
DM 14 pour le 26 janvier 2026

Exercice 1:

On s�intéresse à la nature de l�intégrale généralisée I =
R +1
1

cos (t2) dt.

Q 1 Montrer que l�intégrale généralisée
R +1
1

sin (u)

u3=2
du converge. (indication: comparaison)

Q 2 En déduire que l�intégrale généralisée
R +1
1

cos (u)p
u
du converge. (indication: IPP pour augment la puis-

sance au dénominateur)

Q 3 En déduire que l�intégrale généralisée I est convergente. (indication: u (t) =
p
t dans l�intégrale précé-

dente)

Q 4 La fonction f : t 7! cos (t2) admet-elle une limite en +1. (indication: Trouver (an) et (bn) de limite
+1 telles que f (an) et f (bn) n�ont pas la même limite)

Exercice 2:

Etude de la convergence d�une série et d�intégrales généralisées

Soit � 2 R

Q 5 Etudier, suivant la valeur de �, à l�aide d�un changement de variable, la nature de l�intégrale généraliséeR +1
e

1

t� ln (t)�dt. (indication: se ramener aux intégrales de Riemann par changement de variable)

Q 6 En déduire la nature de la série
P 1

n� ln (n)� . (indication: faire une comparaison série intégrale

Q 7 Montrer que l�intégrale généralisée
R +1
e

sin (t)

t� ln (t)dt converge. (indication: IPP )

Q 8 L�intégrale généralisée
R +1
1

sin (t)

t� ln (t)dt converge-t-elle?.(indication: comparaison équivalent)

Etude de la convergence d�une intégrale généralisée

Soit f : [0;+1[* R une fonction continue décroissante et admettant une limite nulle en +1.
Le but de l�exercice est de montrer la convergence de l�intégrale généralisé I =

R +1
0

f (t) sin (t) dt.
Pour x � 0, on pose F (x) =

R x
0
f (t) sin (t) dt.

Pour n 2 N, on pose In =
R (n+1)�
n�

f (t) sin (t) dt.

Q 9 Déterminer le signe de In. (indication: distinguer suivant la parité de n)

Q 10 Justi�er que jInj =
R (n+1)�
n�

f (t) jsin (t)j dt =
R �
0
f (t+ n�) sin (t) dt.

(indication: première égalité: distinguer suivant la parité de n
deuxième égalité: changement de variable a¢ ne et jsin(t+ �j =?)

Q 11 Justi�er que la suite (jInj)n2N est décroissante.
(indication: question précédente et décroissance de f)
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Q 12 En déduire que la suite (F (n�))n2N converge.
(indication: CSSA.en écrivant F (n�) comme somme partielle de série (distinction parité de k pour
signe de Ik et utilisation des hypothèses sur f (sans toucher à l�intérieur de l�intégrale à jsin (x)j)
pour majoration en vue de limtie de jIkj
On note L la limite de cette suite.

Q 13 Soit x � 0. On pose nx =
jx
�

k
. Montrer que jF (x)� F (nx�)j � �f (nx�).(indication: même type de

majoration que dans la question précédente)

Q 14 En déduire que l�intégrale généralisé I est convergente.

Q 15 En s�inspirant des calculs précédents, montrer que
R +1
�

sin (t)

t� ln (t)dt ne converge pas absolument:.(indication:

même type de calcul minoration sans toucher à l�intérieur de l�intégrale à jsin (x)j
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Exercice 1:

R 1 La fonction f : u 7! sin (u)

u3=2
est continue sur [1;+1[.

De plus, 0 � jf (u)j � 1

u3=2
et
R +1
1

1

u3=2
du converge donc.

R +1
1

sin (u)

u3=2
du converge.

R 2 Sous réserve de convergence, l�IPP avec v0 (u) = cos (u) et w (u) =
1p
u
donneR +1

1

cos (u)p
u
du =

�
�sin (u)p

u

�+1
1

�
R +1
1

sin (u)

2u3=2
du.

Or lim
u!+1

sin (u)p
u

= 0 car sin est bornée et
R +1
1

sin (u)

2u3=2
du converge donc

R +1
1

cos (u)p
u
du converge.

R 3 La fonction u : t 7! t2 est une bijection de classe C1 strictement croissante de ]1;+1[ sur ]1;+1[.
Sous réserve de convergence, le changement de variable donne

I =
R +1
1

cos (t2) dt =
R +1
1

cos (t2)

2t
2tdt =

R +1
1

cos (u)

2
p
u
du qui converge donc I converge.

R 4 Posons un =
p
2n� et vn =

p
2n� + �. On a f (un) = 1 et f (vn) = �1.

Si f admettait une limite l en +1, alors, par composition des limites, on aurait lim
n!+1

f (un) = lim
n!+1

f (vn) = l,

ce qui contredit ce qui précède donc la fonction f n�admet pas en +1.

Exercice 2:

Etude de la convergence d�une série et d�intégrales généralisées

R 5 Posons u (t) = ln (t). La fonction u est de classe C1 et strictement croissante sur ]e;+1[.
Sous réserve de convergence

R +1
e

1

t� ln (t)�dt =
R lim+1 u

ln(e)

1

u�
du =

R +1
1

1

u�
du qui converge ssi � > 1 doncR +1

e

1

t� ln (t)�dt converge ssi � > 1.

R 6 Si k � 2 et t 2 [k; k + 1] alors 0 < k � ln (k)� � t� ln (t)� � (k + 1)� ln (k + 1)�

donc
1

(k + 1)� ln (k + 1)� �
1

t� ln (t)� �
1

k � ln (k)� et en intégrant ces inégalités entre k et k + 1,
1

(k + 1)� ln (k + 1)� �
R k+1
k

1

t� ln (t)� �
1

k � ln (k)�
Premier cas: � > 1
On en déduit que si k � 3, alors 1

(k)� ln (k)� �
R k
k�1

1

t� ln (t)�dt

donc
nP
k=3

1

(k)� ln (k)� �
R n
2

1

t� ln (t)�dt �
R +1
2

1

t� ln (t)�dt donc les sommes partielles de la série
P 1

n� ln (n)�

sont majorées donc la série
P 1

n� ln (n)� converge.
Deuxième cas: � � 1
De même si k � 2, alors 1

(k)� ln (k)� �
R k+1
k

1

t� ln (t)�dt donc
nP
k=2

1

(k)� ln (k)� �
R n+1
2

1

t� ln (t)�dt.

Or lim
n!+1

R n+1
2

1

t� ln (t)�dt = +1 car
R +1
e

1

t� ln (t)�dt diverge et
1

t� ln (t)� � 0.

On en déduit que lim
n!+1

nP
k=2

1

(k)� ln (k)� = +1 donc la série
P 1

n� ln (n)� diverge.
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R 7 La fonction t 7! sin (t)

t� ln (t) est dé�nie et continue sur [e;+1[

E¤ectuons, sous réserve de convergence une IPP avec u (t) =
1

t� ln (t) et v (t) = � cos (t).

On a lim
t!+1

u (t) v (t) = 0 car cos est bornée.

On en déduit que
R +1
e

sin (t)

t� ln (t)dt = [u (t) v (t)]
t*+1
e �

R +1
e

(ln (t) + 1) cos (t)

(t� ln (t))2
dt.

Or

����(ln (t) + 1) cos (t)(t� ln (t))2

���� � ���� (ln (t) + 1)(t� ln (t))2

���� �
t!+1

1

t2 � ln (t) = o
t!+1

�
1

t2

�
.

Or t 7! 1

t2
est intégrable sur [e;+1[

donc t 7! 1

t2 � ln (t) est intégrable sur [e;+1[

donc t 7! (ln (t) + 1)

(t� ln (t))2
est intégrable sur [e;+1[

donc t 7! (ln (t) + 1) cos (t)

(t� ln (t))2
est intégrable sur [e;+1[

donc
R +1
e

(ln (t) + 1) cos (t)

(t� ln (t))2
dt converge donc

R +1
e

sin (t)

t� ln (t)dt converge.

R 8 La fonction t 7! sin (t)

t� ln (t) est dé�nie et continue sur ]1;+1[.

On a ln (t) �
t!1

t � 1 donc sin (t)

t� ln (t) �
t!1

sin (1)

t� 1 > 0 et
R e
1

1

t� 1dt diverge donc
R e
1

sin (t)

t� ln (t)dt diverge doncR +1
1

sin (t)

t� ln (t)dt diverge:

Etude de la convergence d�une intégrale généralisée

Attention 1 La fonction f est décroissante donc 8x 2 [0;+1[, f (x) � lim
+1
f = 0 donc f est positive.

R 9 Soit k 2 N.

� Si t 2 [2k�; (2k + 1) �] ; alors sin (t) � 0 et f est positive donc I2k � 0.

� Si t 2 [(2k + 1) �; (2k + 2) �] ; alors sin (t) � 0 et f est positive donc I2k+1 � 0.

Soit k 2 N.
- Si t 2 [2k�; (2k + 1) �] ; alors sin (t) � 0 donc I2k � 0 et
jI2kj = I2k =

R (2k+1)�
2k�

f (t) sin (t) dt =
R (2k+1)�
2k�

f (t) jsin (t)j dt.
- Si t 2 [(2k + 1) �; (2k + 2) �] ; alors sin (t) � 0 donc I2k+1 � 0.et
jI2k+1j = �I2k+1 =

R (2k+2)�
(2k+1)�

f (t)� (� sin (t)) dt =
R (2k+2)�
(2k+1)�

f (t) jsin (t)j dt.
On a donc jInj =

R (n+1)�
n�

f (t) jsin (t)j dt.
Le changement de variable u (t) = t� n� donne jInj =

R �
0
f (u+ n�) jsin (u+ n�)j du

Or sin (u+ �) = � sin (u) donc jsin (u+ n�)j = jsin (u)j donc u 7! jsin (u)j est �-périodique donc
jInj =

R �
0
f (u+ n�) jsin (u)j du =

R �
0
f (u+ n�) sin (u) du.

R 10 La fonction f est décroissante donc si u 2 [0; �] alors f (u+ (n+ 1) �) � f (u+ n�) et sin (u) � 0 donc
f (u+ (n+ 1) �) sin (u) � f (u+ n�) sin (u) donc, en utilisant la question précédente, jIn+1j � jInj : La suite
(jInj)n2N est donc décroissante.
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R 11 On a F (n�) =
R n�
0
f (t) jsin (t)j dt =

n�1P
k=0

Ik = Sn�1 avec Sn =
nP
k=0

Ik somme partielle de la série
P
In.

Appliquons le CSSA:
(H1) : La série

P
In est alternée d�après la première question de l�exercice.

(H2) : La suite (jInj)n2N est donc décroissante.
(H3) : Pour u 2 [0; �], f (u+ n�) jsin (u+ n�)j � f (n�) car f est décroissante
donc 0 � jInj =

R �
0
f (u+ n�) jsin (u+ n�)j du �

R �
0
f (n�) du = �f (n�) !

n!+1
0.

On en déduit que lim
n!+1

In = 0.

La série
P
In converge donc la suite (Sn) converge donc

la suite (F (n�))n2N� = (Sn�1)n2N� converge vers une limite L. (simple décalage d�indice).

R 12 On a nx =
jx
�

k
donc nx �

x

�
< nx + 1 donc nx� � x < (nx + 1) �. On a donc

jF (x)� F (nx�)j =
��R x
0
f (t) sin (t) dt�

R nx�
0

f (t) sin (t) dt
�� = ���R xnx� f (t) sin (t) dt��� � R xnx� jf (t) sin (t)j dt donc

jF (x)� F (nx�)j �
R x
nx�
f (t) dt �

R x
nx�
f (nx�) dt = (x� nx�) f (nx�) � �f (nx�).car f est décroissante.

R 13 On a
x

�
� 1 < nx donc lim

x!+1
nx = +1.

On en déduit, par composition des limites, que lim
x!+1

�f (nx�) = 0 et lim
x!+1

F (nx�) = L.

L�inégalité jF (x)� F (nx�)j � �f (nx�) entraîne que lim
x!+1

F (x) = L donc l�intégrale généralisé I est convergente.

R 14 Comme précédemment,R (n+1)�
n�

jsin (t)j
t� ln (t)dt �

1

(n+ 1) � ln ((n+ 1) �)

R (n+1)�
n�

jsin (t)j dt = 2

(n+ 1) � ln ((n+ 1) �)
noté un.

Or ln ((n+ 1) �) = ln (n+ 1)+ln (�) et ln (n+ 1) = ln (n)+ln
�
1 +

1

n

�
= ln (n)+ o

n!+1
(ln (n)) donc ln (n+ 1) �

n!+1

ln (n).

On en déduit un �
n!+1

2

�n ln (n)
.

D�après la premlière partie, la série
P 1

n ln (n)
diverge donc

la série
P
un diverge donc la série

P R (n+1)�
n�

jsin (t)j
t� ln (t)dt diverge:

On en déduit que
R (n+1)�
�

jsin (t)j
t� ln (t)dt =

nP
k=1

R (k+1)�
k�

jsin (t)j
t� ln (t)dt !

n!+1
+1 (SATP)

donc
R +1
�

jsin (t)j
t� ln (t)dt ne converge pas donc

R +1
e

sin (t)

t� ln (t)dt ne converge pas absolument:
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.1 Etude de la convergence absolue de l�intégrale I

Exercice 1 On pose, pour t 2 ]0;+1[, f (t) = sin (t)

t

1. Montrer que
R 1
0
f (t) dt est une intégrale convergente.

2. Montrer que
R +1
1

f (t) dt est une intégrale convergente (on pourra e¤ectuer une intégration par parties).

3. Justi�er l�inégalité jsin (t)j � sin2 (t) et en déduire que l�intégrale généralisée
R +1
1

f (t) dt n�est pas absolu-
ment convergente. La fonction f est-elle intégrable sur ]0;+1[?

Exercice 2 On reprend l�exercice précédent avec une autre méthode.

On pose un =
R (n+1)�
n�

sin (t)

t
dt et vn =

R (n+1)�
n�

����sin (t)t
���� dt, n � 1

1. Montrer que un = (�1)n
R �
0

sin (t)

t+ n�
dt et vn =

R �
0

sin (t)

t+ n�
dt.

2. Montrer que
1

(n+ 1) �

R �
0
jsin (t)j dt � vn �

1

n�

R �
0
jsin (t)j dt.

3. En déduire que la série
P
un converge et que la série

P
vn diverge.

4. En déduire que
R +1
�

sin (t)

t
dt converge.et

R +1
�

����sin (t)t
���� dt diverge.

5. (�) On pose, pour n � 1 et t 2 [0; �], fn (t) =
(�1)n sin (t)
t+ n�

. Montrer que la série de fonctions
P
fn converge

uniformément sur [0; �]. Montrer qu�il existe une fonction ' : [0; 1]! R continue telle queR +1
�

sin (t)

t
dt =

R �
0
' (t) dt.

Attention 2 La convergence d�une série numérique
P
un entraîne lim+1 un = 0. La convergence de l�intégrale

généralisée
R +1
a

f (t) dt n�entraîne pas que lim+1 f = 0.

I Lien entre convergence de l�intégrale et limite en l�in�ni

Exercice 3 Soit un réel a et une fonction f dé�nie et continue par morceaux sur [a;+1[ à valeur dans R.

1. Montrer que si l�intégrale généralisée
R +1
a

f (t) dt est convergente et que f admet une limite l en +1, alors
l = 0.

2. Montrer que si l�intégrale généralisée
R +1
a

f (t) dt est convergente et que f est monotone, alors f admet une
limite 0 en +1.

3. On pose I =
R +1
1

cos (t2) dt. Montrer que l�intégrale I est convergente. En déduire qu�il existe des fonctions
f continue sur [a;+1[ à valeur dans R.telles que l�intégrale généralisée

R +1
a

f (t) dt est convergente mais
qui n�admette pas de limite en +1.

Exercice 4 Construction d�une fonction continue positive non bornée intégrable sur [2;+1[.
On dé�nit la fonction f sur l�intervalle [2;+1[ de la manière suivante: soit n 2 N�. La restriction de la fonction
f au segment

�
n; n+ 1

2n3

�
est a¢ ne et véri�e f (n) = 0 et f

�
n+ 1

2n3

�
= n. La restriction de la fonction f au

segment
�
n+ 1

2n3
; n+ 1

n3

�
est a¢ ne et véri�e f

�
n+ 1

n3

�
= 0 et la restriction de f à l�intervelle

�
n+ 1

n3
; n+ 1

�
.

Donner l�allure de la représentation graphique de f . Justi�er que la fonction f est continue et n�est pas bornée.
Montrer que f est intégrable sur [2;+1[.
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