
Informatique et intelligence artificielleSéq4

Dossier travaux pratiques

Résolution de
problème

numérique

1.Relation entrée sortie
60 minutes

Préambule : la majorité des exemples sont tirés du poly de J-L Biondi.

2

Exemple - Camion élévateur
L’actionneur d’inclinaison du mât 2 est le
vérin hydraulique (4+5). La longueur  de
celui-ci conditionne donc l’inclinaison  du
mât.

On cherche une lois entrée-sortie en
position :  et  en fonction de
l’allongement du vérin . L’expression
directe de a et b en fonction de lambda n’est
pas « immédiate ».

Question 1 : Déterminez les expressions de  et  en fonction de 

Question 2 : Déterminez la course du vérin ainsi que sa plage de position angulaire () compte tenu de la plage d’inclinaison du mât.
Question 3 : Écrivez le programme Python permettant de tracer les lois E/S () et ().

Exemple – Camion élévateur
correction 1/2

(la fonction tangente est 𝜋 périodique)

Exemple - Camion élévateur
correction 2/2

import numpy as np ; import matplotlib.pyplot as plt # importation des modules

parametres en mètres

a = 0.2;b=0.8;e=0.1;L=1.6

plage alpha pour aller jusqu'à pi/2 inclus par pas de 1°

alpha=np.arange(0,91/180*np.pi,np.pi/2/90)

calcul de la longueur lambda et de l'angle beta

lamb=np.sqrt(L**2+e**2+a**2+b**2-2*np.cos(alpha)*(a*L+b*e)+2*np.sin(alpha)*(b*L-a*e))

beta=180/np.pi*np.arccos((L*np.cos(alpha)+e*np.sin(alpha)-a)/lamb)

alphadeg=180/np.pi*alpha

Tracé des courbes

plt.plot(lamb, alphadeg, label="alpha (°)") ; plt.plot(lamb, beta, label="beta (°)") # trace y(x)

plt.ylabel('Lois E/S alpha et beta en fonction de lambda') ; plt.xlabel("lambda (m)") # Titre des axes

plt.title("Camion Elévateur ") # Titre du graphique

plt.legend() # Imprime les légendes

plt.grid(True) # Affichage de la grille

plt.savefig("Camion_Elevateur.png",dpi=125) # sauvegarde la figure

plt.show() # Affichage de la fenêtre

Exercice 1.a : Bielle - manivelle

Question 1 : Donnez l’expression de X(t) en fonction de (t) et (t) , puis celle de (t) en fonction de (t).

Question 2 : Donnez les expressions des dérivées première et seconde de X(t) en fonction de (t), (t) et leurs dérivées.

Question 3 : Donnez des expressions simplifiées des grandeurs précédentes (en considérant un développement limité à l’ordre 1 pour
(t) tel que sin  ≈  et cos  ≈ 1).

Question 4 : Proposez un programme python qui permet de :

• saisir la vitesse de rotation N en tr/mn, l’excentricité e et la longueur de bielle L en mm (fonction Input :
N=float(input("vitesse de rotation en tr/mn : "));),

• tracer sur 4 graphiques X(mm), b(°), X'(m/s) et X''(m/s²), en valeur exacte et approchée, en fonction du temps et faire
figurer le rapport L/e dans un titre.

Suite slide suivante

La manivelle (1) tourne à vitesse constante.

On souhaite visualiser la position, la vitesse et l’accélération du
piston (3) en fonction de la position angulaire et la vitesse
angulaire de la manivelle (1).

On souhaite aussi connaître la position angulaire, la vitesse
angulaire et l’accélération angulaire de la bielle (2) en fonction
de ces mêmes paramètres d’entrée et géométriques.

On devra pouvoir choisir la vitesse de la manivelle, la longueur L
de la bielle et la valeur e de l’excentricité.

Enfin, on veut visualiser la différence entre les valeurs exactes
et les valeurs approchées si on considère que le rapport 𝐿/𝑒 est
petit (c’est-à-dire 𝐿 ≈ 10 ∗ 𝑒).

Dans la mesure où l’on fait une résolution numérique, il ne faut
surtout pas chercher à tout exprimer en fonction de la position
d’entrée 

Exercice 1.a : Bielle – manivelle
(suite)
Question 5 : Réalisez 4 simulations pour N = 8000 tr/mn : e = 31 mm, L = [155, 130, 100, 35] mm. Les rapports e/L des
couples (31,130) et (31,100) correspondent aux dimensions de deux moteurs de 500 cm3. Le premier est dit à bielle longue,
l’autre à bielle courte

Question 6 : Commentez les résultats. Vous pouvez aussi faire des tests pour voir jusqu'où l'approximation est acceptable
pour X et b et voir ce qui se passe avec L  e.

Vous devriez obtenir les courbes suivantes (pour le cas L=5e) :

La correction est donnée sur cahier de prépa.

Exercice 1.b : pompe à piston
Ce modèle est celui associé à un moteur hydraulique radial à cylindrée fixe.

Modèle mécanique et caractéristiques constructeur :

• Excentricité e = 10 mm ; Rayon piston R = 20 mm

• Cylindrée : 125 cm3

• Vitesse nominale : 600 tr/mn (ou « RPM »)

• Pression continue de fonctionnement : 250 bars – Maxi 400 bars

• Couple spécifique théorique 1.8 N.m/bar

• Puissance de sortie maxi mesurée : 24 kW

Question 1 : Par fermeture cinématique OU géométrique (en passant par les points OABC,

et en utilisant le fait que 𝑉𝐶∈3/0. 𝑥0 = 𝑉30 et 𝑉𝐶∈3/2. 𝑦0 = 𝑉32) déterminez les expressions

de 𝑉30 et 𝑉32 en fonction de e, 𝜃 et la sortie attendue w10.

On définit le débit Q comme étant la quantité « vitesse du piston * surface du piston ».

Question 2 : Écrivez le programme python permettant de tracer la courbe de débit pour
chaque piston, le débit instantané pour l'ensemble des pistons alimentant le moteur ainsi
que l’irrégularité cyclique (amplitude de variation du débit total).

Question 3 : Vous préciserez, au vu de la courbe, combien de pistons sont à l'alimentation
en même temps selon la phase du mouvement.

Vous devriez obtenir la courbe suivante :
La correction est donnée sur cahier de prépa.

1xeOA = 0xaAB = 0xHOD = 0x)t(XOC = 0y)t(YCB =)x,x(10=

2.Recherche de 0
60 minutes

9

Cours : dichotomie
Soit la fonction f(x) continue. On recherche x* solution de l'équation f(x) = 0 dans l'intervalle [a,b].

Si x*[a,b] → f(a) et f(b) sont de signes opposés → f(a)·f(b)<0. Si ce n'est pas le cas, il faut définir un
autre intervalle.

On part du principe que l'on dispose du tracé de la fonction et que l’on connait l’intervalle où chercher la
solution x*.

Pour trouver la solution, on divise l'intervalle en deux parties égales avec comme milieu m0=(a+b)/2.

Si f(a)·f(m) >0, x* [m,b] sinon x* [a,m]. On réitère alors la recherche dans le nouvel encadrement
jusqu'à ce que (a−b)< où  est la précision voulue.

On réutilise ici le système bielle manivelle et les équations de mécanique déjà définies. On souhaite connaître la valeur de  (°), angle
de rotation de la manivelle, pour laquelle la vitesse est maximum et donc pour laquelle l'accélération du piston est nulle.

Question 1 : Définissez une fonction "acceleration(alpha)" qui retourne la valeur de l'accélération du piston pour une valeur de . La
correction est donnée slide suivante.

Question 2 : Le corps du programme devra permettre le tracé de l'accélération du piston (m/s²) en fonction de   [0°,360°] pour
une valeur de e = 0.02 m, L = 0.03 m et N = 8000 tr/mn. Il devra permettre de choisir un encadrement de  calculer  pour lequel
l'accélération est nulle avec une précision de 0.01° et afficher la solution.

Le tracé à obtenir pour l’accélération est le suivant :

La correction est donnée sur cahier de prépa.

Exercice 2 : dichotomie

Dichotomie – fonction accélération

import numpy as np ; import matplotlib.pyplot as plt

N=8000 ; e = 0.02 ; L = 0.03 ; w=N*np.pi/30 # paramètres

def acceleration(alpha): # définition de l'accélération

 alpha=alpha*np.pi/180;beta=np.arcsin(-e/L*np.sin(alpha)); dep=e*np.cos(alpha)+L*np.cos(beta)

 betaprim=-e*w/L*(np.cos(alpha)/np.cos(beta))

betasec=(betaprim**2*np.sin(beta)+e/L*w**2*np.sin(alpha))/np.cos(beta)

depprim=-e*w*np.sin(alpha)-L*betaprim*np.sin(beta)

depsec=-e*w**2*np.cos(alpha)-L*betasec*np.sin(beta)-L*betaprim**2*np.cos(beta)

return(depsec) # retourne l'accélération du piston pour une valeur de alpha

calcul de l'accélération pour une liste de valeurs et tracé

alpha0=0;alpha1=360;pas=0.1;alpha=np.arange(alpha0,alpha1,pas);acc=acceleration(alpha)

plt.plot(alpha, acc) ; plt.title("accélération en m/s² en fonction de alpha (°)")

plt.legend ; plt.grid(True) ; plt.show()

saisie de l'intervalle de recherche de racine et précision imposée

a=float(input("valeur mini de alpha (°) \n ____: ")); b=float(input("valeur maxi de alpha (°) \n ____: "))

prec=0.01 # précision

dichotomie, test et avertissement

A compléter

Cours : Newton
Soit la fonction f(x) continue. On recherche x* solution de l'équation f(x) = 0 dans
l'intervalle à partir de a valeur x0 proche de la racine.

On calcule f(x0). La tangente à f en f(x0) coupe l'axe des x en x1. On calcule alors f(x1). La
tangente à f en f(x1) coupe l'axe des x en x2.

On continue ainsi jusqu'à ce que (xi+1−xi)< où  est la précision voulue.

Ici encore on part du principe que l'on dispose du tracé de la fonction et que l'on sait où chercher pour que la méthode converge.

Cette méthode nécessite de connaître la dérivée. En effet, l'équation de la tangente en f(x0) par exemple s'écrit : y(x) = f'(x0) x + b.

Avec f(x0) = f'(x0) x0 + b, on trouve b = f(x0) – f'(x0) x0.

L'équation est donc finalement y(x) = f'(x0) x + f(x0) – f'(x0) x0 = f'(x0) (x – x0) + f(x0)

Cette tangente coupe l'axe des x en x1 tel que 0 = f'(x0) (x1 – x0) + f(x0)

Finalement, si on démarre en x0 = a, la suite est de la forme :

Le problème est évidemment lorsque l'on travaille sur une série de valeur sans connaître ni la fonction ni sa dérivée.

En slide suivante on donne la fonction et un exemple (le principe est à connaitre).

Question (optionnelle, il n’y aura pas de correction donnée) : Appliquer la méthode de Newton à partir du fichier "BOMaxpid.csv" qui
donne la vitesse du moteur pour un échelon de tension et tracer moteur(t). On cherche ici à annuler l’accélération, vous devez donc
travailler sur la dérivée de moteur(t). Il faut donc au préalable définir une fonction dérivation numérique. Pour ouvrir le fichier
"BOMaxpid.csv" vous aurez besoin de la partie suivante : « 3.Importation d’un fichier de mesure ».

0
0

0

0

000
1 x

)x('f

)x(f

)x('f

)x(fx)x('f
x +−=

−
=

n
n

n
1n x

)x('f

)x(f
x +−=+

Recherche par la méthode de Newton de
la solution de l'équation f(x)=0

Pour la dérivée, soit on la connait déjà (exemple ci-dessous), soit on utilise la fonction suivante :

def derive_fonctions(f,x,eps):

 return (f(x+eps)−f(x))/(eps)

Exemple si on connait déjà la dérivée :

def f_dicho(x):

 from math import sqrt

 return x*x-math.sqrt(2)

def df_dicho(x):

 return 2*x

def solveNewton(f,df,a,eps):

 c = a-f(a)/df(a)

 while abs(c-a)>eps:

 a = c

 c = c-f(c)/df(c)

 return c

Cette fonction a pour entrées :
• f, function : fonction à valeur de IR dans IR
• df, function : dérivée de f à valeur de IR dans IR.
• a, flt : solution initiale
• eps,flt : tolérance de la résolution
Et pour sortie :
• flt : solution de la fonction

Cours : fonction « fsolve »
« Fsolve » est une fonction présente dans la bibliothèque scipy. Elle permet de trouver la racine d’une fonction, elle s’écrit,
pour une fonction f(x) dont on souhaite connaître la valeur de x telle que f(x)=0 :

scipy.optimize.fsolve(f,[x0,x1])

Avec x0 et x1 correspondant aux bornes dans lesquelles fsolve va chercher une solution.

Exemple avec la fonction accélération précédente :

import numpy as np ; import matplotlib.pyplot as plt; import scipy.optimize

N=8000 ; e = 0.02 ; L = 0.03 ; w=N*np.pi/30 # paramètres

def acceleration(alpha): # définition de l'accélération

 alpha=alpha*np.pi/180 ; beta=np.arcsin(-e/L*np.sin(alpha)); dep=e*np.cos(alpha)+L*np.cos(beta)

 betaprim=-e*w/L*(np.cos(alpha)/np.cos(beta))

 betasec=(betaprim**2*np.sin(beta)+e/L*w**2*np.sin(alpha))/np.cos(beta)

 depprim=-e*w*np.sin(alpha)-L*betaprim*np.sin(beta)

 depsec=-e*w**2*np.cos(alpha)-L*betasec*np.sin(beta)-L*betaprim**2*np.cos(beta)

 return(depsec) # retourne l'accélération du piston pour une valeur de alpha

calcul de l'accélération pour une liste de valeurs et tracé

alpha0=0;alpha1=360;pas=0.1;alpha=np.arange(alpha0,alpha1,pas);acc=acceleration(alpha)

plt.plot(alpha, acc) ; plt.title("accélération en m/s² en fonction de alpha (°)")

plt.legend ; plt.grid(True) ; plt.show()

saisie de l'intervalle de recherche de racine et précision imposée

a=float(input("valeur mini de alpha (°) \n ____: ")); b=float(input("valeur maxi de alpha (°) \n ____: "))

prec=0.01 # précision

fsolve

x = (scipy.optimize.fsolve(acceleration,[a,b]))

print("la solution est ",round(x[0],3))

3.Importation d’un
fichier de mesure
20 minutes

15

Exemple - Imprimante
Nous utiliserons pour l’exercice le fichier : "BO200imprimante.csv". Ce fichier est le résultat d’un essai en boucle ouverte avec une
consigne en échelon de 200 mm.

Question 1 : Ouvrir le fichier avec un éditeur de texte afin de voir comment il est écrit et décrivez sa structure (colonne, ligne).

Question 2 : Avec Python, lire le fichier, convertir les colonnes temps et position en tableaux de flottants (astype(float)) en
fonction de l’entête et tracer la position en fonction du temps.

import numpy as np ; import matplotlib.pyplot as plt

import direct connaissant les entêtes

mesures = np.loadtxt('BO200imprimante.csv', delimiter=';', skiprows=1, dtype=str)

mesures = np.char.replace(mesures, ',', '.');

mesures = mesures.astype(float)

temps = mesures[:,0]; position = mesures[:,1]; vitesse = mesures[:,2]

Affichage

plt.plot(temps, position, label="position tête mm")

plt.xlabel("Temps (s)")

plt.title("Position de la tête d'impression")

plt.grid(True);

plt.legend();

plt.savefig("courbes.png",dpi=125);

plt.show()

Exercice 3 - Importation mesures
Maxpid

On utilise le fichier : "BFtrapeze90_maxpid.csv" : essai avec consigne de position de 90° en trapèze : accélération = 10 rd/s², vitesse
constante = 1 rd/s, décélération = -10 rd/s².

Question 1 : Ouvrez le fichier avec un éditeur de texte et décrivez sommairement sa structure.

Question 2 : Tracez la position du bras et la vitesse de rotation du moteur en fonction du temps (vous préciserez les unités sur le
tracé).

Vous devriez obtenir la courbe suivante :

La correction est donnée sur cahier de prépa.

4.Résolution d’équation
différentielle 1er ordre : Euler
30 minutes

18

Cours : méthode d’Euler explicite
On souhaite résoudre une équation différentielle du type :

𝜏.
𝑑𝑦 𝑡

𝑑𝑡
+ 𝑦(𝑡) = 𝑦𝑓

On pose alors :

• 𝜏 : constante de temps de l’équation différentielle (notée « tau » dans le programme)

• 𝑦0 : valeur initiale de y(t) (on suppose que 𝑡0 = 0)

• 𝑦𝑓 , 𝑡𝑓: valeur finale de y(t) et de t

• nb : nombre d'échantillons pour la simulation

La résolution utilise l’approximation de la dérivé :

𝑑𝑦 𝑡𝑖

𝑑𝑡
≈

𝑦 𝑡𝑖+1 − 𝑦 𝑡𝑖

𝑡𝑖+1 − 𝑡𝑖

En réutilisant l’équation différentielle donnée, cela donne :

𝜏 .
𝑦 𝑡𝑖+1 − 𝑦 𝑡𝑖

𝑡𝑖+1 − 𝑡𝑖
+ 𝑦(𝑡𝑖) = 𝑦𝑓

En posant le pas 𝑝 = 𝑡𝑖+1 − 𝑡𝑖 :

𝜏 . 𝑦 𝑡𝑖+1 = 𝜏 . 𝑦 𝑡𝑖 + 𝑝. 𝑦𝑓 − 𝑦 𝑡𝑖

Soit

𝒚 𝒕𝒊+𝟏 = 𝒚 𝒕𝒊 +
𝒑

𝝉
. 𝒚𝒇 − 𝒚 𝒕𝒊

Cela donne dans python :
def euler_explicite(tau,y0,yf,tf,nb):

 t = 0

 y = y0

 pas = tf / nb

 res = []

 while t < tf:

 res.append((t,y))

 y = y + pas*(yf-y)/tau

 t = t + pas

 return res

Exemple :
res = euler_explicite(1,0,5,25,1000)

x,y = [],[]

for i in range(len(res)):

 x.append(res[i][0])

 y.append(res[i][1])

plot(x,y)

Exercice 4 : moteur Parvex assimilé à
un 1er ordre
On donne les valeurs suivantes : Tension maxi : 40 V ; vitesse maxi : 6600 tr/mn

R = 4.68 Ohm ; Ke = 0.057 V.s ; Kc = 0.057 N.m/A ; J = 1.95 10-5 kg.m² (on néglige le couple resistant sec et fluide, ainsi que l’inductance),

Question 1 : Rappelez les quatre équations d'un moteur à courant continu et proposez une mise en forme de l'équation différentielle de

l'équation de vitesse en fonction de u(t) tension d'entrée. Vous devriez obtenir une forme du type : C.
𝑑𝜔(𝑡)

𝑑𝑡
+ 𝐵. 𝜔 𝑡 = 𝐴. 𝑢 𝑡

Question 2 : Proposez un programme qui permet de tracer la réponse en vitesse à un échelon de tension de 20 V.

Vous devriez obtenir la courbe suivante :

La correction est donnée sur cahier de prépa.

5.Suppression d’un bruit de
mesure : moyennes et
correcteurs
60 minutes

21

Cours : moyenne glissante
arithmétique
On part d'une liste de valeurs de n éléments yi d'indice i (variant de 0 à n-1) et on arrive à une liste de valeur mai (« ma »
pour moyenne arithmétique). Chacun de ces mai est une moyenne d'un nombre N de yi (N est la largeur de la fenêtre, et
celle-ci glisse tout le long de la liste).

Prenons le cas N = 3 : on ne peut pas calculer les termes ma0 et man-1. On commence donc le calcul à partir du moment où
mai est défini et la liste des mai sera plus courte que celle des yi. Si on veut une liste de mai de même longueur que celle des
yi, on peut affecter yi aux mai non définis au début et à la fin.

Dans notre exemple on aurait alors ma0 = y0 et man-1 = yn-1. Avec une assez grande valeur de N, la courbe est mieux lissée
mais peut s'éloigner trop de la courbe de mesure, il faut ajuster.

𝑦0 𝑦1 … 𝑦𝑖 … 𝑦𝑛−2 𝑦𝑛−1

𝑚𝑎0 = 𝑦0 𝑚𝑎1 =
𝑦0 + 𝑦1 + 𝑦2

3
…

𝑚𝑎𝑖 =
𝑦𝑖−1 + 𝑦𝑖 + 𝑦𝑖+1

3
…

𝑚𝑎𝑛−2 =
𝑦𝑛−3 + 𝑦𝑛−2 + 𝑦𝑛−1

3
𝑚𝑎𝑛−1 = 𝑦𝑛−1

Cours : moyenne glissante
pondérée
Sur la même base de départ, au lieu d'une moyenne, on réalise une pondération des termes au fur et à mesure que l'on
avance dans la liste. Cette pondération est caractérisée par le poids des mesures précédentes (𝑚𝑒𝑖−1) par rapport à la

mesure actuelle (𝑦𝑖). On définit le coefficient de pondération : 𝛼 =
2

𝑁+1
.

Plus 𝛼 est petit (N grand), moins les dernières mesures comptent par rapport aux précédentes. Avec N petit, la courbe est
peu filtrée, avec N grand, on s'éloigne trop de la courbe : N  [10 ; 30] donne souvent un bon résultat. Le modèle de calcul
est donné ci-dessous pour N (𝛼) quelconque.

Le résultat est une liste de mei plus courte que celle des yi car le premier élément ma0 n'est pas défini. Ici encore on peut
choisir d'avoir une liste de mei plus courte que celles des yi ou d'ajouter un premier terme (𝑚𝑒0 = 𝑦0).

𝑦0 𝑦1 … 𝑦𝑖 … 𝑦𝑛−2 𝑦𝑛−1

𝑚𝑒0 = 𝑦0 𝑚𝑒1 = 𝛼. 𝑦1 + (1 − 𝛼). 𝑚𝑒0 … 𝑚𝑒𝑖 = 𝛼. 𝑦𝑖 + (1 − 𝛼). 𝑚𝑒𝑖−1 … 𝑚𝑒𝑛−2 = 𝛼. 𝑦𝑛−2 + (1 − 𝛼). 𝑚𝑒𝑛−3 𝑚𝑎𝑛−1 = 𝑦𝑛−1

Exercice 5.a : vitesse tête de
l’imprimante
Question 1 : Importez le temps et la vitesse à partir du fichier "BO200imprimante.csv"

Question 2 : Proposez un programme qui permet de visualiser les résultats de la mesure de vitesse filtrées par les deux
méthodes.

Question 3 : Faites varier N pour voir son influence.

Vous devriez obtenir les courbes ci-dessous.

La correction est donnée sur cahier de prépa.

Cours : correcteur numérique 1/4
La fréquence d’échantillonnage d’un système d’acquisition doit être choisie pour
éviter le phénomène dit de « repliement ». Ce dernier est susceptible de générer de
faux signaux lorsque l’entrée analogique est sous échantillonnée.

En prenant l’exemple ci-contre, pour la période d’échantillonnage Te = 1 s (point noir),
les points associés à un signal de fréquence 0.1 Hz (courbe rouge) sont confondus avec
ceux d’un signal de fréquence 0.9 Hz (courbe bleu).

Le phénomène de repliement peut se produire dès lors que les signaux on des composantes dont les fréquences dépassent
la moitié de la fréquence d’échantillonnage. Soit un signal x(t) compris dans la bande de fréquence [0 ; fmax]. On démontre
(Théorème de Nyquist-Shannon) que pour pouvoir reconstruire (interpoler) le signal à partir des échantillons, la fréquence
d’échantillonnage doit respecter fe > 2 fmax (avec fe = 1/Te et Te période de l’échantillonnage. fe/2 est appelée fréquence de
Nyquist).

Afin d’éviter le phénomène de repliement en raison du bruit (en général un signal parasite à haute fréquence), on filtre le
signal. Soit parce qu’on ne peut pas atteindre physiquement la fréquence d’échantillonnage qui serait nécessaire pour que
les parasites ne faussent pas l’échantillonnage, ou parce que l’on ne peut pas traiter et transmettre le signal assez
vite compte tenu de la quantité de donnée, ou tout simplement pour optimiser la chaine de traitement.

L’idée est donc d’éliminer les composantes du signal à traiter de fréquence supérieures à fmax donc à la fréquence de Nyquist
= fe/2. Un filtre idéal aurait un gain constant jusqu’au maximum des fréquences qui nous intéressent, et un gain nul au-delà.
On pourrait tenir le même raisonnement pour un filtre passe bande dont le gain serait nul avant et après la bande de
fréquence à traiter.

Cours : correcteur numérique 2/4
Modèle d'une chaîne d'acquisition numérique

Cours : correcteur numérique 3/4
Filtre du 1 er ordre

L'équation différentielle associée à ce filtre est :

L'équation discrétisée donne :

Avec :

• Te période d'échantillonnage

• 𝜔0 =
1

𝜏
 : pulsation de cassure

On a donc :

Tout comme les moyennes glissantes, le résultat est une liste de 𝑚𝑙𝑖 plus courte que celle des yi car le premier élément 𝑚𝑙0
n'est pas défini. Ici encore on peut choisir d'avoir une liste de 𝑚𝑒𝑖 plus courte que celles des yi ou d'ajouter un premier
terme (𝑚𝑙0 = 𝑦0).

Si fc , 𝜏  et le signal est moins filtré. Si Te , le signal est mieux filtré mais s’éloigne du signal réel (ou mesuré).

)t(y)t(1m
dt

)t(1dm
=+

ii
e

i1i y1m
T

1m1m
=+

−
 +

)1my(
T

1m1m ii
e

i1i −


+=+

Cours : correcteur numérique 4/4
Filtre de Butterworth (physicien britannique 20ème siècle)

Ces filtres sont aussi des passe-bas, d’ordre 1, 2, 3, etc. On se limitera à l’étude de l’ordre 2. Ces filtres sont obtenus par
combinaison de 1er et 2ème ordre. On donne ci-dessous les dénominateurs pour les deux premiers ordres pour w0 = 1 rad/s :

Ordre Dénominateur Caractéristiques

1 1+p w0 = 1 rad/s

2 1+1.4142p+p² w0 = 1 rad/s, 𝜉 = 0.7

La particularité de ce filtre est que chaque polynôme a la
même pulsation de cassure, qui correspond aussi à la
pulsation de coupure du filtre à -3dB (la somme des gains à
cette pulsation égale -3dB).

Par ailleurs le gain est pratiquement constant avant cette
pulsation (pas de dépassement visible malgré les facteurs
d’amortissements < 0.7).

Ce filtre est implémenté dans le module Scipy. On l’appelle ainsi :

from scipy import signal

filtre de butterworth en utilisant le module scipy

Te = 0.002 ; fc = 40 ; fnyq = 1/2/Te ; ordre = 1 # inititalisation et choix de l'ordre

b, a = signal.butter(ordre, fc/fnyq, 'low', analog=False) # calcul du filtre

f_fb1 = signal.filtfilt(b, a, vitesse) # Application du filtre

Exercice 5.b : filtrage vitesse tête
imprimante
Pour notre exemple, on travaille sur la base d’un fichier (BO200_imprimante.csv) donnant la vitesse d’un mobile, cette
vitesse est calculée à partir d’une acquisition de position et on a une valeur toutes les 0.002 s, correspondant au pas de
calcul.

On considère qu’il s’agit d’un fichier de mesure avec Te = 0.002 (s) soit fe = 500 (Hz). La règle de Shannon implique donc que
l’on filtre tout ce qui se trouve au-delà de fNyquist = 250 Hz pour ne pas avoir de problème de repliement.

Question 1 : Importez le temps et la vitesse à partir du fichier "BO200_imprimante.csv"

Question 2 : Proposez un programme qui permet de superposer la mesure non filtrée aux mesures filtrées par un filtre du
1er ordre standard et du 1er ordre Butterworth (on prendra une fréquence de coupure fc = 40HZ)

Question 3 : Faites une comparaison qualitative entre les deux filtres.

Vous devriez obtenir les courbes ci-contre.

La correction est donnée sur cahier de prépa.

6.Dérivation et
intégration numérique
45 minutes

30

Cours : dérivation & intégration
numérique
Dérivation numérique : méthode basique

Dans le cas où l’on souhaite connaître la vitesse à partir du relevé des positions :

Intégration numérique : méthodes basiques

Si à l’inverse on souhaite connaître la position à partir du relevé des vitesses :

• Méthode des rectangles à droite :

• Méthode des rectangles à gauche :

• Méthode des trapèzes :

i1i

i1i

i
TT

pospos
vit

−

−
=

+

+

1ii1i1ii pos)TT(vitpos −++ +−=

1ii1iii pos)TT(vitpos −+ +−=

()
1ii1i

1i1i
i pos)TT(

2

vitvit
pos −+

++ +−
+

=

Méthode des rectangles à gauche Méthode des rectangles à droite Méthode des trapèzes

Exercice 6.a : dérivation position
tête imprimante et bras maxpid
Question 1 : Proposez un programme qui, à partir du fichier "BO200imprimante.csv", permet de calculer la position de la
tête à partir de la vitesse mesurée. Vous afficherez, sur un même graphe, en fonction du temps, la position et la vitesse de la
tête, issues du fichier de mesure, ainsi que la vitesse calculée. Que pensez-vous de la vitesse mesurée ?

Question 2 : Proposez un programme qui, à partir du fichier "BFtrapeze90_maxpid.csv", permet de calculer la vitesse du
bras à partir de la position mesurée. Vous afficherez, sur un même graphe, en fonction du temps, la position et la vitesse de
la tête, issues du fichier de mesure, ainsi que la vitesse calculée. Concluez.

Vous devriez obtenir les courbes ci-dessous :

La correction est sur cahier de prépa.

Exercice 6.b : intégration vitesse
moteur maxpid
Question 1 : Analysez les données contenues dans le fichier "BFtrapeze90_maxpid.csv ». En créant trois fonctions
"integ_def(x,y)", "integ_exc(x,y)" et "integ_tra(x,y)" qui calculeront numériquement ∫ydx par la méthodes des rectangles
(droit et gauche) et par la méthode des trapèzes, proposer un programme qui permet de calculer numériquement la
position du rotor à partir de la vitesse de celui-ci et du temps. Les 3 méthodes seront comparées sur un même graphe sur
lequel figureront les positions calculées et la vitesse mesurée.

Question 2 : Tracez un graphe sur lequel sera affiché le rapport de position calculé du moteur sur la position mesurée du
bras, en fonction de la position du bras (°). Il n’est pas improbable que vous rencontriez des problèmes (erreurs).

Vous devriez obtenir les courbes ci-dessous :

La correction est sur cahier de prépa.

7.Régression linéaire :
moindres carrés et IA
20 minutes

34

Cours : méthode des moindres carrés
On se limitera à un problème de deux dimensions, mais la méthode sera la même pour un problème
de dimension n.

Les points (xi,yi) sont issus d’une mesure. Le modèle théorique associé au résultat de cette
expérimentation est une fonction y(x, ) où  représente un ou plusieurs paramètres inconnus (les
coefficients des puissances de x dans le cas d’un polynôme par exemple). Les paramètres  optimaux
sont ceux qui minimisent la somme suivante, appelée fonction « perte » ou « coût » L(𝜃) :

() 
==

=−=
n

1i

2

i

n

1i

2

ii)(ry),x(f)(L

Avec 𝑟𝑖
2() l’écart entre la mesure yi et la prédiction du modèle (résidu). La fonction de coût L(𝜃) utilisée ici est une mesure du carré de

la distance entre les données expérimentales et le modèle théorique qui prédit ces données. On divise la fonction coût par 2. 𝑛 pour
normaliser les valeurs. La méthode des moindres carrés vise à minimiser L(𝜃), d’où son nom. Dans notre cas (deux dimensions) on

prendra pour fonction 𝑓 𝑥 = 𝑎𝑥 + 𝑏 et on notera ො𝑎, ෠𝑏 le couple de valeur minimisant la fonction perte, soit :

ො𝑎, ෠𝑏 = min
(𝑎,𝑏)∈ℝ2

1

2. 𝑛
෍

𝑖=1

𝑛

𝑎. 𝑥𝑖 + 𝑏 − 𝑦𝑖
2 = min

(𝑎,𝑏)∈ℝ2
𝐽(𝑎, 𝑏)

Avec 𝐽 appelée fonction coût :

𝐽 𝑎, 𝑏 =
1

2. 𝑛
. ෍

𝑖=1

𝑛

𝑓 𝑥𝑖 − 𝑦𝑖
2

Si on pose maintenant :

On obtient pour expression de 𝐽 :

𝐽 𝜃 =
1

2. 𝑛
. 𝑋. 𝜃 − 𝑌 2

𝑌 = 𝑋. 𝜃

𝜃 =
𝑎
𝑏 𝑋 =

𝑥1 1
𝑥2 1
… …
𝑥𝑛 1

𝑌 =

𝑦1

𝑦2…
𝑦𝑛

Cours : descente de gradient
On veut minimiser 𝐽 𝜃 , fonction convexe, donc on annule ses dérivées partielles avec
l’utilisation du gradient comme algorithme de minimisation :

𝜕𝐽 𝜃

𝜕𝜃
=

1

𝑛
. 𝑋𝑇. (𝑋. 𝜃 − 𝑌)

Cela donne un vecteur
𝜕𝐽(𝑎)

𝜕𝑎

𝜕𝐽(𝑏)

𝜕𝑏

𝑇
qui donnera notamment la direction de la pente

de la fonction cout L 𝜃 . On obtient alors la fonction « descente de gradient » :

𝜃 = 𝜃 − 𝛼.
𝜕𝐽 𝜃

𝜕𝜃

Deux paramètres interviennent : le nombre d’itérations et l’hyper paramètre 𝛼. Le
premier nous fixera le nombre de fois où nous allons réitérer le calcul de la fonction
descente de gradient, le second donne le « pas » de calcul (appelé également taux
d’apprentissage ou encore « learning rate » pour les bilingues). Si le pas est trop
important, le résultat final risque d’être approximatif et si le pas est trop faible, le
programme risque de ne pas converger.

On donne ci-contre un exemple (dont le code est donné slide suivante) permettant à
partir de 4 points (points vert sur le graphe de gauche) de déterminer la valeur de 𝑎 et
𝑏 minimisant la fonction coût (ici la fonction quadratique moyenne). On remarque
qu’à partir de 6000 itérations, la fonction cout ne baisse quasiment plus : la fonction a
converger.

Il n’y a pas d’exercice à traiter dans cette partie, cependant il faut savoir compléter et
expliquer le code de la descente de gradient (slide suivante) et savoir utiliser le
module scikit-learn (slide suivante également).

Exemple fonction descente
gradient
def model(X, THETA): #fonction Y=X.THETA

 return X.dot(THETA)

def perte(X, y, THETA): #fonction perte = erreur quadratique moyenne

 n = len(y)

 return 1/(2*n) * np.sum((model(X, THETA) - y)**2)

def gradient(X, y, THETA):

 n = len(y)

 return 1/n * X.T.dot(model(X, THETA) - y)

def descente_gradient(X, y, THETA, alpha, nb_iterations):

 evolution_perte = np.zeros(nb_iterations)

 evolution_perte_log = np.zeros(nb_iterations)

 THETA_liste=[]

 for i in range(0, nb_iterations):

 THETA_liste.append(THETA) #enregistre les différentes valeurs de theta

 THETA = THETA - alpha * gradient(X, y, THETA) # mise à jour du parametre theta

 evolution_perte[i] = perte(X, y, THETA)

 evolution_perte_log[i] = log(evolution_perte[i])

 return THETA, evolution_perte_log, THETA_liste

Exemple fonction régression
linéaire avec scikit-learn

import numpy as np;import matplotlib.pyplot as plt;

from sklearn.linear_model import LinearRegression # Chargement de la fonction de linéarisation

mesures = np.loadtxt('BO200imprimante.csv', delimiter=';', skiprows=1, dtype=str)

mesures = np.char.replace(mesures, ',', '.’);

mesures = mesures.astype(float)

temps = mesures[:,0]; position = 0.001*mesures[:,1]

#données

x = Temps.reshape((-1, 1))

y = Position

#instancier modèle

model_linReg = LinearRegression()

#entrainement du modèle

model_linReg.fit(x, y)

#précision du modèle + transformation en caractères pour l’affichage

precision = model_linReg.score(x, y)

R=round((precision*100),3)

coefR=str(R)

#prédiction

prediction = model_linReg.predict(x)

plt.plot(temps, position, label="position tête m")

plt.plot(temps, prediction, label="prédiction R="+coefR)

plt.xlabel("Temps (s)")

plt.title("Position de la tête d'impression")

plt.grid(True);plt.legend();plt.show()

Le module scikit-learn de python est dédié à l’apprentissage et comprend les régressions linéaires, les knn, K-Moyennes, etc.
Voici un exemple de ce que peut donner la méthode du gradient avec l’exemple de la tête d’imprimante.

8.Kmean
40 minutes

39

Cours : K-mean (par l’exemple)
On souhaite installer 3 dépôts de bus dans le département afin de développer les transports en
commun intra-départementaux. L’idée est simple : minimiser la distance entre les dépôts de
bus et les principales agglomérations.

Vous disposez de la base de donnée gouvernementale (2020) des communes de plus de 1000
habitants dans le tableau « ardeche_sup_1000.csv » , comportant :
• Col 0 : le code postal,
• Col 1 : longitude en ° (coordonnée X), Col2 : latitude en° (coordonnée Y)
• Col 3 : nombre d’âmes.

On choisit la distance euclidienne :

(Xi,Yi) coordonnées ville i{1,94} villes, (Xcj,Ycj) coordonnées centroïde j {1,3}.

Méthode

Initialisation : On choisit arbitrairement k centroïdes (k = 3) qui seront les centres de k clusters.

Boucle :

• Chaque ville est affectée dans le cluster du centroïde qui est le plus proche.
• Calcul des nouveaux centroïdes (barycentre) de chacun des clusters que l’on vient de

former.
• On recommence jusqu’à ce qu’à ce qu’il y ait convergence : les centroïdes ne changent

pas entre deux itérations. Prévoyez une sortie de boucle sur une autre condition que
l’immobilité des centroïdes car la convergence n’est pas garantie.

2
cji

2
cji)YY()XX(d −+−=

Exercice 8 : K-mean
Pour afficher les emplacements de la carte, chargez le programme :

Question 1 : Ouvrez le fichier « kmoyenne-ardeche initial.py » et affichez la carte. Vous repérerez la
plage de (X,Y) de la carte.

Question 2 : Définissez une fonction classe(Dep,Clas,CdG) qui affecte à chaque ville son centroïde le
plus proche et retourne (Clas).

Dep : tableau des villes (94 lig x 4 col), Clas : tableau (1 col) des classes (c’est-à-dire « 1 » pour le
centroïde 1, « 2 » pour le centroïde 2, etc.) de chaque ville, CdG tableau des centroïdes (3 lig x 2 col)

Question 3 : Définissez une fonction nouvcent(Dep,Clas) qui calcule le centroïde d’une classe
(barycentre) et qui renvoie CdG.

import numpy as np ; import matplotlib.pyplot as plt

import direct connaissant les entêtes (N°dep,longitude,latitude,Nbre habitants)

ardeche = np.loadtxt('ardeche_sup_1000.csv', delimiter=';', skiprows=1, dtype=str)

ardeche = np.char.replace(ardeche, ',', '.'); ardeche=ardeche.astype(float)

initialise la classe à 0 pour chaque ville et initialise arbitrairement 3 centroïde

colk=np.ones((len(ardeche[:,1]),1))

Cent=np.array([[4.2,44.4],[4.5,44.8],[4.8,45.2]])

def affichage(Dep,Clas,CdG,n): # fonction affichage des villes et centroïdes

 plt.figure(n)

 plt.scatter(CdG[:,0],CdG[:,1],c="red",s=150);plt.scatter(Dep[:,1],Dep[:,2],c=Clas);

 plt.xlabel("Longitude en °");plt.ylabel("Latitude en °");

 plt.title("Villes de plus de 1000 habitants");plt.grid(True);plt.show()

affichage(ardeche,colk,Cent,1) # affiche la carte et centroïdes initiaux

Exercice 8 : K-mean

Question 4 : Ecrivez le programme qui permet de déterminer la position finale de chaque centroïde. La condition d’arrêt est
que les centroïdes ne bouge plus, celle-ci peut s’écrire : np.array_equal(Centsuivant,Centprécédent). Il faut prévoir une
sortie au cas où cela ne converge pas, par exemple en limitant le nombre d’itération. On souhaite voir une carte à chaque
itération pour observer le mouvement des centroïdes et l’évolution des classes. Affichez les coordonnées finales des
centroïdes (pas sur la carte mais pour les connaître).

Question 5 : Utilisez votre programme pour tester le nombre d’itérations et la position finale des centroïdes en fonction des
positions initiales de ces derniers. Vous pouvez aussi tester des positions initiales de centroïdes de façon qu’il n’y ait pas un
cluster vide au départ (ce qui risque de faire planter le code à cause d’une division par zéro).

Bonus : Proposez une amélioration qui permettra de tracer la distance moyenne des villes à leur centroïde en fonction des
itérations : on devrait retrouver la méthode du coude.

Vous devriez obtenir le graphe ci-contre :

La correction est sur cahier de prépa.

	Diapositive 1 Résolution de problème numérique
	Diapositive 2 1.Relation entrée sortie
	Diapositive 3 Exemple - Camion élévateur
	Diapositive 4 Exemple – Camion élévateur correction 1/2
	Diapositive 5 Exemple - Camion élévateur correction 2/2
	Diapositive 6 Exercice 1.a : Bielle - manivelle
	Diapositive 7 Exercice 1.a : Bielle – manivelle (suite)
	Diapositive 8 Exercice 1.b : pompe à piston
	Diapositive 9 2.Recherche de 0
	Diapositive 10 Cours : dichotomie
	Diapositive 11 Dichotomie – fonction accélération
	Diapositive 12 Cours : Newton
	Diapositive 13 Recherche par la méthode de Newton de la solution de l'équation f(x)=0
	Diapositive 14 Cours : fonction « fsolve »
	Diapositive 15 3.Importation d’un fichier de mesure
	Diapositive 16 Exemple - Imprimante
	Diapositive 17 Exercice 3 - Importation mesures Maxpid
	Diapositive 18 4.Résolution d’équation différentielle 1er ordre : Euler
	Diapositive 19 Cours : méthode d’Euler explicite
	Diapositive 20 Exercice 4 : moteur Parvex assimilé à un 1er ordre
	Diapositive 21 5.Suppression d’un bruit de mesure : moyennes et correcteurs
	Diapositive 22 Cours : moyenne glissante arithmétique
	Diapositive 23 Cours : moyenne glissante pondérée
	Diapositive 24 Exercice 5.a : vitesse tête de l’imprimante
	Diapositive 25 Cours : correcteur numérique 1/4
	Diapositive 26 Cours : correcteur numérique 2/4
	Diapositive 27 Cours : correcteur numérique 3/4
	Diapositive 28 Cours : correcteur numérique 4/4
	Diapositive 29 Exercice 5.b : filtrage vitesse tête imprimante
	Diapositive 30 6.Dérivation et intégration numérique
	Diapositive 31 Cours : dérivation & intégration numérique
	Diapositive 32 Exercice 6.a : dérivation position tête imprimante et bras maxpid
	Diapositive 33 Exercice 6.b : intégration vitesse moteur maxpid
	Diapositive 34 7.Régression linéaire : moindres carrés et IA
	Diapositive 35 Cours : méthode des moindres carrés
	Diapositive 36 Cours : descente de gradient
	Diapositive 37 Exemple fonction descente gradient
	Diapositive 38 Exemple fonction régression linéaire avec scikit-learn
	Diapositive 39 8.Kmean
	Diapositive 40 Cours : K-mean (par l’exemple)
	Diapositive 41 Exercice 8 : K-mean
	Diapositive 42 Exercice 8 : K-mean

