

À rendre le mardi 17 octobre 2023 dernier délai.

Vous pouvez au choix rédiger deux exercices seul, ou les trois en binôme. Essayez de jouer le jeu : cherchez à deux et discutez/validez la solution de l'autre.

1 Un résultat classique... amélioré

On s'intéresse ici aux endomorphismes de E (\mathbb{K} -espace vectoriel de dimension finie) vérifiant certaines propriétés simples.

- 1. Tout d'abord, on cherche les $u \in \mathcal{L}(E)$ vérifiant « pour tout $x \in E : (x, u(x))$ est liée », propriété notée \mathcal{P}_1 .
 - (a) Constater 1 que les homothéties $x \mapsto \lambda x$ vérifient bien la propriété \mathcal{P}_1 !

 Réciproquement, on fixe dans la suite u vérifiant \mathcal{P}_1 . On souhaite montrer que c'est une homothétie. On fixe $\mathcal{E} = (e_1, ..., e_n)$ une base de E.
 - (b) Quelle est la forme de la matrice de u dans la base \mathcal{E} ?
 - (c) En considérant $u(e_1 + e_2)$, affiner le résultat précédent et conclure.
- 2. On fixe maintenant $y_0 \in E$ non nul, et on cherche les $u \in \mathcal{L}(E)$ vérifiant « pour tout $x \in E$: $(x, u(x), y_0)$ est liée », propriété notée \mathcal{P}_2 .
 - (a) Soient $\varphi \in \mathcal{L}(E, \mathbb{K})$ et $\lambda \in \mathbb{K}$. Montrer que l'application $x \mapsto \lambda x + \varphi(x)y_0$ vérifie \mathcal{P}_2 . Réciproquement, soit u vérifiant \mathcal{P}_2 . On souhaite montrer que u est bien de ce type.
 - (b) On choisit $\mathcal{F} = (f_1, ..., f_n)$ une base dont le premier vecteur est $f_1 = y_0$. Quelle est la forme de la matrice de u dans la base \mathcal{F} ?
 - (c) En considérant $u(f_2 + f_3)$, affiner le résultat précédent (sur la diagonale).
 - (d) En considérant $u(f_1 + f_2)$, affiner le résultat précédent (sur la première colonne).
 - (e) En fixant λ « comme on pense », considérer $u \lambda Id_E$ et conclure.
- 3. [Facultatif] Les résultats précédents sont-ils maintenus si E est de dimension infinie? Justifier!

2 Un exercice d'oral

- 1. Soit $P \in \mathbb{R}[X]$ tel que P(X+1) + P(X) = 0. Montrer que P = 0.
- 2. Recommencer, mais de façon moins fumeuse.
- 3. Soit $n \in \mathbb{N}$. Montrer qu'il existe un unique $P_n \in \mathbb{R}[X]$ tel que $P_n(X+1) + P_n(X) = X^n$.
- 4. Pour $n \ge 1$, trouver une relation entre P'_n et P_{n-1} . En déduire un moyen pour calculer itérativement les P_n .
- 5. Calculer P_n pour $n \leq 3$.

3 Algèbre linéaire : commutant d'une matrice

Dans tout cet exercice, $A = \begin{pmatrix} 2 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 2 \end{pmatrix}$. C(A) désigne l'ensemble des matrices $B \in \mathcal{M}_3(\mathbb{R})$ telles

que AB = BA, et enfin $\mathbb{R}[A]$ désigne l'ensemble des matrices de la forme P(A), pour $P \in \mathbb{R}[X]$, avec la définition usuelle de P(A): si $P = p_0 + p_1X + \cdots + p_nX^n$, on a $P(A) = p_0I_3 + p_1A + \cdots + p_nA^n$.

 $^{1. \ \,}$ Il s'agit d'écrire une phrase qui me montre que vous avez compris la question...

- 1. Montrer que $\mathcal{C}(A)$ et $\mathbb{R}[A]$ sont deux sous-espaces de $\mathcal{M}_3(\mathbb{R})$. Etablir l'inclusion de l'un dans l'autre (oui, à vous de plisser les yeux avant de décider laquelle!).
- 2. Montrer que $A^2 = \lambda A + \mu I_3$, avec λ et μ à préciser.
- 3. En utilisant le résultat précédent, montrer que $\mathbb{R}[A]$ est de dimension 2.
- 4. Soit $B = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$. Résoudre AB BA = 0 (les inconnues étant a, b, ..., h, i) puis déterminer une base de $\mathcal{C}(A)$ ainsi que sa dimension.

Dans la suite, on se propose de retrouver ce résultat de façon un peu plus géométrique...

- 5. Notons u l'endomorphisme de $E=\mathbb{R}^3$ canoniquement associé à A. Déterminer une base de $E_1=\mathrm{Ker}\,(u-\mathrm{Id}_E)$ et une base de $E_2=\mathrm{Ker}\,(u-3\mathrm{Id}_E)$.
- 6. Montrer que E_1 et E_2 sont supplémentaires.
- 7. Montrer que $v \in \mathcal{L}(E)$ commute avec u si et seulement si $v(E_1) \subset E_1$ et $v(E_2) \subset E_2$.
- 8. On note C(u) l'ensemble des endomorphismes de E qui commutent avec u. Montrer que l'application

$$\Phi \parallel \mathcal{C}(u) \longrightarrow \mathcal{L}(E_1) \times \mathcal{L}(E_2)$$

$$v \longmapsto (v|_{E_1}, v|_{E_2})$$

est un isomorphisme.

9. En déduire la dimension de C(u), puis celle de C(A).

On pourra admettre le résultat suivant : si F et G sont deux espaces vectoriels de dimension finie, alors $F \times G$ aussi, avec $\dim(F \times G) = \dim F + \dim G$.

Vous pouvez aussi prendre le temps de l'établir...