

Suites et séries numériques

1 Suites réelles

1.1 Convergences

Exercice 1 – Mines 2022 [5/10] - Anna B.

On considère la suite (u_n) donnée par la condition initiale $u_0 = a$ et la relation $u_{n+1} = \frac{u_n}{n+1} + 1$, valable pour tout $n \in \mathbb{N}$.

- 1. Montrer que s'il existe a tel que (u_n) converge, alors c'est le cas pour tout a.
- 2. Dans le cas a = 1, calculer u_n , puis montrer que (u_n) converge, et donner sa limite.

Exercice 2 - Mines 2021 [3/10] - Louis G.

- 1. Montrer que pour tout $n \in \mathbb{N}$ il existe un unique réel u_n tel que $u_n e^{u_n} = n$.
- 2. Donner un équivalent de u_n lorsque $n \xrightarrow[n \to +\infty]{} +\infty$.

Exercice 3 - Centrale 2010 [7/10]

Déterminer la limite lorsque $n \to \infty$ de $\left(e - \left(1 + \frac{1}{n}\right)^n\right)^{\sqrt{n^2 + 2} - \sqrt{n^2 + 1}}$.

Exercice 4 – $u_{n+1} = f(u_n) [5/10]$

Étudier, en fonction de la valeur u_0 , le comportement des suites (u_n) vérifiant la relation $u_{n+1} = f(u_n)$ pour tout $n \in \mathbb{N}$, avec $f: x \mapsto 1 + x - \frac{\sqrt{1+x^2}}{2}$.

Exercice 5 – Récurrence linéaire d'ordre 2 [3/10]

Déterminer les suites $(g_n)_{n\in\mathbb{N}}$ vérifiant $g_{n+2}=999\,g_{n+1}-g_n$ et qui sont bornées.

Exercice 6 - Centrale 2024 [9/10] - Léane F.

J'ai enrichi l'exercice posé. La fin est difficile mais le début permet d'aider aux questions suivantes. Sans les deux dernières questions, cet exercice est noté 7/10 en difficulté.

On définit, pour $a \in \mathbb{R}_+$ fixé, la suite $(u_n(a))_{n\geqslant 1}$ par $u_1(a)=a$ et, pour tout $n \in \mathbb{N}: u_{n+1}(a)=u_n(a)^2+\frac{1}{n+1}$.

- 1. Montrer que si $(u_n(a))_{n\geqslant 1}$ possède une limite, alors celle-ci vaut forcément 0, 1 ou $+\infty$. Dans la suite, on note E_ℓ l'ensemble des $a\geqslant 0$ tels que $u_n(a)\underset{n\to +\infty}{\longrightarrow} \ell$.
- 2. (a) Montrer que s'il existe $n_0 > 0$ tel que $u_{n_0}(a) > 1$ alors $u_n(a) \underset{n \to +\infty}{\longrightarrow} +\infty$.
 - (b) Montrer que si a < b alors pour tout n > 0 on a $u_n(a) < u_n(b)$.
 - (c) Montrer que s'il existe n_0 tel que $u_{n_0+1}(a) < u_{n_0}(a)$, alors $(u_n(a))_{n \ge n_0}$ est décroissante.
- 3. On admet dans la suite que $u_n(0) \underset{n \to +\infty}{\longrightarrow} 0$.
 - (a) Montrer que E_0 , E_1 et $E_{+\infty}$ sont des intervalles de \mathbb{R}_+ .

- (b) Montrer que $E_0 \cup E_1 \cup E_{+\infty} = \mathbb{R}_+$.
- (c) [Plus difficile] Montrer que $E_{+\infty}$ est ouvert et contient 1.
- (d) [Beaucoup plus difficile] Montrer que E_0 est de la forme $[0, \alpha[$.
- (e) [Vraiment difficile à mon avis] Montrer que E_1 est un singleton.

1.2 Comportements asymptotiques

Exercice 7 - CCP 2015 [8/10]

Pour $n \in \mathbb{N}^*$, on considère l'équation :

$$x^{n} + x^{n-1} + \dots + x^{2} + x = 1 \tag{E_n}$$

- 1. Montrer qu'il existe un unique u_n solution de (E_n) sur $[0, +\infty[$.
- 2. Montrer que $(u_n)_{n\in\mathbb{N}}$ converge et déterminer sa limite ℓ .
- 3. Donner un équivalent simple de $u_n \ell$.

Exercice 8 - TPE 2015 et 2018 [6/10]

On considère une suite (u_n) de premier terme $u_0>0$ et vérifiant la relation de récurrence :

$$\forall n \in \mathbb{N}, \qquad u_{n+1} = u_n + u_n^2$$

- 1. Étudier la convergence de $(u_n)_{n\in\mathbb{N}}$.
- 2. On définit, pour $n \in \mathbb{N}$: $v_n = \frac{\ln u_n}{2^n}$. En considérant $v_{n+1} v_n$, montrer la convergence de $(v_n)_{n \in \mathbb{N}}$.

Exercice 9 - Une asymptote [4/10]

Montrer que le graphe de l'application $x \neq 0 \mapsto (x+5)\mathrm{e}^{-1/x}$ possède une asymptote. Donner les positions relatives du graphe et de son asymptote.

Exercice 10 – Un équivalent pour une suite hypergéométrique [6/10]

Déterminer un équivalent simple de $\sum_{k=1}^{n} k^k$ lorsque n tend vers $+\infty$.

2 Séries à termes positifs

2.1 Des convergences; cas concrets

Exercice 11 - CCP [3/10]

- 1. Soit $(u_n)_{n\in\mathbb{N}}$ une suite de réels strictement positifs, telle que $\frac{u_{n+1}}{u_n} \xrightarrow[n \to +\infty]{} \ell \in [0,1[$. Montrer que $\sum u_n$ converge.
- 2. Déterminer la nature de $\sum \frac{n}{(3n+1)!}$

Exercice 12 – Avec Arccos [6/10]

La série $\sum_{n\in\mathbb{N}} \operatorname{Arccos}\left(\frac{2}{\pi}\operatorname{Arctan}(n^2)\right)$ est-elle convergente?

Exercice 13 - CCP [5/10]

Nature des séries de terme général $u_n = \frac{1}{n^{1+1/n}}$ et $v_n = \frac{\ln(n^n)}{(\ln n)^n}$.

Exercice 14 - CCP [6/10]

Soit $\alpha \in \mathbb{R}$. Donner la nature des séries de terme général $u_n = \left(n \sin \frac{1}{n}\right)^{n^{\alpha}}$ et $v_n = \left(n \sin \frac{1}{n}\right)^{n^2} - \mathrm{e}^{-1/6}$.

2

Exercice 15 - TPE 2015 [6/10]

Soit
$$f: x \longmapsto \begin{cases} 0 & \text{si } x = 0 \\ e^{-1/x^2} & \text{sinon} \end{cases}$$

On définit la suite $(u_n)_{n\in\mathbb{N}}$ par son premier terme $u_0=3$ et la relation de récurrence :

$$\forall n \in \mathbb{N}, \quad u_{n+1} = f(u_n)$$

- 1. Prouver que f est de classe \mathcal{C}^1 sur \mathbb{R} .
- 2. Étudier la monotonie et la convergence de $(u_n)_{n\in\mathbb{N}}$.
- 3. Étudier la convergence de $\sum u_n$.

Exercice 16 – En prévision des séries de fonctions [5/10]

Pour quels $x \in \mathbb{R}$ la série $\sum_{n \in \mathbb{N}} \frac{n^x}{2^n}$ est-elle convergente? Et (pour x > 0) $\sum_{n \in \mathbb{N}} n^2 x^{-n}$?

Exercice 17 – Séries de Bertrand; frontière du cours [5/10] Soient $\alpha, \beta > 0$.

- 1. Montrer que la série $\sum_{n\in\mathbb{N}}\frac{1}{n^{\alpha}(\ln n)^{\beta}}$ converge si et seulement si $\alpha>1$ ou $(\alpha=1 \text{ et } \beta>1)$.
- 2. Donner un équivalent des sommes partielles lorsque $(\alpha, \beta) = (1, 1)$.
- 3. Soit $\gamma > 0$. La série $\sum_{n \in \mathbb{N}} \frac{1}{n \ln n \left(\ln(\ln n)\right)^{\alpha}}$ est-elle convergente?

Exercice 18 - *Mines* [4/10]

On considère la suite de terme général $a_n=\frac{1}{n}+\frac{1}{n+1}+\cdots+\frac{1}{3n}$. Montrer que $(a_n)_{n\in\mathbb{N}}$ converge. Quelle est sa limite?

Des convergences : situations plus théoriques

Exercice 19 - CCINP 2022 [6/10] - Anna B.

Soit $(a_n)_{n>0}$ une suite de réels positifs. On définit la suite $(u_n)_{n>0}$ de la façon suivante :

$$\forall n \in \mathbb{N}^*, \qquad u_n = \frac{a_n}{(1+a_1)(1+a_2)\cdots(1+a_n)}$$

- 1. Exprimer $u_1 + u_2$ à l'aide de $\frac{1}{(1+a_1)(1+a_2)}$ puis généraliser.
- 2. Montrer que $\sum u_n$ converge.
- 3. Calculer $\sum_{n=1}^{+\infty} u_n$ lorsque $a_n = \frac{1}{\sqrt{n}}$.

Exercice 20 – Classique mais délicat : X 2011, mais aussi Centrale, Mines, CCP... [8/10] Soit $\sum_{n} a_n$ une série convergente de réels positifs, avec (a_n) décroissante. Montrer : $a_n = o(1/n)$.

Exercice 21 – Règle de Duhamel – vieillerie absurde [7/10]

On suppose que $\sum_{n\in\mathbb{N}} u_n$ est une série de réels strictement positifs tels que $\frac{u_{n+1}}{u_n} = 1 - \frac{\alpha}{n} + o(1/n)$.

— si $\alpha > 1$ alors $\sum_{n\in\mathbb{N}} u_n$ converge;

— si $\alpha < 1$ alors $\sum_{n\in\mathbb{N}} u_n$ diverge.

3

On pourra comparer u_n à $\frac{1}{n^{\beta}}$, avec β coincé strictement entre α et 1: en posant $r_n = \frac{u_n}{1/n^{\alpha}}$, que dire $de \frac{r_{n+1}}{r_n}$?

Exercice 22 – Peut-être lié à ce qui précède... [4/10]

Donner, en fonction de $a, b \in \mathbb{R} \setminus \mathbb{Z}^-$, la nature de $\sum_{n \in \mathbb{N}} \frac{a(a+1)...(a+n)}{b(b+1)...(b+n)}$.

Exercice 23 - Centrale 2017 [7/10]

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle. On souhaite étudier la propriété : $u_n \sim \frac{1}{n}$ si et seulement si $u_n + u_{n+1} \sim \frac{2}{n}$

- 1. Montrer l'implication directe.
- 2. On suppose (u_n) monotone. Montrer alors l'équivalence.
- 3. Sans l'hypothèse de monotonie, le résultat est-il vrai?

Exercice 24 - Centrale 2017 [7/10]

Soit $a \in \mathbb{R}_+$. On pose, pour tout $n \in \mathbb{N}^*$: $u_n = \prod_{k=1}^n \left(1 + \frac{k^a}{n^2}\right)$.

- 1. On suppose : a = 2. Montrer que $(u_n)_{n>0}$ diverge.
- 2. On suppose : $a \in [0, 1]$.
 - (a) Étudier la convergence de $a_n = \sum_{k=1}^n \frac{k^a}{n^2}$ et, en cas de convergence, trouver la limite.
 - (b) Même question avec $(u_n)_{n\in\mathbb{N}}$.

2.3 Calculs de somme

Exercice 25 – Ce sera plus facile dans quelques semaines [5/10] Justifier la convergence et calculer la valeur de la somme de $\sum_{n\in\mathbb{N}} \frac{n}{2^n}$

N'y aurait-il pas lieu de faire intervenir $f_N: x \mapsto \sum_{n=0}^N x^n$? La quantité $f_N'(1/2)$ doit être intéressante...

Exercice 26 - St Cyr 2009 [2/10]

Calculer
$$\sum_{n=0}^{+\infty} \frac{1}{n^2 + 3n + 2}$$

2.4 Divers

Exercice 27 - CCINP [5/10]

Soit $f \in \mathcal{C}^1(\mathbb{R}^+, \mathbb{R}_+^*)$. On suppose : $\frac{f'(x)}{f(x)} \underset{x \to +\infty}{\longrightarrow} \ell \in \mathbb{R}$. Montrer que : — si $\ell > 0$, alors la série $\sum_{n \in \mathbb{N}} f(n)$ diverge;

- si $\ell < 0$, alors cette série converge;
- si $\ell = 0$, alors... on ne peut rien dire!

Exercice 28 – Mines 2011 [6/10]

- 1. Donner la nature de $\sum \frac{\ln n}{n}$.
- 2. Montrer que $S_n \sim \frac{\ln^2 n}{2}$ (on parle de sommes partielles...).
- 3. Montrer que $S_n \frac{\ln^2 n}{2} \xrightarrow[n \to +\infty]{} \ell \in \mathbb{R}$.

3 Séries alternées

Exercice 29 - CCP 2015 [2/10]

Donner la nature de la série de terme général $u_n = \ln(2n + (-1)^n) - \ln(2n)$

Exercice 30 - CCP [6/10]

Calculer
$$\sum_{n=2}^{+\infty} \frac{(-1)^n}{n(n-1)}$$
.

Exercice 31 - CCP [5/10]

Étudier la convergence de $\sum_{n\geqslant 1} v_n$, avec $v_n = \frac{(-1)^n}{n+(-1)^n \ln n}$.

Exercice 32 – *CCP* [6/10] Soit
$$\alpha \in \mathbb{R}$$
. La série $\sum_{n \in \mathbb{N}} \frac{1}{\ln n + (-1)^n n^{\alpha}}$ est-elle convergente?

Exercice 33 – Une série de fonctions [2/10]Pour quels $x \in \mathbb{R}$ la série $\sum_{n \in \mathbb{N}^*} (-1)^n n^{-x}$ est-elle convergente?

4 Quelques derniers pour la route

Exercice 34 – Des séries entières [8/10]

Pour quels $z \in \mathbb{C}$ la série $\sum_{n \in \mathbb{N}} \frac{z^n}{n^2}$ est-elle convergente? Et $\sum_{n \in \mathbb{N}} \frac{z^n}{\sqrt{n}}$?

L'essentiel de la difficulté réside dans l'étude de ce qui se passe aux bords...

Exercice 35 - Centrale 2015 [4/10]

- 1. Soit $(a_n)_{n\in\mathbb{N}}$ une suite de réels qui converge vers 0. Pour $n\in\mathbb{N},$ on note $b_n=\prod (1+a_k).$ La suite $(b_n)_{n\in\mathbb{N}}$ converge-t-elle nécessairement?
- 2. Montrer que la suite de terme général $\prod_{k=1}^n \left(1 + \frac{(-1)^{k-1}}{k}\right)$ est convergente.

Exercice 36 - Contre-exemple de Cauchy [6/10]

On pose, pour
$$n \in \mathbb{N}^*$$
: $u_n = v_n = \frac{(-1)^n}{\sqrt{n}}$.

On pose, pour $n \in \mathbb{N}^*$: $u_n = v_n = \frac{(-1)^n}{\sqrt{n}}$. Que dire des séries $\sum u_n$, $\sum v_n$ ainsi que de leur produit de Cauchy $\sum w_n = \sum u_n \sum v_n$?

5 Posés en colle

Exercice 37 - C. Stérin 2023-2024 [7/10]

On suppose que $u_0 \in]0,1[$, et : $u_{n+1} = u_n - u_n^2$ pour tout $n \in \mathbb{N}$.

- 1. Établir la convergence de (u_n) .
- 2. Donner la nature des séries $\sum u_n^2$ et $\sum \ln(1-u_n)$.
- 3. $\sum u_n$ est-elle convergente?
- 4. Montrer que $\left(\frac{1}{u_{n+1}} \frac{1}{u_n}\right)$ converge, puis donner un équivalent simple de u_n lorsque $n \to +\infty$.

On pourra utiliser pour la dernière question le lemme de Cesaro : si $v_n \xrightarrow[n \to +\infty]{} \ell$ alors $\frac{1}{n} \sum_{k=1}^{n} v_k \xrightarrow[n \to +\infty]{} \ell$.

5

Exercice 38 – C. Stérin 2023-2024 [7/10]

On suppose que $a_0 > 0$, et : $a_{n+1} = 1 - \exp(a_n)$ pour tout $n \in \mathbb{N}$.

- 1. Établir la convergence de (a_n) .
- 2. Donner un équivalent simple de a_n^2 quand $n \to \infty$ puis la nature de $\sum a_n^2$
- 3. $\sum (-1)^n a_n$ est-elle convergente? Et $\sum \ln \frac{a_{n+1}}{a_n}$?
- 4. Donner la nature de $\sum a_n$.

Exercice 39 – B. Saleur 2023-2024 [4/10] Nature et somme de $\sum 3^n \sin^3 \left(\frac{\theta}{3^{n+1}}\right)$.

Exercice 40 – B. Saleur 2023-2024 [3/10]

Nature des suites vérifiant $u_0 \ge 0$ et $u_{n+1} = \sqrt{1 + u_n}$ pour tout $n \in \mathbb{N}$.

Exercice 41 – B. Saleur 2023-2024 [4/10] Nature de $\sum \sin \sqrt{1 + n^2 \pi^2}$.

Exercice 42 - L. Mermet 2023/2024 [7/10]

Soit a > 0. Donner la nature de

$$\sum \ln \left(1 + \frac{(-1)^n}{n^a} + \frac{1}{2n^{2a}} \right)$$

6 Des indications

Exercice 1 – Je trouve l'exercice bizarrement posé, mais bon... Si on note (u_n) et (v_n) les suites associées aux conditions initiales $u_0=a$ et $v_0=b$, alors $u_{n+1}-v_{n+1}$ s'exprime assez bien à l'aide de u_n-v_n ... À un moment ou un autre, on peut remarquer que $(n+1)!u_{n+1}=n!u_n+(n+1)!$, de sorte que pour tout $n \in \mathbb{N}$, $n!u_n=0!u_0+1!+2!+\cdots+n!$, puis (dans le cas $u_0=1$:

$$u_n = \frac{1}{n!} (n! + (n-1)! + \dots + 1!) \cdot$$

Il reste à montrer que la somme de factorielle est équivalente à son premier terme (et donc que $u_n \underset{n \to +\infty}{\longrightarrow} 1$), en majorant $(n-1)! + (n-2)! + \cdots + 1! + 0!$ par non pas $(n-1) \times (n-1)!$ mais par $(n-1)! + (n-2) \times (n-2)!$.

Exercice 2 – Théorème de la bijection (avec les trois hypothèses!) La conclusion fournit en particulier le fait que la bijection réciproque tend vers $+\infty$ en $+\infty$, donc $u_n \underset{n \to +\infty}{\longrightarrow} +\infty$, ce qui permet d'écrire : $\ln(n) = u_n + \ln(u_n) \sim u_n$.

Exercice 3 – Le terme étudié est de la forme $u_n = v_n^{w_n} = \exp(w_n \ln u_n)$ (avec (v_n) et (w_n) de limites non évidentes!); on va donc chercher un équivalent d'une part de w_n et d'autre part de $\ln(u_n)$. C'est parti!

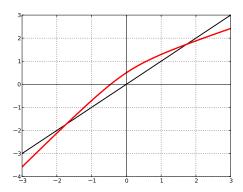
$$w_n = \sqrt{n^2 - 2} - \sqrt{n^2 - 1} = n \left(\left(1 + \frac{2}{n^2} \right)^{1/2} - \left(1 + \frac{1}{n^2} \right)^{1/2} \right) = n \left((1 - 1) + \left(1 - \frac{1}{2} \right) \frac{1}{n^2} + o \left(\frac{1}{n^2} \right) \right)$$

donc $w_n \sim \frac{1}{2n}$. Ensuite on a repéré dans v_n une sous-expression qui converge vers e grâce au développement limité $\ln(1+u) = u + o(u)$ et comme ce terme principal va disparaître, il est raisonnable de prendre un terme de plus :

$$v_n = e - \exp\left(n\left(\frac{1}{n} - \frac{1}{2n^2} + o\left(\frac{1}{n^2}\right)\right)\right) = e - \exp\left(1 - \frac{1}{2n} + o\left(\frac{1}{n}\right)\right)$$
$$= e\left(1 - e^{-\frac{1}{2n} + o(1/n)}\right) = e\left(\frac{1}{2n} + o(1/n)\right) = \frac{e}{2n}(1 + o(1))$$

donc
$$\ln v_n = 1 - \ln(2n) + o(1) \sim -\ln(2n)$$
 puis $w_n \ln(v_n) \sim -\frac{\ln 2n}{2n} \xrightarrow[n \to +\infty]{} 0...$

Exercice 4 - On commence par une étude rapide pour obtenir le graphe de la fonction en jeu...



Il y a donc 3 situations génériques à traiter en plus des deux cas particuliers.

Exercice 5 – Sans les calculer, je sais que exactement une des deux racines de $X^2 - 999X + 1$ est de module majoré par 1...

Exercice 6 – Si $u_{n_0} > 1$, alors à partir du rang n_0 la suite sera croissante et minorée par $u_{n_0}(a)$. Le deuxième point se montre par récurrence, et le troisième est conséquence des deux premiers. Ensuite : si $a \in E_0$ alors il existe n_0 tel que $u_{n_0+1}(a) < u_{n_0}(a)$ (sans quoi...). Mais $a \mapsto u_{n_0+1}(a) - u_{n_0}(a)$ est continue, donc il existe $\varepsilon > 0$ tel que $u_{n_0+1}(b) < u_{n_0}(b)$ pour tout $b \in [a, a + \varepsilon[$: de tels b sont alors dans E_0 . Pour la dernière question, voici un très bel argument : d'après ce qui précède, $E_0 = [0, \alpha[$ et $E_{+\infty} =]\beta, +\infty[$. On a alors $E_1 = [\alpha, \beta]$. Mais si on avait $\alpha < \beta$, alors la suite de fonctions (u_n) convergerait vers une fonction plateau, ce qui n'est pas possible car les u_n sont convexes sur $[0, \beta]$. Joli, non?

Exercice 7 – L'application $f_n: x \mapsto x + x^2 + \dots + x^n$ est continue strictement croissante, de limite connue en $+\infty$; bijection, gnagna. On a même $f_n(u_n) = 1 < n = f_n(1)$ donc $u_n < 1$. De même, $f_{n+1}(u_n) > f_n(u_n) = f_{n+1}(u_{n+1})$ donc $(u_n)_{n \in \mathbb{N}}$ est décroissante, puis convergente vers $\ell \in [0, u_0] \subset [0, 1[$. Puisque (somme d'une suite géométrique) $|1 - 2u_n| = \left| -u_n^{n+1} \right| \leqslant u_0^{n+1} \underset{n \to +\infty}{\longrightarrow} 0$, on a $u_n \underset{n \to +\infty}{\longrightarrow} \frac{1}{2}$. En écrivant $u_n = \frac{1}{2} + \varepsilon_n$, on a alors $\varepsilon_n = u_n^{n+1}/2 = \frac{1}{2^{n+2}} (1 + 2\varepsilon_n)^{n+1}$, or $n\varepsilon_n = O(nu_0^n) \underset{n \to +\infty}{\longrightarrow} 0$ donc en écrivant $(1 + 2\varepsilon_n)^{n+1}$ sous forme exponentielle, on obtient finalement : $u_n - \frac{1}{2} \sim \frac{1}{2^{n+2}}$.

Exercice 8 – Un petit dessin avec le graphe précis de $x\mapsto x+x^2$ sur [-1,3] tout d'abord... puis on montre ce qu'on voit : $(u_n)_{n\in\mathbb{N}}$ est croissante, et si elle convergeait disons vers ℓ , alors on aurait $\ell=\ell+\ell^2$, donc $\ell=0$ ou $\ell=-1$, or $\ell\geqslant u_0>0$: c'est absurde, donc $u_n\underset{n\to+\infty}{\longrightarrow}0$. Ensuite, $v_{n+1}-v_n\sim\frac{1}{2^{n+1}u_n}=o(1/2^n)$, etc.

Exercice 9 - > asympt((x+5)*exp(-1/x),x,2);
$$x+4-\frac{9}{2x}+O\left(\frac{1}{x^2}\right)$$

Exercice 10 – Pour montrer que la somme S_n est équivalente à son dernier terme, on majore $S_n - n^n$ par $(n-2) \times (n-2)^{n-2} + (n-1)^{n-1} \dots$

Exercice 11 – On place quelque chose entre ℓ et 1 : par exemple $\beta = \frac{\ell+1}{2} \cdot \grave{A}$ partir d'un certain rang on aura $u_{n+1} \leqslant \beta u_n$, permettant de contrôler (u_n) par une suite géométrique de raison $\beta < 1$.

Exercice 12 – D'une part, $\operatorname{Arctan}(n^2) = \frac{\pi}{2} - \operatorname{Arctan} \frac{1}{n^2} \cdot \text{D'autre part, en écrivant } \theta = \operatorname{Arccos}(1-u) \text{ puis en regardant } \cos \theta \text{ de deux façons différentes, on obtient } \operatorname{Arccos}(1-u) \sim \sqrt{2u}, \text{ de sorte que } u_n \sim \frac{K}{n} \cdots$

Exercice 13 -
$$n^{1/n} = e^{\frac{\ln n}{n}} \xrightarrow[n \to +\infty]{} 1$$
 et $v_n = \frac{n}{(\ln n)^{n-1}} = \exp(...)...$

Exercice 14 -
$$\ln u_n \sim -\frac{n^{\alpha-2}}{6}$$
 et $v_n \sim \frac{K}{n^2}$.

Exercice 15 – Pour la classe C^1 , attention à ne pas dire n'importe quoi si vous utilisez le théorème de la limite de la dérivée! $(u_n)_{n\in\mathbb{N}}$ est bien entendu (dessin, et étapes usuelles) décroissante vers 0. Ensuite, $f(x) \leq \frac{x}{2}$ (par exemple) pour x assez proche de 0^+ , puis $u_n = O(1/2^n)$...

Nécessitait un peu d'initiative dans les majorations, même si celles-ci pouvaient être assez grossières; bon exercice d'oral!

Exercice 16 – C'est moralement 2^n qui l'emporte, donc on veut prouver la convergence; on va donc regarder $\frac{u_n}{1/n^2}$... Pour la seconde série, c'est x^{-n} qui doit remporter le morceau. On discute donc en fonction de la position de x vis-à-vis de 1...

Exercice 17 – Comparaisons somme/intégrale (dans le cas $\alpha = 1$), encore et toujours. Pour $\alpha \neq 1$ on peut comparer à des $\frac{1}{n^{\beta}}$ avec β entre 1 et α .

Exercice 18 – Comparaison somme-intégrale (pour la convergence), ou somme de Riemann... ou encore utilisation du développement asymptotique $H_n = \ln(n) + \gamma + o(1)$... et ça converge vers $\ln 2$.

Exercice 19 – J'ai trouvé en deux temps : $u_1 + \dots + u_n = 1 - \frac{1}{(1+a_1)(1+a_2)\cdots(1+a_n)}$ · Il s'agit alors d'étudier (δ_n) définie par $\delta_n = \frac{1}{(1+a_1)(1+a_2)\cdots(1+a_n)}$ · On a bien envie de prendre son logarithme, pour trouver une somme partielle de série à termes négatifs : cette somme partielle va donc ou bien converger, ou bien tendre vers $-\infty$. Dans les deux cas, son exponentielle, c'est-à-dire δ_n , converge. Dans l'exemple, la série à termes négatifs diverge, donc son exponentielle tend vers 0, donc $\sum_{n=1}^{\infty} u_n = 1$.

Exercice 20 - On a par exemple :

$$na_{2n} \leqslant \sum_{k=1}^{2n} a_k \leqslant \sum_{k=1}^{+\infty} a_k \underset{n \to +\infty}{\longrightarrow} 0$$

Exercice 21 – On compare u_n à $v_n=\frac{1}{n^\beta}$ via $r_n=\frac{u_n}{v_n}$. Si par exemple $\alpha>1$, on montre la convergence en fixant $q\in]1,\alpha[$; le rapport $\frac{r_{n+1}}{r_n}$ est alors majoré par 1 à partir d'un certain rang; etc.

Exercice 22 – Utiliser l'exercice précédent! (pfffff)

Exercice 23 – Pour le sens direct je passerais bien par un développement limité. Dans le cas monotone (donc décroissant vers 0; pourquoi?) j'écrirais bien $u_n + u_{n+1} \le u_n \le u_n + u_{n-1}$ avant de multiplier par \sqrt{n} puis gendarmiser. Pour le contre-exemple (ben oui...) j'ai bricolé : $u_{2p} = \frac{1}{4p}$ et $u_{2p+1} = \frac{3}{4p}$; ça doit marcher...

Exercice 24 – Je vois (presque) une somme de Riemann, après avoir pris le logarithme de u_n lorsque a=2. Ensuite, j'écrirais bien $a_n=n^{a-1}\frac{1}{n}\sum\cdots$ pour faire apparaître une autre somme de Riemann. Enfin, l'encadrement $0 \le \ln\left(1+\frac{k^a}{n^2}\right) \le \frac{k^a}{n^2}$ doit permettre de conclure.

Exercice
$$25 - > sum(n/2**n,n=0..infinity);$$

2

> limit(subs(x=1/2,x*diff(sum(x**n,n=0..N),x)),N=infinity);

Exercice 26 – Décomposition en éléments simples. On voudra bien trouver $\frac{1}{2}$.

Exercice 27 – Pour le cas $\ell > 0$: on aura $(\ln(f(t)))' > \frac{\ell}{2}$ pour $t \ge n_0$, et alors $f(n) \ge f(n_0)e^{\ell(n-n_0)/2}$ pour tout $n \ge n_0$, soit encore : $f(n) \ge K\rho^n$, avec K > 0 et $\rho > 1$.

Exercice 28 - Comparaison somme/intégrale.

Exercice 29 -
$$u_n = \frac{(-1)^n}{2n} + O(1/n^2)$$
... Attention, l'équivalent ou un $o(1/n)$ ne suffit pas!

Exercice 30 – Collisionner après une décomposition en éléments simples.

$$-1 + 2 \ln 2$$

Exercice 31 -
$$v_n = \frac{(-1)^n}{n} + O\left(\frac{\ln n}{n^2}\right)$$
, donc il y a convergence.

Exercice 32 - Pour
$$\alpha \in]0,1]$$
, on écrit : $u_n = \frac{(-1)^n}{n^{\alpha}} + \frac{\ln n}{n^{2\alpha}} + o\left(\frac{\ln n}{n^{2\alpha}}\right) \cdots$

Exercice 33 - C'est grossier ou alterné.

Exercice 34 – Dans le premier cas, la convergence est absolue ($|z| \le 1$) ou la divergence grossière (|z| > 1). Dans le second, les cas litigieux |z| = 1 sont convergents (pour $z \ne 1$) par transformation d'Abel (difficile et hors programme, donc!).

Exercice 35 – La suite $(\ln b_n)_{n\in\mathbb{N}}$ peut ne pas converger pour plein de raisons (bien que $\ln(b_{n+1})$ – $\ln(b_n) \underset{n\to+\infty}{\longrightarrow} 0$). Prenons par exemple $a_k=\frac{1}{k}$ (on peut même calculer b_n dans ce cas). Prendre le logarithme reste une bonne idée pour la deuxième question.

Exercice 36 – Le produit de Cauchy $\sum w_n = \sum u_n \sum v_n$ vérifie pour $n \geqslant 1$: $w_n = (-1)^n \sum_{k=1}^{n-1} \frac{1}{\sqrt{k(n-k)}}$. Or pour $1 \leqslant k \leqslant n-1$, on a $k(n-k) \leqslant \frac{n^2}{2}$ (tracer une jolie parabole), donc $|w_n| \geqslant \frac{n-1}{n\sqrt{2}}$ donc $\sum w_n$ diverge grossièrement.

Exercice 37 – Exceptionnellement il peut être intéressant de privilégier l'intervalle stable ouvert]0,1[(comme ça on obtient le fait que tous les u_n sont non nuls) pour obtenir : $u_n \underset{n \to +\infty}{\longrightarrow} 0$. Ensuite c'est assez routinier. La série $\sum u_n^2 = \sum (u_n - u_{n+1})$ a le même comportement que la suite (u_n) donc converge, puis (c'est sioux!) $\ln(1-u_n) = \ln(u_{n+1}) - \ln(u_n)$... Ensuite $\ln(1-u_n) = -u_n + O(u_n^2)$ donc $\sum u_n$ est de même nature que $\sum \ln(1-u_n)$: elle est divergente.

même nature que $\sum \ln(1-u_n)$: elle est divergente. Enfin $\frac{1}{u_{n+1}} - \frac{1}{u_n} \underset{n \to +\infty}{\longrightarrow} 1$ et on peut conclure avec de la sommation d'équivalent/Cesaro : $u_n \sim \frac{1}{n}$.

Exercice 38 – De façon standard, $a_n \underset{n \to +\infty}{\longrightarrow} 0$, ensuite $a_n^2 \sim 2(a_n - a_{n+1})$ donc $\sum a_n^2$ est de même nature que... donc converge. Ensuite, série alternée puis de même nature qu'une certaine suite. Enfin, $\ln \frac{a_{n+1}}{a_n} = -\frac{a_n}{2} + O(a_n^2)$.

Exercice 39 – $O(1/9^n)$ pour la convergence. Partie imaginaire d'un truc qu'on sait sommer, après linéarisation de $\sin^3 \varphi$.

Exercice 40 - Dessin, point fixe, intervalles stables...

Exercice 41 - Je trouve
$$u_n = (-1)^n \sin\left(\frac{1}{2n\pi} + O(1/n^2)\right)...$$

Exercice 42 – Très bien pour apprendre à travailler à différents ordres sans être devin : pour a>1, convergence absolue avec $\ln(1+u)\sim u$. Pour a>1/2, $\ln(1+u)=u+O(u^2)$, etc jusqu'à l'ordre 4!

