la partie
c

unicité)
De plus, deg (Q) = n+ 1 car sinon (Py, Py,. .., P,, Q) serait une famille orthogonale sans vecteur nul donc libre
de n + 2 vecteurs de R,, [X] qui est de dimension n + 1.
- Par hypothése (Py, P, ..., P,) est une famille orthogonale et
- X @ est orthogonal a vect (Py, Py, ..., P,

@ ( )

1
donc (Pg, P,... P, W X Q) est une famille orthogonale de E, 1 vérifiant la condition (Cy11), ce qui achéve
c

la récurrence.
Remarque La famille (Py, Py, ..., P,) résulte du procédé d’orthogonalisation de Schmidt sans normalisation a

partir de la base (1, X, X2, ..., X"™).



R 18 Soit n € N*

Supposons que n est pair. Dans 'espace euclidien E,,, on a P, € vect (P, Py, . .. ,Pn_l)l

et vect (Py, Py, ..., P,_1) = R,_1 [X] donc G,, C R,,_1 [X] car n est pair donc P, € (Gn)l =F,
De méme, si n impair alors P, € G,,.

R 19 Les conditions (C,11) donnent

- P, est de degré n+ 1 et de coefficient dominant 1.

- XP, est de degré n + 1 et de coefficient dominant 1.

On en déduit que deg (P41 — XP,) <n donc P,y1 — XP, € E,.

Supposons n pair. On a P,y € G411 et P, € F,, donc P,.1 — X P, est un polynome impair donc P,.1 — XP, €
G, C E,_1 car n est pair donc P,,1 — XP, € E,_1.

R 20 Soit Q € E,_5 =vect (Fy,..., P, 2) L P,y donc (P,11|Q) = 0.
1 1

(XP,|Q) = / zP, (x)Q (z)dx = / P, (z) (zQ (z))dz = (P,|XQ) et XQ € E,,—y = vect (FPo,...,P,-1) L P,
—1 -1

donc (XP,|Q) = (P,|XQ) =0 donc (Pyy1 — XP,|Q) = (Poy1]|@) — (X P,|Q) = 0 donc
P,y — XP, est orthogonal a E, 5.

R 21 On se place dans ’espace euclidien F,_.

OnaP,1—XP,€FE, 1etP,.1—XP, € (En_Q)J_ = vect (Py, Py, . . ., Pn_z)l et (Po, Py, ..., P,_1) est une base
orthogonale de E,_1 donc vect (Py, Py, . .. ,Pn_g)L = vect (Pn_l)L

donc il existe A\, € R tel que P, 1 — X P, =\, Pp_1.

Troisiéme partie: Expression des polyndémes P,
Pour n € N, on pose 4, = (X2 —1)" et L, = A,

R 22 On a deg(L,) = deg(A,) —n = 2n —n = n et en développant par le binome, A, = X*" + B, avec
deg (B,) < 2n. On en déduit que A = (2n) x 2n—1) x -+ x (n4+1) X" + B avec deg (B,) < 2n donc
(2n)!

deg <B,(Z")> < 2n —n =n donc le coefficient dominant de L, = A\ est (2n) x (2n —1) x - X (n+1) = —~.
n!

R 23 Posons U= (X —1)" et V=(X+1)". OnaL,=AY =OV)" =Y (HUPYr-H,

Or 1 est racine de U de mutiplicité n donc U (1) =0 sik <n et UM = nl.
On en déduit que L, (1) = (5)U™ (1) =nl x 2"
De méme, L, (—1) = (7)V™ (1) = n! x (=2)".

0

R 24 Soit (m,n) € N%2. On suppose que n < m.
On effectue une IPP avec v (z) = Al () etv(x) = AR (x)

- n m— n m—k— 1 n m—k—
(AT91AG) = 1, AT (@) A () de = [ATH) (@) AT @)] - AT (@) AT (0) do

et —1 et 1 sont racines de A, de mutiplicité m donc
vi<m—1, AY (1) = A (=1)=0doncsim—1>k>0 AGr=h=1) (1) = Alr=k=h) (—=1)=0.
On a donc (A,(lnM)\A,(,T*k)) = — fjl AT () AT () da = — (A%”%H)\Ag,’f*kfl))

Or deg (A,) = 2n donc AP = 0 donc (Ln|L,,) = 0.



R 26 De méme, (Ln|Ly) = ( AL ) - (A,&”“’\Ag"*”) — = (1) (Aﬁ?"HAn)

92n+1 (n!)2

(2n): ] — (_1\" | (0) — (_1\" )t 2 1\n _ I
Or AZY = (2n)! donc (Ly|L,) = (—1)" (2n)! <1|An ) (1" @) [ (@ = 1) do = (20)! 5 done
92n+1 (n!)2
1Lal* = TS
1
R 27 La famille (Lo, L, ..., L,) vérifie Vi € [[0,n]] deg(L;) = i donc si on pose @Q; = mLi, La famille
(Qo, Q1, - .., Qn) vérifie la condition (C,). La famille (Py, Py, ..., P,) vérifie la condition (C,,) et d’aprés l'unicité
vue dans la partie précédente, (Qo, @1, - .., Qn) = (Fo, P1,..., P,) donc P, = 0 )Ln.
& n

Quatriéme partie: racines des polynomes L,
On suppose que n € N*
R 28 P e E, | =vect(FPy, Pr,...,P,1) et (P, P1,...,P,) est orthogonale donc (P|P,) =0 donc (P|L,) =

R 29 1€ E, ; donc (1|L,) =0 doncf L, (z)dx = 0.

Supposons que L, n’admette pas de racine dans | = 1,1[. Comme L,, est une fonction continue qui ne s’annule
pas sur |—1,1], la fonction L, me change pas de signe sur|—1,1[ (TVI).

Supposons Vx € |—1,1] L, (x) > 0, ce qui contredit f_ll L, (z)dx = 0 donc L, admet une de racine dans | — 1,1].

R 30 Soit ay,...,qy les racines de L,, appartenant ¢ | — 1,1] de multiplicité impaire.
La décomposition en irréductibles de L, est de la forme
k k k k
Ly =Cx [J(X =)™ x [T (X =8)" x [T (X =7)" x [T P avec
i=1 i=1 i=1 i=1
- My TMpair.
- B, € 1-1,1] et n; pair

- P; polynéome de degré 2 qui ne s’annule pas dans R.

k
Si k <mn, posons P=[](X —«a;) € E,.1. On a donc (P|L,) = f_l (P x L) (x)dz = 0.
i=1
k k
Or Px L, =0Cx [ (X —a;)™*" x H(X L) % H(X vl x Hqu avec m; + 1 pair donc P x L, est de
)

=1

signe constant sur |—1,1[, ce qui contredzt f (x)dx =0 ( zdem question précédente).

R 31 On applique le théoréme de Rolle a A,,:

A, (1)=A,(-1) =0 donc Ja; € |—-1,1], A, (o) = 0.

Soit k < n. Supposons AW admet k racines distinctes 1 < g9 < -+ < xy dans lintervalle |—1,1].

Les réels —1 et 1 sont racines de A de multiplicité n — k > 0 donc, en appliquant le th de Rolle a A®) sur les

k+ 1 intervalles [—1,z4], [x1, 22|, ..., [Tr—1, %k, [Tk, 1], on obtient k + 1 racines distinctes de Al
On en déduit que P, = AU admet n racines distinctes dans |—1,1[ donc L, admet n racines dzstmctes dans
]_17 1[



