

Mathématiques 2

202C

CONCOURS CENTRALE SUPÉLEC

4 heures

Calculatrice autorisée

Fonction caractéristique d'une variable aléatoire réelle

Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé, où \mathcal{A} est une tribu sur Ω et \mathbb{P} une probabilité sur (Ω, \mathcal{A}) .

Toutes les variables aléatoires sont discrètes, à valeurs réelles ou complexes, définies sur (Ω, \mathcal{A}) .

Si la variable aléatoire $X:\Omega\to\mathbb{R}$ est d'espérance finie, on note $\mathbb{E}(X)$ son espérance.

Pour tout nombre complexe z, on note Re(z) sa partie réelle, Im(z) sa partie imaginaire et \bar{z} son conjugué.

On appelle sinus cardinal la fonction définie, pour tout réel x, par $\operatorname{sinc}(x) = \begin{cases} \frac{\sin x}{x} & \text{si } x \neq 0, \\ 1 & \text{si } x = 0. \end{cases}$

On admet que cette fonction est continue et que pour tout réel x, $|\operatorname{sinc}(x)| \leq 1$.

On étend aux variables aléatoires discrètes à valeurs complexes la notion d'espérance définie pour les variables aléatoires discrètes réelles. Ainsi, on dit qu'une variable aléatoire discrète à valeurs complexes $Z:\Omega\to\mathbb{C}$ est d'espérance finie si les variables aléatoires réelles $\mathrm{Re}(Z)$ et $\mathrm{Im}(Z)$ sont d'espérance finie et on définit alors l'espérance de Z par

$$\mathbb{E}(Z) = \mathbb{E}(\operatorname{Re}(Z)) + \mathrm{i}\,\mathbb{E}(\operatorname{Im}(Z)).$$

On admettra les résultats suivants qui étendent aux variables aléatoires complexes les résultats analogues sur les variables aléatoires réelles.

— Toute variable aléatoire Z complexe finie est d'espérance finie. Si $Z(\Omega)=\{z_1,...,z_r\}$, où les z_i sont deux à deux distincts, alors

$$\mathbb{E}(Z) = \sum_{k=1}^r z_k \mathbb{P}(Z=z_k).$$

— Théorème du transfert (cas $X(\Omega)$ fini). Soit X une variable aléatoire réelle d'image finie $X(\Omega) = \{x_1, ..., x_r\}$ où les x_i sont deux à deux distincts et soit f une application à valeurs complexes définie sur $X(\Omega)$. Alors f(X) est d'espérance finie et

$$\mathbb{E}\big(f(X)\big) = \sum_{k=1}^r \mathbb{P}(X=x_k) f(x_k).$$

— Soit Z une variable aléatoire complexe telle que $Z(\Omega)$ soit dénombrable égal à $\{z_n, n \in \mathbb{N}\}$ où les z_n sont deux à deux distincts. Alors Z est d'espérance finie si, et seulement si, la série $\sum_{n\geqslant 0} z_n \mathbb{P}(Z=z_n)$ converge absolument. Dans ce cas,

$$\mathbb{E}(Z) = \sum_{n=0}^{+\infty} z_n \mathbb{P}(Z = z_n).$$

— Théorème du transfert (cas $X(\Omega)$ dénombrable). Soit X une variable aléatoire réelle d'image dénombrable $X(\Omega) = \{x_n, n \in \mathbb{N}\}$ où les x_n sont deux à deux distincts et soit f une application à valeurs complexes définie sur $X(\Omega)$.

Alors f(X) est d'espérance finie si, et seulement si, la série $\sum_{n\geqslant 0}\mathbb{P}(X=x_n)f(x_n)$ converge absolument. Dans ce cas,

$$\mathbb{E}\big(f(X)\big) = \sum_{n=0}^{+\infty} \mathbb{P}(X = x_n) f(x_n).$$

- Soit Z une variable aléatoire complexe et $\bar{Z}:\omega\in\Omega\mapsto\overline{Z(\omega)}$ sa variable aléatoire conjuguée. Si Z est d'espérance finie, alors \bar{Z} est d'espérance finie et $\mathbb{E}(\bar{Z})=\overline{\mathbb{E}(Z)}$.
- Soit Z_1 et Z_2 deux variables aléatoires complexes d'espérance finie et soit $\lambda \in \mathbb{C}$. Alors $Z_1 + Z_2$ et λZ_1 sont d'espérance finie et $\mathbb{E}(Z_1 + Z_2) = \mathbb{E}(Z_1) + \mathbb{E}(Z_2)$ et $\mathbb{E}(\lambda Z_1) = \lambda \mathbb{E}(Z_1)$.

I Fonction caractéristique d'une variable aléatoire réelle

À toute variable aléatoire réelle discrète $X:\Omega\to\mathbb{R}$, on associe une fonction ϕ_X , appelée fonction caractéristique de X et définie par

$$\forall t \in \mathbb{R}, \qquad \phi_X(t) = \mathbb{E}\left(\mathrm{e}^{\mathrm{i}\,tX}\right).$$

I.A - Premières propriétés

Dans cette sous-partie, X est une variable aléatoire réelle discrète.

Q 1. On suppose, dans cette question, que $X(\Omega)$ est un ensemble fini de cardinal $r \in \mathbb{N}^*$.

On note $X(\Omega) = \{x_1, ..., x_r\}$ où les x_i sont deux à deux distincts, et, pour tout entier $k \in [1, r], a_k = \mathbb{P}(X = x_k)$.

Montrer que, pour tout réel t, $\phi_X(t) = \sum_{k=1}^r a_k e^{\mathrm{i} t x_k}$.

Q 2. On suppose dans cette question que $X(\Omega)$ est un ensemble dénombrable. On note $X(\Omega)=\{x_n,n\in\mathbb{N}\}$ où les x_n sont deux à deux distincts. Pour tout $n\in\mathbb{N}$, on pose $a_n=\mathbb{P}(X=x_n)$.

Montrer que ϕ_X est définie sur $\mathbb R$ et que, pour tout réel $t,\,\phi_X(t)=\sum_{n=0}^{+\infty}a_n\mathrm{e}^{\mathrm{i}\,tx_n}.$

- **Q 3.** Montrer que ϕ_X est continue sur \mathbb{R} .
- **Q 4.** Soit a et b deux réels et Y = aX + b. Pour tout réel t, exprimer $\phi_Y(t)$ en fonction de ϕ_X , t, a et b.
- **Q 5.** Soit $t \in \mathbb{R}$. Donner une expression de $\phi_X(-t)$ en fonction de $\phi_X(t)$. En déduire une condition nécessaire et suffisante portant sur l'image $\phi_X(\mathbb{R})$ pour que la fonction ϕ_X soit paire.

I.B - Trois exemples

Q 6. Soit $n \in \mathbb{N}^*$ et $p \in]0,1[$. On suppose que $X:\Omega \to \mathbb{R}$ suit une loi binomiale $\mathcal{B}(n,p)$ et on note q=1-p. Montrer que, pour tout $t \in \mathbb{R}$, $\phi_X(t) = (q+p\mathrm{e}^{\mathrm{i}\,t})^n$.

Q 7. Soit $p \in]0,1[$. Quelle est la fonction caractéristique d'une variable aléatoire suivant une loi géométrique de paramètre p?

Q 8. Soit $\lambda > 0$. Quelle est la fonction caractéristique d'une variable aléatoire suivant une loi de Poisson de paramètre λ ?

I.C – Image de ϕ_X

On se donne ici une variable aléatoire réelle discrète $X:\Omega\to\mathbb{R}$, dont on note ϕ_X la fonction caractéristique. Pour tout $(a,b)\in\mathbb{R}^2$, $a+b\mathbb{Z}$ désigne l'ensemble $\{a+bk,k\in\mathbb{Z}\}$.

Q 9. Montrer que pour tout $t \in \mathbb{R}$, $|\phi_X(t)| \leq 1$.

 $\mathbf{Q} \ \mathbf{10.} \quad \text{Montrer que, s'il existe } a \in \mathbb{R} \ \text{et} \ t_0 \in \mathbb{R}^* \ \text{tels que} \ X(\Omega) \subset a + \frac{2\pi}{t_0} \mathbb{Z}, \ \text{alors} \ |\phi_X(t_0)| = 1.$

On suppose réciproquement qu'il existe $t_0 \in \mathbb{R}^*$ tel que $|\phi_X(t_0)| = 1$.

Dans la suite de cette sous-partie I.C, on suppose de plus que $X(\Omega)$ est dénombrable et on reprend les notations de la question 2.

 $\mathbf{Q} \ \mathbf{11.} \quad \text{Montrer qu'il existe } a \in \mathbb{R} \ \text{tel que} \sum_{n=0}^{+\infty} a_n \exp \big(\mathrm{i} (t_0 x_n - t_0 a) \big) = 1.$

 $\mathbf{Q} \ \mathbf{12.} \quad \text{ En déduire que } \sum_{n=0}^{+\infty} a_n \big(1 - \cos(t_0 x_n - t_0 a)\big) = 0.$

Q 13. Montrer que pour tout $n \in \mathbb{N}$, si $a_n \neq 0$, alors $x_n \in a + \frac{2\pi}{t_0}\mathbb{Z}$.

Q 14. En déduire que $\mathbb{P}\left(X \in a + \frac{2\pi}{t_0}\mathbb{Z}\right) = 1$.

II Fonction caractéristique et loi d'une variable aléatoire

L'objectif de cette partie est de montrer que la fonction caractéristique d'une variable aléatoire détermine sa loi. Deux méthodes de démonstration sont proposées.

II.A - Première méthode

Soit X une variable aléatoire réelle et discrète et $m \in \mathbb{R}$.

Pour
$$T \in \mathbb{R}_+^*$$
, on pose $V_m(T) = \frac{1}{2T} \int_T^T \phi_X(t) \, \mathrm{e}^{-\mathrm{i} m t} \, \mathrm{d} t$.

II.A.1) On suppose que $X(\Omega)$ est fini et on reprend les notations de la question 1.

Q 15. Montrer que, pour tout
$$T \in \mathbb{R}_+^*$$
, on a $V_m(T) = \sum_{n=1}^r \mathrm{sinc} \big(T(x_n - m) \big) \mathbb{P}(X = x_n)$.

Q 16. En déduire que
$$V_m(T) \xrightarrow[T \to +\infty]{} \mathbb{P}(X = m)$$
.

II.A.2) On suppose que $X(\Omega)$ est dénombrable et on reprend les notations de la question 2.

$$\text{Pour } n \in \mathbb{N} \text{ et } h \in \mathbb{R}_+^*, \text{ on pose } g_n(h) = \text{sinc}\left(\frac{x_n - m}{h}\right) \mathbb{P}(X = x_n).$$

$$\mathbf{Q} \ \mathbf{17.} \quad \text{ Montrer que pour tout } T \in \mathbb{R}_+^*, \text{ on a } V_m(T) = \sum_{n=0}^{+\infty} g_n\left(\frac{1}{T}\right).$$

Q 18. Montrer que la fonction g_n se prolonge en une fonction \tilde{g}_n définie et continue sur \mathbb{R}^+ .

Q 19. Montrer que la fonction
$$G = \sum_{n=0}^{+\infty} \tilde{g}_n$$
 est définie et continue sur \mathbb{R}^+ .

Q 20. Établir que
$$V_m(T) \xrightarrow[T \to +\infty]{} \mathbb{P}(X = m)$$
.

II.A.3) Application

Q 21. Soient $X: \Omega \to \mathbb{R}$ et $Y: \Omega \to \mathbb{R}$ deux variables aléatoires discrètes telles que $\phi_X = \phi_Y$. Montrer que, pour tout $m \in \mathbb{R}$, $\mathbb{P}(X=m) = \mathbb{P}(Y=m)$, autrement dit que X et Y ont la même loi.

II.B - Deuxième méthode

 $\text{Si } a \text{ et } b \text{ sont deux r\'eels, on note } K_{a,b} \text{ la fonction d\'efinie pour tout r\'eel } t \text{ par } K_{a,b}(t) = \begin{cases} \frac{\mathrm{e}^{\mathrm{i}\,tb} - \mathrm{e}^{\mathrm{i}\,ta}}{2\,\mathrm{i}\,t} & \text{si } t \neq 0, \\ \frac{b-a}{2} & \text{si } t = 0. \end{cases}$

 ${\bf Q}$ 22. À l'aide de séries entières, montrer que $K_{a,b}$ est de classe C^{∞} sur $\mathbb{R}.$

Soit N un entier naturel et soit F_N la fonction définie, pour tout réel x, par $F_N(x) = \int\limits_{-N}^N K_{a,x}(t) \, \mathrm{d}t$.

Q 23. Montrer que F_N est de classe C^1 sur \mathbb{R} et que, pour tout réel x, $F'_N(x) = N \operatorname{sinc}(Nx)$.

Q 24. Montrer que
$$\int_{-N}^{N} K_{a,b}(t) dt = \int_{Na}^{Nb} \operatorname{sinc}(s) ds.$$

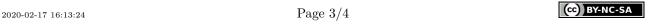
Q 25. Montrer que l'intégrale $\int\limits_0^{+\infty} \mathrm{sinc}(s) \,\mathrm{d}s$ est convergente.

On admettra dans la suite que $\int\limits_0^{+\infty} \mathrm{sinc}(s) \, \mathrm{d}s = \frac{\pi}{2}.$

 $\mathbf{Q} \ \ \mathbf{26.} \qquad \text{En déduire l'existence et la valeur de} \ \lim_{N \to +\infty} \int\limits_{-N}^{N} K_{a,b}(t) \, \mathrm{d}t \ \mathrm{dans} \ \mathrm{le} \ \mathrm{cas} \ \mathrm{où} \ a < b.$

Q 27. Soit $X:\Omega\to\mathbb{R}$ une variable aléatoire telle que $X(\Omega)$ est fini. On suppose que les réels a et b n'appartiennent pas à $X(\Omega)$. Montrer que

$$\frac{1}{\pi} \int\limits_{-N}^{N} \phi_X(-t) K_{a,b}(t) \, \mathrm{d}t \xrightarrow[N \to +\infty]{} \mathbb{P}(a < X < b).$$



III Régularité de ϕ_X

On fixe dans cette partie une variable aléatoire réelle $X:\Omega\to\mathbb{R}$, dont l'image $X(\Omega)$ est un ensemble dénombrable et on reprend les notations de la question 2.

On cherche à établir des liens entre des propriétés de la loi de X et la régularité de ϕ_X .

Pour tout $k \in \mathbb{N}^*$, on dit que X admet un moment d'ordre k si la variable aléatoire X^k est d'espérance finie.

III.A –

Soit $k \in \mathbb{N}^*$. On suppose dans cette sous-partie III.A que X admet un moment d'ordre k.

Q 28. Soit j un entier tel que $1 \le j \le k$. Montrer que pour tout réel x, $|x|^j \le 1 + |x|^k$ et en déduire que X admet un moment d'ordre j.

Q 29. En déduire que ϕ_X est de classe C^k sur \mathbb{R} et donner une expression de la dérivée k-ième de ϕ_X .

Q 30. En déduire une expression de $\mathbb{E}(X^k)$ en fonction de $\phi_X^{(k)}(0)$.

III.B -

On suppose dans cette sous-partie III.B que ϕ_X est de classe C^2 sur \mathbb{R} .

Q 31. On note f la fonction qui à tout réel h > 0 associe $f(h) = \frac{2\phi_X(0) - \phi_X(2h) - \phi_X(-2h)}{4h^2}$. Quelle est la limite de f en 0?

 $\mathbf{Q} \ \mathbf{32.} \quad \text{Montrer que pour tout } h \in \mathbb{R}^*, \ f(h) = \sum_{n=0}^{+\infty} a_n \frac{\sin^2(hx_n)}{h^2}.$

 \mathbf{Q} 33. En déduire que X admet un moment d'ordre 2.

III.C -

On fixe dans cette sous-partie III.C un entier naturel $k \in \mathbb{N}$ et on suppose à la fois que ϕ_X est de classe C^{2k+2} sur \mathbb{R} et que X admet un moment d'ordre 2k. On note $\alpha = \mathbb{E}(X^{2k})$.

Q 34. Que peut-on dire de X si α est nul?

On suppose dorénavant que le réel α est strictement positif.

Q 35. Soit $Y: \Omega \to \mathbb{R}$ une variable aléatoire vérifiant $Y(\Omega) = X(\Omega)$ et, pour tout $n \in \mathbb{N}$,

$$\mathbb{P}(Y = x_n) = \frac{a_n x_n^{2k}}{\alpha}.$$

Montrer que ϕ_Y est de classe C^2 sur \mathbb{R} .

Q 36. En déduire que X admet un moment d'ordre 2k + 2.

Q 37. Soit $k \in \mathbb{N}^*$. Déduire des questions précédentes que si ϕ_X est de classe C^{2k} sur \mathbb{R} , alors X admet un moment d'ordre 2k.

IV Développement en série entière de ϕ_X

Soit $X:\Omega\to\mathbb{R}$ une variable aléatoire réelle.

IV.A -

On suppose que $X(\Omega)$ est fini et on reprend les notations de la question 1.

Q 38. Montrer que ϕ_X est développable en série entière sur \mathbb{R} et, pour tout réel t, $\phi_X(t) = \sum_{n=0}^{+\infty} \frac{(\mathrm{i}\,t)^n}{n!} \mathbb{E}(X^n)$.

IV.B -

On suppose que $X(\Omega)$ est dénombrable et on reprend les notations de la question 2.

On suppose également que, pour tout entier $n \in \mathbb{N}$, X admet un moment d'ordre n et qu'il existe un réel R > 0 tel que

$$\mathbb{E}(|X|^n) = O\left(\frac{n^n}{R^n}\right) \quad \text{quand } n \to +\infty.$$

Q 39. Montrer que pour tout $n \in \mathbb{N}$ et tout $y \in \mathbb{R}$, $\left| e^{iy} - \sum_{k=0}^{n} \frac{(iy)^k}{k!} \right| \leqslant \frac{|y|^{n+1}}{(n+1)!}$.

Q 40. En déduire que pour tout réel $t \in \left[-\frac{R}{e}, \frac{R}{e} \right]$,

$$\phi_X(t) = \sum_{k=0}^{+\infty} \frac{(\mathrm{i} t)^k}{k!} \, \mathbb{E}(X^k).$$