DM 14 pour le 26 janvier 2026

Exercice 1:
On s'intéresse a la nature de lintégrale généralisée T = [[" cos (2) dt.

+oo Sln( )
u3/2

Q 1 Montrer que l’intégrale généralisée f du converge. (indication: comparaison)

oo COS
Q 2 FEn déduire que l'intégrale généralisée f1+ \/(_u)
U

du converge. (indication: IPP pour augment la puis-

sance au dénominateur)

Q 3 En déduire que lintégrale généralisée I est convergente. (indication: u (t) = /t dans lintégrale précé-
dente)

Q 4 La fonction f : t +— cos (t*) admet-elle une limite en +oo. (indication: Trouver (a,) et (b,) de limite
+o0o telles que f(a,) et f(b,) n'ont pas la méme limite)

Exercice 2:

Etude de la convergence d’une série et d’intégrales généralisées

Soit @ € R

Q 5 Ftudier, suivant la valeur de «, & l’aide d’un changement de variable, la nature de ['intégrale généralisée

fjoo mdt. (indication: se ramener aur intégrales de Riemann par changement de variable)
n

1
n x In(n)®

Q 6 En déduire la nature de la série ) . (indication: faire une comparaison série intégrale

sin ()

mdt converge. (indication: IPP )

Q 7 Montrer que l'intégrale généralisée f;
o Sin(t)

X In (%)

Q 8 L’intégrale généralisée ff dt converge-t-elle?. (indication: comparaison équivalent)

Etude de la convergence d’une intégrale généralisée

Soit f : [0,400[ — R une fonction continue décroissante et admettant une limite nulle en +o0.
Le but de l'exercice est de montrer la Convergence de l'intégrale généralisé I = f0+°° f(t)sin () dt.
Pour > 0, on pose F (x) = [; f (t)sin (¢) dt.

Pour n € N, on pose I,, = f(n+1)7r (t) Sm( ) dt.

Q 9 Déterminer le signe de I,,. (indication: distinguer suivant la parité de n)

Q 10 Justifier que |I,,| = [ (mFOT ¢ () |sin (¢)| dt = Jo f (t + nm)sin (t) dt.
(indication: premiére egalzté: distinguer suivant la parité de n
deuxiéme égalité: changement de variable affine et |sin(t + w| =7)

Q 11 Justifier que la suite (|1,|), ey est décroissante.
(indication: question précédente et décroissance de f)
1



Q 12 En déduire que la suite (F (nm)), oy converge.

(indication: CSSA.en écrivant F' (nt) comme somme partielle de série (distinction parité de k pour
stgne de I, et wutilisation des hypothéses sur [ (sans toucher a Uintérieur de l’intégrale a |sin (z)|)
pour majoration en vue de limtie de |Ij|

On note L la limite de cette suite.

Q 13 Soit x > 0. On pose n, = {EJ Montrer que |F (z) — F (n,7)| < nf (n,). (indication: méme type de
m

magjoration que dans la question précédente)

Q 14 En déduire que l'intégrale généralisé I est convergente.

sin ()
t x In(t)
méme type de calcul minoration sans toucher a lintérieur de l’intégrale a |sin ()|

Q 15 En s'inspirant des calculs précédents, montrer que f:oo dt ne converge pas absolument.. (indication:



Exercice 1:

sin (u)
32

R 1 La fonction f : u w— est continue sur [1,400].

o Sin (u)

———~du conwverge.
032 g

1 o 1
De plus, 0 < |f (u)| < pETe) et 1+ mdu converge donc.f;r

R 2 Sous réserve de convergence, I'IPP avec v’ (u) = cos (u) et w (u) = donne

1
Ju

Or lim () — 0 car sin est bornée et [, sin (u) du converge donc [, cos (u)

Uu—s—4-00 \/ﬂ 1 Qu3/? 1 \/ﬂ

R 3 La fonction u : t — t* est une bijection de classe C' strictement croissante de |1, +oo| sur |1, +o0].
Sous réserve de convergence, le changement de variable donne
cos (1?) oo COS ()
I= [Fcos(t?)dt = [ tdt = —
p o cos(t) 1 2t 1 2\/u

R 4 Posons u, = v2nm et v, =2nm+m. Ona f (u,) =1 et f (v,) = —1.

Si f admettait une limite | en +o00, alors, par composition des limites, on aurait lirf f(up) = lirf f (o) =1,

1

du converge.

du qui converge donc I converge.

ce qui contredit ce qui précéde donc la fonction f n’admet pas en +oo.

Exercice 2:

Etude de la convergence d’une série et d’intégrales généralisées

R 5 Posons u(t) =1n(t). La fonction u est de classe C' et strictement croissante sur |e, +00].

Py +o00 lim u 1 +o0 1 . .
Sous réserve de convergence fe gdt = Free —du = —du qui converge ssi a > 1 donc
u U

t x In (1) n(e) !

er —————dt converge ssi o > 1.
¢ txlIn(t)

R6 Sik>2ettek,k+1]alors0<kxIn(k)*<txIn(t)*<(k+1)xIn(k+1)"

1
donc Gt ) x (ks 1)° < X (0)° < o In (k) et en intégrant ces inégalités entre k et k + 1,
1

< [kt 1 < 1
(k+1)xIn(k+1)* — k txIn(t)* = kxIn(k)”
Premier cas: o > 1

o ' 1 k 1
On en déduit que si k > 3, alors (&) x In (k)” < Jia t % In (t)adt
n 1 n 1 +00 1 ) ) —1

d - - dt< — dtd [ rtielles de la sé

o (R =P e S S gy dome tes sommes partielles de la série 3 oy oy

. , Z 1

sont magjorées donc la série < 1n(n)° converge.
Deuziéme cas: o <1 ) 1 1 1
D ¢ i k>2 alors ——— > ("'~ gt 4 e > [ dt.

e méme si k > 2, alors k) xIn(k)* = 7% txn(t)” Onckz:%(k)xln(k)a 72 ¢ xIn(t)”

1
Or 1l AR S - | 7R t——— > 0.
[ Y () A L (O I e I (1) <
n 1 1
On en déduit que nEIfoo 1?:32 ) < (0" = 400 donc la série ) X In (1)’ diverge.



in (¢
R 7 La fonction t — & est définie et continue sur [e, +00|
t x In (¢)

Effectuons, sous réserve de convergence une IPP avec u (t) = et v (t) = —cos (t).

t x In (t)
On a tligrn u(t)v(t) =0 car cos est bornée.

sin (t) o (FY]E oo (In (t) + 1) cos (¢)
ln()dt [ () (tﬂe fe (tXlIl(t))Q

(In (t) + 1)cos(t)‘ - ‘ (In(t) +1)
(t x In(t))* (t x In(t))*

Or t — — est intégrable sur [e,+00|

dt.

On en déduit que f;

1 1
~ —_ = 0] - 1.
t—+too 12 X In ()  t—+oo \ 12

t2
t — nté
donc t +— Tl est intégrable sur |e,+o0]
In(t)+1
donc t — M est intégrable sur [e, +00]
t x In (t))
In (¢ 1 t
donc t +— (nf) + )Coi( ) est intégrable sur [e, +00]
(t x In(t)
o (In(t)+1 o sin (¢
done [ (In (¢) + )C02< )dt converge donc [ ﬂdt converge.
¢ (t x In(t)) ¢ txIn(t)
t
R 8 La fonction t — L() est définie et continue sur]1,4o00|.
t x In (¢)

sin (t) sin(l)
txIn(t) t=1 t—1

sin ()
X In (%)

On a In(t) o~ t =1 donc et [; Tdt diverge donc f1 dt diverge donc

dt diverge.

eroo Sin( )

Lt xIn(t)

Etude de la convergence d’une intégrale généralisée

Attention 1 La fonction [ est décroissante donc Vx € [0, +oo[, f () > 1+1mf = 0 donc f est positive.

R 9 SoitkeN.

o Sit € [2km, (2k + 1) 7|, alorssin(t) > 0 et f est positive donc Iy, > 0.

o Site[(2k+1)m, (2k+2) 7], alorssin(t) <0 et f est positive donc Iag1 < 0.

Soit k£ € N.
- Sit e [2knm, (2k + 1) 7], alors sin (¢) > 0 donc Iy, > 0 et
Lo = Loy = [25507 f () sin (£) dt = [ir ™7 f (1) Jsin (£)] dt.
- Site[(2k+1)m, (2k + 2) 7], alors sin () < 0 donc Iox1 < O.et

Bia] = —Toksr = [opion £(1) x (=sin (8) dt = [0 £ (2) |sin ()] dt.

On a donc |I,,| = [~ (ntl)m g f(t)|sin ()| dt.

Le changement de variable u (t) =t —nm donne |I,| = [ f (u+ nm)|sin (u + nr)| du

Or sin (u + 7r) =— sin( ) donc [sin (u + nm)| = |sin (u)| donc u — |sin (u)| est m-périodique donc
11| = [y f (u+nm)lsin(u)|du = [ f (u+nm)sin (u) du.

R 10 La fonction f est décroissante donc si u € [0,7] alors f(u+ (n+1)7) < f(u+nm) et sin(u) > 0 donc
flu+(n+1)m)sin(u) < f(u+nn)sin(u) done, en utilisant la question précédente, |I,11| < |I.|. La suite
(|1nl)en st donc décroissante.

4



n—1 n
R 11 Ona F (nm) = [;7 f(t)|sin(t)|dt = Y I = Sp—1 avec S, = Y I somme partielle de la série Y I,.
k=0

Appliquons le CSSA: =

(Hy) : La série Y I,, est alternée d’aprés la premiére question de ['exercice.

(Ha) : La suite (|1,|),cy est donc décroissante.

(Hs) : Pour u € [0,7], f(u-+nm)|sin(u+nm)| < f(nr) car f est décroissante
donc 0 < |I,| = [ f (u+nm) |sin (u+nm)|du < [ f (n7) du =7 f (nm) o 0.
On en déduit que lim I, = 0.

n—+oo
La série Y I, converge donc la suite (S,,) converge donc

la suite (F' (n7)),ene = (Sne1)pen» converge vers une limite L. (simple décalage d’indice).

R 12 Onan, = {E

J doncnw§§<nw+1 donc nym <z < (ny+1)7. On a donc
T T

|F (z) = F (nom)| = | [y f () sin (¢)dt — [;=" f (t)sin (t) dt| = ‘fn L (@)sin(t)dt] < [7 | f(t)sin(t)|dt donc
|F (z) — F (nym)| < fnzﬂf tydt < [ f (nem)dt = (x —n,m) f (nom) < wf (nym).car f est décroissante.
R 13 Ona£—1<nx donc lir+n ng = +00.
T z——+00
On en déduit, par composition des limites, que lirJlrﬂ wf (nem) =0 et lir+n F (n,m) = L.
Linégalité |F (x) — F (n,7)| < wf (n,7m) entraine que lirf F (x) = L donc lintégrale généralisé I est convergente.

R 14 Comme précédemment,

(nt+1)r [sin (1)] 1 (1) _ 2
b 0 G D e POl = e S T

Orln((n+1)m)=In(n+ 1)+In(xr) etln(n+ 1) = In (n)+In (1 + %) =In (n)—l—n_groo (In(n)) doncln (n+ 1) e
In (n).

2
On en déduit v, ~ ———0.
n—+oo 0 In (n)

noté u,,.

1
D’aprés la premliére partie, la série nin (1) diverge donc
n(n
(nanyr (S|
la série > u, diverge donc la série f mdt diverge.
n
i (v [sin(t)] (k1) |sin (t)]
déduit — ———dt ATP
On en déduit que [ txln() ka P (l) njoo—l—oo(s )
sin (1)

donc f+°o Isin ()]

dt ne converge pas absolument.
T Ixn(t) Jer

dt ne converge pas donc fe m
n



.1 Etude de la convergence absolue de I’intégrale [

sin (t
Exercice 1 On pose, pour t € |0, +o0[, f (t) = %
1. Montrer que fo t) dt est une intégrale convergente.
2. Montrer que fl t)dt est une intégrale convergente (on pourra effectuer une intégration par parties).

3. Justifier 'inégalité |sin (t)| > sin® (t) et en déduire que l’intégrale généralisée fﬁoo f(t)dt n'est pas absolu-
ment convergente. La fonction f est-elle intégrable sur |0, +oo[?

Exercice 2 On reprend [’exercice précédent avec une autre méthode.

On pose 1, — frg:ﬂ) sm( )dt ot f(n+1)7r sin )’dt
» sin ( » sin (t)
1. Mont n = n =
ontrer que u D"/ t+n7r 0t+n7r
2. Montrer que ————— T fo sin (¢)| dt < v, § — fo |sin ()] dt.

3. En déduire que la série Y u, converge et que la série Y v, diverge.

4. En déduire que [_ oo sm( )dt converge.et f smt( >‘dt diverge.
(=1)"sin (2) o ‘
5. () On pose, pourn > 1 ett € [0,7], f, () = BT Montrer que la série de fonctions . f, converge
nm

uniformément sur [0, 7]. Montrer qu’il existe une fonction ¢ : [0,1] — R continue telle que
o0 Sin (¢ n
j;:_ Slnt( )dt —_ fo 90 (t) dt

Attention 2 La convergence d’une série numérique »  u, entraine lim, ., u, = 0. La convergence de ”intégrale
R . .
généralisée [ f (t) dt n'entraine pas que lim o f = 0.

I Lien entre convergence de I’intégrale et limite en ’infini

Exercice 3 Soit un réel a et une fonction f définie et continue par morceauzr sur [a,+oo[ & valeur dans R.

1. Montrer que si ['intégrale généralisée fa+oo f(t)dt est convergente et que f admet une limite | en +o00, alors
[=0.

2. Montrer que si l’intégrale généralisée f:oo f(t)dt est convergente et que f est monotone, alors [ admet une
limite 0 en +o0.

3. On pose I = 1 > cos (t2) dt. Montrer que lintégrale I est convergente. En déduire qu’il existe des fonctions

f continue sur [a,+o0] & valeur dans R.telles que l'intégrale généralisée f:oo f(t)dt est convergente mais
qut n’admette pas de limite en +00.

Exercice 4 Construction d’une fonction continue positive non bornée intégrable sur [2,400].

On définit la fonction f sur lintervalle [2,+o0o[ de la maniére suivante: soit n € N*. La restriction de la fonction
f au segment [n n+ 7 3] est affine et vérifie f (n) =0 et f (n + #) = n. La restriction de la fonction [ au
segment [n + an,n + ] est affine et vérifie f (n + %) = 0 et la restriction de f a l'intervelle [n + n—lg,n +1 [
Donner Uallure de la représentation graphique de f. Justifier que la fonction f est continue et n’est pas bornée.
Montrer que f est intégrable sur [2,400].



