
DS3 bis mercredi 20/11/25 (durée 3h)
Le sujet comporte 3 pages

N.B. : Le candidat attachera la plus grande importance à la clarté, à la précision et la concision de la rédaction.
Si un candidat est amené à repérer ce qui lui semble être une erreur d�énoncé, il le signalera sur sa copie et

devra poursuivre sa composition en expliquant les raisons des initiatives qu�il a été amené à prendre.
Les calculatrices sont interdites

Lorsqu�un raisonnement utilise le résultat d�une question précédente, il est demandé au candidat
d�indiquer précisément le numéro de la question utilisée.
Les questions doivent être rédigées dans l�ordre (quitte à laisser de la place pour revenir sur

une question ultérieurement).
UTILISER DE PREFERENCE UN STYLO NOIR NON EFFACABLE NE PAS UTILISER DE BLANCO.

Exercice:

Soit n 2 N� et u :
�
Rn�1 [X]* Rn�1 [X]
P 7! P (X + 1)

. On admet que u est linéaire.

Q 1 Déterminer le polynôme caractéristique de l�endomorphime u.

Q 2 En utilisant le théorème de Cayley-Hamilton en déduire que:

9 (a0; a1; : : : ; an�1) 2 Rn tel que 8P 2 Rn�1 [X], P (X + n) +
n�1P
i=0

�iP (X + i) = 0.

Q 3 Montrer que 8k 2 [[0; n� 1]] ; nk = �
n�1P
i=0

(�1)n�i
�
n
i

�
ik

Exercice:

Soit n 2 N� et (A;N) 2Mn (C).
On suppose que AN = NA et qu�il existe k 2 N� tel que Nk = 0

On suppose dans les 4 questions suivantes que A inversible.

Q 4 Démontrer que A�1N = NA�1.

Q 5 Montrer que (A�1N)k = 0. En déduire que le spectre de (A�1N) est le singleton f0g.

Q 6 En déduire que det (In + A�1N) = 1.

Q 7 En déduire que det (A+N) = det (A).

On suppose A non inversible

Q 8 Justi�er qu�il existe B 2Mn (R) telle que (A+N)k = A�B.

Q 9 En déduire que det (A+N) = det (A).
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Problème:

On considère E = R[X] et on pose pour (P;Q) 2 E2, (P j Q) =
Z 1

�1
P (x)Q (x) dx.

Pour n 2 N, on pose En = Rn[X], Fn = vect (fX2i; i 2 N, 0 � 2i � ng) et
Gn = vect (fX2i+1; i 2 N, 0 � 2i+ 1 � ng).

Préliminaire: un calcul d�intégrale

On pose, pour k 2 [[0; n]], Ik =
R 1
�1 (x� 1)

n�k (x+ 1)n+k dx.

Q 10 Calculer In.

Q 11 Pour k 2 [[0; n� 1]], montrer que Ik = �
n� k

n+ k + 1
Ik+1.

Q 12 En déduire que
R 1
�1 (x

2 � 1)n dx = (�1)n 2
2n+1 (n!)2

(2n+ 1)!
.

Première partie

Q 13 Justi�er précisement que 8P 2 E, (P j P ) = 0) P = 0.

On admet dans la suite que l�égalité (P j Q) =
Z 1

�1
P (x)Q (x) dx dé�nit un produit scalaire de E donc sur En.

Q 14 Soit P 2 En. Justi�er que les deux assertions (i) et (ii) sont équivalentes:
(i) : 8x 2 [�1; 1], P (�x) = P (x).
(ii) : P 2 Fn.
Citer sans démonstration un résultat similaire concernant Gn.

Q 15 On se place dans l�espace euclidien En.
Montrer que Gn = (Fn)

? (on pourra faire un changement de variable et on ne se contentera pas d�une simple
inclusion).

Soit P =
nP
i=0

aiX
i 2 En. Déterminer le projeté orthogonal de P sur Fn.

Q 16 Dans cette question on suppose que n = 3 et on pose P = 1 +X +X2 +X3.

Déduire de la question précédente la valeur de � = inf
(a;b)2R2

Z 1

�1
(P (x)� (a+ bx2))2 dx.

Deuxième partie

On veut établir, pour tout n 2 N, l�existence et l�unicité d�une famille (P0; P1; : : : ; Pn) de En véri�ant:

(Cn) :

�
(1) : 8k 2 [[0; n]] , deg (Pk) = k et Pk est de coe¢ cient dominant égal à 1,
(2) : 8 (i; j) 2 [[0; n]]2 , i 6= j ) (PijPj) = 0.

Q 17 Montrer ce résultat par récurrence sur n 2 N�.
On pourra supposer qu�une famille (P0; P1; : : : ; Pn) de En véri�e (Cn) et s�intéresser à la
dimension de vect (P0; P1; : : : ; Pn)

? dans l�espace En+1.
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La construction précédente étant valable pour tout n 2 N, on peut donc en déduire qu�il existe une unique
suite (Pn)n2N de R [X] véri�ant:

(C) :

�
(1) : 8n 2 N, deg (Pn) = n et Pn est de coe¢ cient dominant égal à 1
(2) : 8 (i; j) 2 N2, i 6= j ) (PijPj) = 0

.

Q 18 Montrer que si n est pair alors Pn 2 Fn et si n impair alors Pn 2 Gn.

Soit n � 2.

Q 19 Montrer que Pn+1 �XPn 2 En.
Déduire de la question précédente que Pn+1 �XPn 2 En�1.

Q 20 Montrer que, Pn+1 �XPn est orthogonal à En�2.

Q 21 Déduire des questions précédentes qu�il existe �n 2 R tel que Pn+1 = XPn + �nPn�1.

Troisième partie: Expression des polynômes Pn
Pour n 2 N, on pose An = (X2 � 1)n et Ln = A(n)n .

Q 22 Montrer que Ln est un polynôme de degré n et déterminer son coe¢ cient dominant.

Q 23 En utilisant la formule de Leibniz, calculer Ln (1) et Ln (�1).

Q 24 Soit (m;n) 2 N2. Montrer que si k � m� 1, alors
�
A
(n+k)
n jA(m�k)m

�
= �

�
A
(n+k+1)
n jA(m�k�1)m

�
.

Q 25 On suppose que n < m. montrer que (LnjLm) = 0.

Q 26 En déduire que pour tout n 2 N, il existe �n 2 R� tel que Pn = �nLn.

Q 27 Montrer que kLnk2 = (�1)n � (2n)!�
R 1
�1An (x) dx et en déduire la valeur de kLnk

2.

Quatrième partie: racines des polynômes Ln
On suppose que n 2 N�

Q 28 Soit n 2 N� et P 2 En�1. Montrer que (P jLn) = 0.

Q 29 En utilisant la nullité de (1jLn), justi�er que Ln admet une racine �1 2]� 1; 1[.

Q 30 On suppose que n � 2. On note k le nombre de racines de Ln appartenant à ] � 1; 1[ et qui ont une
multiplicité impaire. Montrer que k = n. (on pourra supposer k < n et introduire un polynôme P 2 En�1 bien
choisi).

Conclusion: Ln est scindé dans R et à racines simples appartenant à ]�1; 1[.

Q 31 Retrouver le résultat précédent en utilisant le théorème de Rolle au polynôme An.
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PSI DS3 bis Corrigé

Exercice 1:

R 1 On a u (X i) = (X + 1)i = X i +
i�1P
k=0

�
i
k

�
Xk donc la matrice M de u dans la base canonique (1; X; : : : ; Xn�1)

est triangulaire supérieure à coe¢ cients diagonaux valant 1.
On en déduit que �u = �M = (X � 1)n.

R 2 Le théorème de Calyey-Hamilton entraîne que P0 = (X � 1)n.est un polynôme annulateur de u. Or P0 =
nP
i=0

(1)n�i
�
n
i

�
X i donc P0 (u) =

nP
i=0

(1)n�i
�
n
i

�
ui = 0L(E)

On en déduit que 8P 2 E,
Or u (P ) = P (X + 1) donc u2 (P ) = u (P (X + 1)) = P (X + 2) et, par récurrence immédiate, ui (P ) = P (X + i).

On a donc; 8P 2 E, (P0 (u)) (P ) =
nP
i=0

(1)n�i
�
n
i

�
ui (P ) = 0E

soit
nP
i=0

(1)n�i
�
n
i

�
P (X + i) = 0 soit P (X + n) +

n�1P
i=0

(1)n�i
�
n
i

�
P (X + i) = 0.

R 3 Soit k 2 [[0; n� 1]]. En prenant P = Xk on obtient (X + n)k = �
n�1P
i=0

(1)n�i
�
n
i

�
(X + i)k et en évaluant en

0, nk = �
n�1P
i=0

(�1)n�i
�
n
i

�
ik.

Exercice 2:

R 4 AN = NA donc A�1AN = A�1NA soit N = A�1NA donc NA�1 = A�1NAA�1 = A�1N .

R 5 D�où (A�1N)k = A�1N �A�1N � � � � �A�1N = A�1�A�1� � � � �A�1�N � � � � �N = (A�1)
k �Nk = 0.

D�où Xk.est polynôme annulateur de (A�1N) et 0 est l�unique racine de Xk donc sp (A�1N) � f0g.
De plus A�1N 2Mn (C) donc sp (A�1N) 6= ; donc sp (A�1N) = f0g

R 6 Or A�1N 2Mn (C) est trigonalisable donc semblable à T triangulaire supérieure
et donc sp (A�1N) = sp (T ) = f0g
Or �T =

nQ
i=1

(X � ti;i) donc 8i 2 [[1; n]], ti;i = 0.

Soit P 2 GLn (C) telle que P�1 (A�1N)P = T
on a P�1 (In + A�1N)P = P�1 (In)P + P

�1 (A�1N)P = In + T qui est triangulaire de coe¢ cients diagonaux
valant tous 1
(In + T ) et In + A�1N sont semblables donc det (In + T ) = det (In + A�1N) donc det (In + T ) = 1.

R 7 A+N = A+ AA�1N = A (In + A
�1N) donc det (A+N) = det (A)� det (In + A�1N) = det (A).

R 8 On suppose A non inversible.

(A+N)k =
kP
i=0

�
k
i

�
AiNk�i =

kP
i=1

�
k
i

�
AiNk�i = A�

�
kP
i=1

�
k
i

�
Ai�1Nk�i

�
car Nk = 0

donc (A+N)k = A�B avec B =
kP
i=1

�
k
i

�
Ai�1Nk�i.

R 9 On a donc det (A+N) = det (A�B) = det (A) det (B) = 0 = det (A) car A n�est pas inversible.
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Problème:

Préliminaire: un calcul d�intégrale

R 10 In =
R 1
�1 (x+ 1)

2n dx =

�
1

2n+ 1
(x+ 1)2n+1

�1
�1
=
22n+1

2n+ 1
.

R 11 On suppose 0 � k � n� 1. On aIk+1 =
R 1
�1 (x� 1)

n�k�1 (x+ 1)n+k+1 dx

donc Ik+1 =
�

1

n� k (x� 1)
n�k (x+ 1)n+k+1

�1
�1
�
R 1
�1
n+ k + 1

n� k (x� 1)n�k (x+ 1)n+k dx.

On a donc Ik+1 = �
n+ k + 1

n� k Ik soit Ik = �
n� k

n+ k + 1
Ik+1

R 12 On a donc
R 1
�1 (x

2 � 1)n dx = I0 et

I0 = � n

n+ 1
I1

=

�
� n

n+ 1

��
�n� 1
n+ 2

�
I2

...

=

�
� n

n+ 1

��
�n� 1
n+ 2

�
� : : :�

�
� 1

2n

�
In

I0 = (�1)n
(n!)

(n+ 1) (n+ 2)� � � � � (2n)In = (�1)
n (n!)

2

(2n)!
In = (�1)n

22n+1 (n!)2

(2n+ 1)!
.

Première partie

R 13 Soit P 2 E supposons (P j P ) = 0. On a
Z 1

�1
P 2 (x) dx et P 2 est positive et continue donc 8x 2 [�1; 1],

P 2 (t) = 0. On en déduit que P admet une in�nité de racines donc est nul.

R 14 Posons P =
nP
i=0

aiX
i.Soit P 2 En.

- si 8x 2 [�1; 1], P (�x) = P (x) alors
8x 2 [�1; 1] ;

nP
i=0

ai (�x)i =
nP
i=0

aix
i donc

nP
i=0

ai

�
1� (�1)i

�
xi = 0.

Or
�
1� (�1)i

�
=

�
2 si i est impair
0 si i est pair

. Posons Q = 2
bn�12 cP
i=0

a2i+1X
2i+1. On a donc 8x 2 [�1; 1], Q (x) = 0 donc

Q admet une in�nité de racines donc 8i 2
��
1;
�
n�1
2

���
, a2i+1 = 0 donc Q 2 Fn.

- si P 2 Fn alors P =
bn2 cP
i=0

a2iX
2i donc 8x 2 [�1; 1], P (�x) = P (x).

On a de même (i0), (ii0) avec
- (i0) : 8x 2 [�1; 1], P (�x) = �P (x).
(ii) : P 2 Gn.

R 15 Soit P 2 Gn. Montrons P 2 (Fn)?. Soit Q 2 Fn.

On a (P jQ) =
Z 1

�1
P (x)Q (x) dx =

Z 1

�1
(�P (�x))Q (�x) dx d�après la question précédente.
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Le changement de variable u = �x donne (P jQ) =
Z �1

1

P (u)Q (u) du = � (P jQ) donc (P jQ) = 0.

On en déduit que Gn � (Fn)?.
Fn = vect (fX2i; i 2 N, 0 � 2i � ng) et Gn = vect (fX2i+1; i 2 N, 0 � 2i+ 1 � ng).
donc dim (Fn) + dim (Gn) = n+1 = dim (En) et dim (Fn) + dim

�
(Fn)

?
�
= n+1 donc dim (Gn) = dim

�
(Fn)

?
�
.

donc Gn = (Fn)
?.

Soit P =
nP
i=0

anX
n 2 En. On a P =

X
i2N, 2i�n

a2iX
2i

| {z }
P12Fn

+
X

i2N, 2i+1�n

a2i+1X
2i+1

| {z }
P22Gn

et Gn = (Fn)
? donc p (Fn) = P1.

R 16 Posons Q = a+ bX2. On
Z 1

�1
(P (x)� (a+ bx2))2 dx = kP �Qk2 donc

� = inf
Q2vect(1;X2)

kP �Qk2 = (d (P; F3))2.

D�après le cours, d (P; F3) = kP � p (P )k = kP � P1k avec P = 1 + X + X2 + X3 et P1 = 1 + X2 donc
d (P; F3) = kX +X3k.

Or kX +X3k2 = kXk2 + kX3k2 + 2 (XjX3) et (X ijXj) =

�
xi+j+1

i+ j + 1

�1
�1
=
1� (�1)i+j+1

i+ j + 1

donc � = kX +X3k2 = 2

3
+
2

7
+ 2� 2

5
= 184

105
.

Deuxième partie

On veut établir, pour tout n 2 N, l�existence et l�unicité d�une famille (P0; P1; : : : ; Pn) de En véri�ant:

(Cn) :

�
8k 2 [[0; n]] , deg (Pk) = k et Pk est de coe¢ cient dominant égal à 1,

8 (i; j) 2 [[0; n]]2 , i 6= j ) (PijPj) = 0.

R 17 Initialisation: On pose P0 = 1.
Hérédité: Supposons que (P0; P1; : : : ; Pn) de En véri�e (Cn).
On se place dans l�espace euclidien En+1.
Soit (R0; R1; : : : ; Rn+1) de En+1 véri�e (Cn+1).
Les familles (P0; P1; : : : ; Pn) et (R0; R1; : : : ; Rn) véri�e toutes les deux (Cn) donc sont égales.
La famille (P0; P1; : : : ; Pn) est de degré échelonné donc libre donc dim (vect (P0; P1; : : : ; Pn)) = n+ 1 et
dim (En+1) = n+ 2 donc vect (P0; P1; : : : ; Pn)

? est de dimension 1.
Soit Q un générateur de vect (P0; P1; : : : ; Pn)

? et c (Q) son coe¢ cient dominant.
On cherche Pn+1 de coe¢ cient dominant 1 dans vect (P0; P1; : : : ; Pn)

? = vect (Q).

Il existe un et un seul polynôme de coe¢ cient dominant 1 colinéaire à Q égal à
1

c (Q)
�Q (ce qui achève la partie

unicité)
De plus, deg (Q) = n + 1 car sinon (P0; P1; : : : ; Pn; Q) serait une famille orthogonale sans vecteur nul donc libre
de n+ 2 vecteurs de Rn [X] qui est de dimension n+ 1.
- Par hypothèse (P0; P1; : : : ; Pn) est une famille orthogonale et

-
1

c (Q)
�Q est orthogonal à vect (P0; P1; : : : ; Pn)

donc
�
P0; P1; : : : ; Pn;

1

c (Q)
�Q

�
est une famille orthogonale de En+1 véri�ant la condition (Cn+1), ce qui achève

la récurrence.

Remarque La famille (P0; P1; : : : ; Pn) résulte du procédé d�orthogonalisation de Schmidt sans normalisation à
partir de la base (1; X;X2; : : : ; Xn).
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R 18 Soit n 2 N�
Supposons que n est pair. Dans l�espace euclidien En, on a Pn 2 vect (P0; P1; : : : ; Pn�1)?
et vect (P0; P1; : : : ; Pn�1) = Rn�1 [X] donc Gn � Rn�1 [X] car n est pair donc Pn 2 (Gn)? = Fn
De même, si n impair alors Pn 2 Gn.

R 19 Les conditions (Cn+1) donnent
- Pn+1 est de degré n+ 1 et de coe¢ cient dominant 1.
- XPn est de degré n+ 1 et de coe¢ cient dominant 1.
On en déduit que deg (Pn+1 �XPn) � n donc Pn+1 �XPn 2 En.
Supposons n pair. On a Pn+1 2 Gn+1 et Pn 2 Fn donc Pn+1 �XPn est un polynôme impair donc Pn+1 �XPn 2
Gn � En�1 car n est pair donc Pn+1 �XPn 2 En�1.

R 20 Soit Q 2 En�2 = vect (P0; : : : ; Pn�2) ? Pn+1 donc (Pn+1jQ) = 0.

(XPnjQ) =
Z 1

�1
xPn (x)Q (x) dx =

Z 1

�1
Pn (x) (xQ (x)) dx = (PnjXQ) et XQ 2 En�1 = vect (P0; : : : ; Pn�1) ? Pn

donc (XPnjQ) = (PnjXQ) = 0 donc (Pn+1 �XPnjQ) = (Pn+1jQ)� (XPnjQ) = 0 donc
Pn+1 �XPn est orthogonal à En�2.

R 21 On se place dans l�espace euclidien En�1.
On a Pn+1 �XPn 2 En�1 et Pn+1 �XPn 2 (En�2)? = vect (P0; P1; : : : ; Pn�2)? et (P0; P1; : : : ; Pn�1) est une base
orthogonale de En�1 donc vect (P0; P1; : : : ; Pn�2)

? = vect (Pn�1)
?

donc il existe �n 2 R tel que Pn+1 �XPn = �nPn�1.

Troisième partie: Expression des polynômes Pn
Pour n 2 N, on pose An = (X2 � 1)n et Ln = A(n)n .

R 22 On a deg (Ln) = deg (An) � n = 2n � n = n et en développant par le binôme, An = X2n + Bn avec
deg (Bn) < 2n. On en déduit que A(n)n = (2n) � (2n� 1) � � � � � (n+ 1)Xn + B

(n)
n avec deg (Bn) < 2n donc

deg
�
B
(n)
n

�
< 2n� n = n donc le coe¢ cient dominant de Ln = A(n)n est (2n)� (2n� 1)� � � � � (n+ 1) = (2n)!

n!
.

R 23 Posons U = (X � 1)n et V = (X + 1)n. On a Ln = A(n)n = (UV )(n) =
nP
i=0

�
n
i

�
U (k)V (n�k):

Or 1 est racine de U de mutiplicité n donc U (k) (1) = 0 si k < n et U (n) = n!.
On en déduit que Ln (1) =

�
n
0

�
U (n) (1) = n!� 2n

De même, Ln (�1) =
�
n
0

�
V (n) (1) = n!� (�2)n.

R 24 Soit (m;n) 2 N2. On suppose que n < m.
On e¤ectue une IPP avec u0 (x) = A(m�k)m (x) et v (x) = A(n+k)n (x)�
A
(n+k)
n jA(m�k)m

�
=
R 1
�1A

(n+k)
n (x)A

(m�k)
m (x) dx =

h
A
(n+k)
n (x)A

(m�k�1)
m (x)

i1
�1
�
R 1
�1A

(n+k+1)
n (x)A

(m�k�1)
m (x) dx

et �1 et 1 sont racines de Am de mutiplicité m donc
8i � m� 1, A(i)m (1) = A(i)m (�1) = 0 donc si m� 1 � k � 0 A(m�k�1)m (1) = A

(m�k�1)
m (�1) = 0.

On a donc
�
A
(n+k)
n jA(m�k)m

�
= �

R 1
�1A

(n+k+1)
n (x)A

(m�k�1)
m (x) dx = �

�
A
(n+k+1)
n jA(m�k�1)m

�
.

R 25 (LnjLm) =
�
A
(n)
n jA(m)m

�
= �

�
A
(n+1)
n jA(m�1)m

�
= � � � = (�1)n

�
A
(n+n)
n jA(m�n)m

�
= (�1)n+1

�
A
(2n+1)
n jA(m�(n+1))m

�
.

Or deg (An) = 2n donc A
(2n+1)
n = 0 donc (LnjLm) = 0.

7



R 26 De même, (LnjLn) =
�
A
(n)
n jA(n)n

�
= �

�
A
(n+1)
n jA(n�1)n

�
= � � � = (�1)n

�
A
(2n)
n jAn

�
Or A(2n)n = (2n)! donc (LnjLn) = (�1)n (2n)!

�
1jA(0)n

�
= (�1)n (2n)!

R 1
�1 (x

2 � 1)n dx = (2n)!
22n+1 (n!)2

(2n+ 1)!
donc

kLnk2 =
22n+1 (n!)2

2n+ 1
.

R 27 La famille (L0; L1; : : : ; Ln) véri�e 8i 2 [[0; n]] deg (Li) = i donc si on pose Qi =
1

c (Li)
Li, La famille

(Q0; Q1; : : : ; Qn) véri�e la condition (Cn). La famille (P0; P1; : : : ; Pn) véri�e la condition (Cn) et d�après l�unicité

vue dans la partie précédente, (Q0; Q1; : : : ; Qn) = (P0; P1; : : : ; Pn) donc Pn =
1

c (Ln)
Ln.

Quatrième partie: racines des polynômes Ln
On suppose que n 2 N�

R 28 P 2 En�1 = vect (P0; P1; : : : ; Pn�1) et (P0; P1; : : : ; Pn) est orthogonale donc (P jPn) = 0 donc (P jLn) = 0.

R 29 1 2 En�1 donc (1jLn) = 0 donc
R 1
�1 Ln (x) dx = 0.

Supposons que Ln n�admette pas de racine dans ] � 1; 1[. Comme Ln est une fonction continue qui ne s�annule
pas sur ]�1; 1[, la fonction Ln ne change pas de signe sur ]�1; 1[ (TVI).
Supposons 8x 2 ]�1; 1[ Ln (x) > 0, ce qui contredit

R 1
�1 Ln (x) dx = 0 donc Ln admet une de racine dans ]� 1; 1[.

R 30 Soit �1; : : : ; �k les racines de Ln appartenant à ]� 1; 1[ de multiplicité impaire.
La décomposition en irréductibles de Ln est de la forme

Ln = C �
kQ
i=1

(X � �i)mi �
kQ
i=1

(X � �i)
ni �

kQ
i=1

(X � 
i)
pi �

kQ
i=1

P qii avec

- mi impair.
- �i 2 ]�1; 1[ et ni pair
- 
i 62 ]�1; 1[
- Pi polynôme de degré 2 qui ne s�annule pas dans R.

Si k < n, posons P =
kQ
i=1

(X � �i) 2 En�1. On a donc (P jLn) =
R 1
�1 (P � Ln) (x) dx = 0.

Or P �Ln = C �
kQ
i=1

(X � �i)mi+1�
kQ
i=1

(X � �i)
ni �

kQ
i=1

(X � 
i)
pi �

kQ
i=1

P qii avec mi + 1 pair donc P �Ln est de

signe constant sur ]�1; 1[, ce qui contredit
R 1
�1 (P � Ln) (x) dx = 0 (idem question précédente).

R 31 On applique le théorème de Rolle à An:
An (1) = An (�1) = 0 donc 9�1 2 ]�1; 1[ ; A0n (�1) = 0.
Soit k < n. Supposons A(k)n admet k racines distinctes x1 < x2 < � � � < xk dans l�intervalle ]�1; 1[.
Les réels �1 et 1 sont racines de A(k)n de multiplicité n� k > 0 donc, en appliquant le th de Rolle à A(k)n sur les
k + 1 intervalles [�1; x1] ; [x1; x2] ; : : : ; [xk�1; xk] ; [xk; 1], on obtient k + 1 racines distinctes de A(k+1)n .
On en déduit que Pn = A

(n)
n admet n racines distinctes dans ]�1; 1[ donc Ln admet n racines distinctes dans

]�1; 1[
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