

Une trigonalisation et une série de fonctions

1 Réduction : des sous-espaces stables

Je prends ici le point de vue consistant à confondre \mathbb{R}^3 et $\mathcal{M}_{3,1}(\mathbb{R})$: il est parfois dangereux (tant qu'on n'a pas compris la distinction entre des deux espaces), mais efficace quand on a compris la distinction.

1. On obtient facilement (développement par rapport à la dernière ligne :

$$\chi_u = \chi_A = (X - 1)^2 (X + 1), \text{ donc } \operatorname{Sp}(A) = \{-1, 1\}$$

Puisque $A-I=\begin{pmatrix} -1 & 1 & 1\\ 1 & -1 & 1\\ 0 & 0 & 0 \end{pmatrix}$ est de rang 2, son noyau est de dimension 1, donc la dimension de Ker (A-I) est **strictement** inférieure à la multiplicité de la valeur propre 1, donc :

u n'est pas diagonalisable.

2. Dans le noyau de
$$A + I_3 = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$
 on doit trouver $X_1 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$ et dans celui de $A - I = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ il y a $X_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$

Parions qu'avec $X_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$, on obtiendra une base 1 (X_1, X_2, X_3) de trigonalisation de u. Plus

précisément, puisque $u(X_3) = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = X_2 + X_3$:

En prenant
$$P = \begin{pmatrix} 1 & 1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
, on a $P^{-1}AP = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$

Puisque $X_1+X_2=\begin{pmatrix}2\\0\\0\end{pmatrix}$ et $X_2-X_1=\begin{pmatrix}0\\2\\0\end{pmatrix}$ on a quasiment immédiatement :

$$P^{-1} = \begin{pmatrix} 1/2 & -1/2 & 0 \\ 1/2 & 1/2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

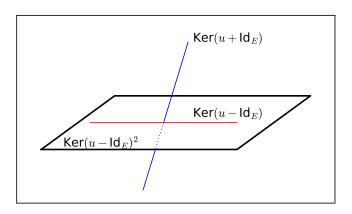
3. Déjà, $\operatorname{Ker}(u+\operatorname{Id}_E)=\operatorname{Vect}(X_1)$. Mais si on regarde la matrice de u dans la base (X_1,X_2,X_3) , alors on voit que celle de $u-\operatorname{Id}_E$ dans cette base vaut $\begin{pmatrix} -2 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ et celle de $(u-\operatorname{Id}_E)^2$ vaut

$$\begin{pmatrix} 4 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
donc Ker $(u - \text{Id}_E)^2 = \text{Vect}(X_2, X_3)$. Puisque (X_1, X_2, X_3) est une base de \mathbb{R}^3 :

^{1.} Le rang se calcule en une seule opération.

$$E = \operatorname{Ker}((u - \operatorname{Id}_E)^2) \oplus \operatorname{Ker}(u + \operatorname{Id}_E).$$

4. On fait apparaître un plan $(\operatorname{Ker}(u-\operatorname{Id}_E)^2)$ contenant une droite $(\operatorname{Ker}(u-\operatorname{Id}_E)=\operatorname{Vect}(X_2):$ on a toujours $\operatorname{Ker}(v)\subset\operatorname{Ker}(v^2)!)$ et enfin une droite non incluse dans le plan précédent (et en constituant donc un supplémentaire):



5. Une droite est stable par u si et seulement si elle est dirigée par un vecteur propre, donc :

Il y a deux droites stables par
$$u : Vect(X_1)$$
 et $Vect(X_2)$

Le dessin précédent nous propose directement un plan $(\text{Ker}((u-\text{Id}_E)^2))...$ qui est effectivement stable par u (noyau d'un polynôme en u, par exemple). Mais on peut aussi s'intéresser à $\text{Vect}(X_1, X_2)...$ qui est clairement stable par u.

Les plans
$$\operatorname{Vect}(X_1,X_2)$$
 et $\operatorname{Vect}(X_2,X_3)$ sont stables par $u.$

6. (a) Il s'agit d'un résultat de cours. On prend une base de F qu'on complète en une base de E. Dans cette base, la matrice de u est de la forme $\begin{pmatrix} A & B \\ 0 & C \end{pmatrix}$, avec A la matrice de v dans la base de F choisie précédemment. On a alors (déterminant d'une matrice triangulaire par blocs) :

$$\chi_u = \det(X \operatorname{Id}_E - u) = \det(XI - A) \det(XI - C) = \chi_v \chi_C,$$

et ainsi:

$$\chi_v$$
 divise χ_u

(b) D'après ce qui précède, χ_v est unitaire, de degré 2 et divise $(X-1)^2(X+1)$, donc :

$$\chi_v \text{ vaut } (X-1)^2 \text{ ou } (X-1)(X+1).$$

- (c) Supposons : $\chi_v = (X-1)(X+1)$. L'endomorphisme v possède alors deux valeurs propres, et les vecteurs propres associés sont également vecteurs propres pour u, donc F contient X_1 et X_2 , puis est égal au plan engendré par ces deux vecteurs.
 - Supposons: $\chi_v = (X-1)^2$. Puisque $\chi_v(v) = 0$, on a $(u \mathrm{Id}_E)^2(x) = 0$ pour tout $x \in F$. Ainsi, F est un plan inclus dans le noyau de $(u \mathrm{Id}_E)^2$... qui est également un plan! On a alors $F = \mathrm{Ker}((u \mathrm{Id}_E)^2) = \mathrm{Vect}(X_2, X_3)$.

Il y a exactement deux plans stables par v: ceux qu'on avait déjà repérés!

7. On n'oubliant pas les entiers de [0,3] qui ne sont pas 1 et 2...

Il y a exactement 6 sous-espaces stables par u: les 4 déjà vus, ainsi que $\{0\}$ et E.

2 Une série de fonctions classique

1. (a) Pour que la série définissant S(x) soit convergente, il faut déjà que tous les n+x soient différents de zéro, ce qui revient à dire que x n'est pas l'opposé d'un entier strictement positif.

Réciproquement, fixons $x \in \mathbb{R} \setminus (-\mathbb{N}^*)$, et définissons pour $n \in \mathbb{N}^*$: $f_n(x) = \frac{1}{n} - \frac{1}{n+x}$. On a alors:

$$f_n(x) = \frac{x}{n(n+x)} \mathop{\sim}_{n \to +\infty} \frac{x}{n^2},$$

donc par comparaison de séries à termes de signe constant, $\sum_{n\in\mathbb{N}^*} f_n(x)$ est convergente.

$$\mathcal{D}_S = \mathbb{R} \setminus (-\mathbb{N}^*)$$

(b) Pour S(0), il n'y a pas trop de suspens : c'est la somme de la série nulle. Pour S(1), on passe par des sommes partielles télescopiques :

$$S(1) = \lim_{N \to +\infty} \sum_{n=1}^{N} \left(\frac{1}{n} - \frac{1}{n+1} \right) = \lim_{N \to +\infty} \left(1 - \frac{1}{N+1} \right) = 1.$$

Dans ce calcul, l'existence de la limite est assurée depuis la question précédente, pas a posteriori comme dans les calculs façon terminale...

$$S(0) = 0 \text{ et } S(1) = 1$$

(c) Ici encore, on va passer par des sommes partielles car si on casse les séries en deux, on trouve des séries individuellement divergentes. On fixe pour cela $x \in \mathcal{D}_f$; on a alors $x+1 \in \mathcal{D}_f$, et :

$$\begin{split} S(x+1) - S(x) &= \lim_{N \to +\infty} \sum_{n=1}^{N} \left(\left(\frac{1}{n} - \frac{1}{n+x+1} \right) - \left(\frac{1}{n} - \frac{1}{n+x} \right) \right) \\ &= \lim_{N \to +\infty} \sum_{n=1}^{N} \left(\frac{1}{n+x} - \frac{1}{n+x+1} \right) \\ &= \lim_{N \to +\infty} \left(\frac{1}{x+1} - \frac{1}{N+x+1} \right) = \frac{1}{1+x} . \end{split}$$

Pour tout
$$x \in \mathcal{D}_f$$
, $S(x+1) = S(x) + \frac{1}{x+1}$.

On en déduit facilement la valeur de S(n) pour $n \in \mathbb{N}^*$: c'est une somme partielle de la série harmonique, dont un équivalent 2 est connu.

Pour
$$n \in \mathbb{N}^*$$
, $S(n) = \sum_{k=1}^{n} \frac{1}{k} \sim \ln n$.

- 2. Notons, pour $x \in \mathcal{D}_f$ et $n \in \mathbb{N}^*$: $f_n(x) = \frac{1}{n} \frac{1}{n+x} = \frac{x}{n(n+x)}$.
 - (a) Pour $x \ge 0$, on a la majoration $|f_n(x)| \le \frac{x}{n^2}$ qui nous invite à localiser en fixant A > 0:

$$\forall x \in [0, A], \qquad |f_n(x)| \leqslant \frac{A}{n^2}$$

On a donc $||f_n||_{\infty,[0,A]} \leqslant \frac{A}{n^2}$ de sorte que par comparaison de séries à termes positifs, $\sum ||f_n||_{\infty,[0,A]}$ est convergente. Ainsi, $\sum f_n$ est normalement donc uniformément convergente sur [0,A]; et comme toutes les f_n sont continues sur [0,A], S l'est également.

Ceci étant vrai pour tout A > 0:

S est continue sur
$$[0, +\infty[$$
.

^{2.} Et même un peu au delà!

(b) Pour le caractère \mathcal{C}^1 , il n'est même plus utile de localiser : chaque f_n est de classe \mathcal{C}^1 , avec :

$$\forall x \in [0, A], \qquad |f'_n(x)| = \frac{1}{(n+x)^2} \leqslant \frac{1}{n^2}$$

de sorte que $||f'_n||_{\infty} \leqslant \frac{1}{n^2}$, donc $\sum f'_n$ est normalement donc uniformément convergente sur

- $\sum f_n$ converge simplement sur \mathbb{R}^+ ;
- chaque f_n est de classe C^1 sur \mathbb{R}^+ ; $\sum f'_n$ converge uniformément sur \mathbb{R}^+ .

$$S$$
 est de classe \mathcal{C}^1 sur \mathbb{R}^+ .

- (c) Pour le caractère \mathcal{C}^{∞} , dressons la check-list :

 - Chaque f_n est de classe \mathcal{C}^{∞} : OK. $\sum f_n$ converge simplement : OK. Pour tout $k \in \mathbb{N}^*$, $\sum_{n \geq 1} f_n^{(k)}$ converge uniformément 3 : À VÉRIFIER.

Fixons donc $k \in \mathbb{N}^*$ et $n \in \mathbb{N}^*$:

$$\forall x \geqslant 0 \qquad \left| f_n^{(k)}(x) \right| = \frac{k!}{(n+x)^{k+1}} \leqslant \frac{k!}{n^{k+1}}.$$

Ainsi, $\left\|f_n^{(k)}\right\|_{\infty} \leqslant \frac{k!}{n^{k+1}} = O(1/n^2)$, donc $\sum_{n \ge 1} f_n^{(k)}$ converge normalement ⁴ donc uniformément, ce qui établit le dernier point de la check-list.

$$S$$
 est de classe \mathcal{C}^{∞} sur \mathbb{R}^+ .

(d) S est de classe \mathcal{C}^{∞} sur]0,1[et pour tout $x\in]-1,0[$, $S(x)=S(x+1)-\frac{1}{1+x}$, donc S est de classe \mathcal{C}^{∞} sur]-1,0[.

Le même raisonnement s'applique pour montrer, par récurrence sur $n \in \mathbb{N}$, que S est de classe \mathcal{C}^{∞} sur]-n-1,-n[. La fonction S l'est donc sur la réunion de ces intervalles, ainsi que sur $[0, +\infty[$: c'est gagné.

3. Fixons $x_0 > 0$ et définissons $\varphi_{x_0} : t \geqslant 0 \mapsto \frac{1}{t} - \frac{1}{t + x_0} = \frac{x_0}{t(t + x_0)}$, de sorte que $S(x_0) = \frac{1}{t} + \frac$

 $\sum_{n=1}^{\infty} \varphi_{x_0}(n)$. La décroissance de φ_{x_0} (dériver, ou observer la deuxième expression de $\varphi_{x_0}(t)$) nous assure qu'on a l'encadrement

$$\int_{n}^{n+1} \varphi_{x_0}(t)dt \leqslant \varphi_{x_0}(n) \leqslant \int_{n-1}^{n} \varphi_{x_0}(t)dt,$$

ceci respectivement pour tout $n\geqslant 1$ (inégalité de gauche) et tout $n\geqslant 2$ (inégalité de droite). En sommant ces inégalités de 1 à $N \geqslant 2$ à gauche et de 2 à N à droite, on obtient

$$\int_{1}^{N+1} \varphi_{x_0} \leqslant \sum_{n=1}^{N} \varphi_{x_0}(n) \leqslant \underbrace{\varphi_{x_0}(1)}_{1} + \int_{1}^{N} \varphi_{x_0}$$
 (E)

Lorsque N tend vers $+\infty$, le terme central tend vers $S(x_0)$. À droite, on a :

$$\int_{1}^{N} \varphi_{x_0} = \left[\ln t - \ln(t + x_0) \right]_{1}^{N} = \ln N - \ln(N + x_0) + \ln(1 + x_0) \underset{N \to +\infty}{\longrightarrow} \ln(1 + x_0)$$

- 3. En fait : simplement, mais uniformément à partir d'un certain rang.
- 4. Ne pas se laisser intimider par la CONSTANTE k!

et de même, $\int_{1}^{N+1} \varphi_{x_0} \underset{N \to +\infty}{\longrightarrow} \ln(1+x_0)$, donc en passant (E) à la limite puis en libérant x_0 : $\forall x > 0$, $\ln(1+x) \leqslant S(x) \leqslant 1 + \ln(1+x)$.

En divisant tout ce beau monde par $\ln x$, on peut gendarmiser, pour obtenir finalement :

Lorsque
$$x$$
 tend vers $+\infty$, $S(x) \sim \ln x$.

Pour ceux qui ont un doute : $\ln(1+x) = \ln x + \ln(1+1/x) \sim \ln x$.

4. On a déjà vu que S est C^{∞} , avec S' > 0, donc S est croissante sur tout intervalle inclus dans son ensemble de définition (mais pas sur l'ensemble de définition : S(0) < S(-11/10) pas exemple). La limite (et l'aspect) en $+\infty$) est connu; pour le comportement en -1, on a $S(-1+u) = S(u) - \frac{1}{u} \sim -\frac{1}{u}$, ce qui donne l'allure du graphe en -1^+ (et -1^-).

Enfin, la relation $S(x) = S(x+1) - \frac{1}{1+x}$ donne également $S(-2+u) = S(-1+u) + O(1) = -\frac{1}{u} + O(1)$ d'où l'allure au voisinages droit et gauche de -2 puis de -n pour tout $n \in \mathbb{N}^*$.

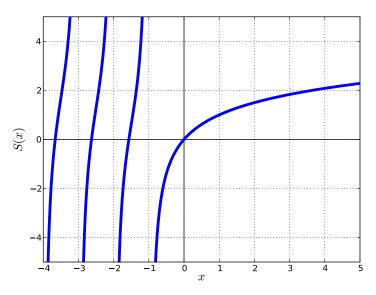


FIGURE 1 – Graphe de S sur]-4,5]

5. Dans la question 3, la quantité $\ln(x+1)$ est apparue comme l'intégrale de φ_x sur $[1, +\infty[$, donc comme la somme des $\int_n^{n+1} \varphi_x$. On va donc exprimer la différence $S(x) - \ln(1+x)$ en exploitant cette forme :

$$\forall x > 0, \qquad S(x) - \ln(1+x) = \sum_{n=1}^{+\infty} \left(\varphi_x(n) - \int_n^{n+1} \varphi_x \right) = \sum_{n=1}^{+\infty} g_n(x),$$
 (R)

avec pour tout x > 0 et $n \in \mathbb{N}^*$:

$$g_n(x) = \varphi_x(n) - \int_n^{n+1} \varphi_x(t) dt = \int_n^{n+1} \left(\left(\frac{1}{n} - \frac{1}{n+x} \right) - \left(\frac{1}{t} - \frac{1}{t+x} \right) \right) dt$$
$$= \int_n^{n+1} \left(\left(\frac{1}{n} - \frac{1}{t} \right) - \left(\frac{1}{t+x} - \frac{1}{n+x} \right) \right) dt.$$

La majoration $\left|\frac{1}{t+x} - \frac{1}{n+x}\right| = \frac{|n-t|}{(t+x)(n+x)} \leqslant \frac{1}{n^2}$ nous assure que lorsque x tend vers $+\infty$, $g_n(x)$ tend vers $\int_n^{n+1} \left(\frac{1}{n} - \frac{1}{t}\right) dt = 1/n - \ln(1+1/n)$. Pris d'une furieuse envie de sommer les

limites dans la relation (R), on se demande s'il n'y aurait pas convergence uniforme de $\sum g_n$, au moins au voisinage de $+\infty$. Et ici encore, on a $|g_n(x)| \le \frac{2}{n^2}$ pour tout $x \ge 0$ et $n \ge 1$, donc il y a effectivement convergence normale donc uniforme sur \mathbb{R}^+ , ce qui permet de sommer les limites (théorème de double-limite version séries – qui fournit aussi la convergence de la série limite).

Lorsque
$$x$$
 tend vers $+\infty$, $S(x) - \ln(1+x)$ tend vers $\sum_{n=1}^{+\infty} (1/n - \ln(1+1/n))$.

Pour terminer, on note d'une part que $\ln(1+x) = \ln x + \ln(1+1/x) = \ln x + o(1)$ et d'autre part que :

$$\sum_{n=1}^{+\infty} (1/n - \ln(1+1/n)) = \lim_{N \to +\infty} \sum_{n=1}^{N} (1/n - \ln(1+1/n)) = \lim_{N \to +\infty} \left(\sum_{n=1}^{N} \frac{1}{n} - \ln(N+1) \right) = \gamma,$$

la constante d'Euler du développement asymptotique $\sum\limits_{n=1}^N \frac{1}{n} = \ln N + \gamma + o(1).$

Au voisinage de
$$+\infty$$
, $S(x) = \ln x + \gamma + o(1)$

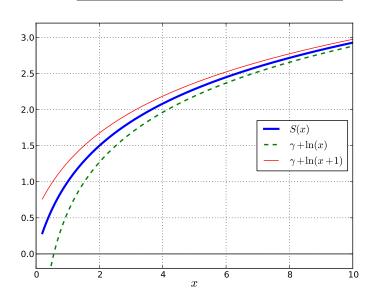


FIGURE 2 – S(x) vs. $\gamma + \ln x$ vs. $\gamma + \ln(x+1)$

Comme toujours, les graphes de ce corrigé ont été réalisés avec Python. La fonction S n'a pas été calculée via des sommes approchantes, mais grâce à la relation $S(x) = \gamma + \frac{\Gamma'(x+1)}{\Gamma(x+1)} = \gamma + \psi(x+1)$ avec $\gamma \simeq 0.577$ la constante d'Euler et Γ ... la fonction d'Euler, dont il sera souvent question d'ici la fin de l'année. La fonction $\psi = \frac{\Gamma'}{\Gamma} = (\ln \circ \Gamma)'$, plus souvent appelée « digamma » est présente dans la librairie scipy.special.