

Marches aléatoires, adjoint et polynômes orthogonaux

À rendre au plus tard le mardi 18 février 2025

Ce DM est très largement facultatif. Lisez l'énoncé, et traitez ce que vous voulez traiter (sans grapiller à chacune des trois parties).

1 Ivrogneries circulaires

1.1 De \mathbb{Z} au cercle trigonométrique

Un ivrogne Y erre dans \mathbb{Z} ; son cousin X erre sur le cercle trigonométrique. « Plus précisément » on suppose que pour tout $k \in \mathbb{N}^*$, U_k est une variable aléatoire (le k-ième pas dans \mathbb{Z}) à valeurs dans $\{-1,1\}$ telle que $\mathbb{P}(U_k=1)=\mathbb{P}(U_k=-1)=1/2$, les variables U_k étant globalement indépendantes. On fixe un angle $\alpha \in]0,\pi[$, et on définit pour tout $n \in \mathbb{N}^*$:

$$Y_n = \sum_{k=1}^n U_k$$
 et $X_n = e^{i\alpha Y_n}$

On définit par ailleurs $Y_0 = 0$ et $X_0 = 1$.

- 1. Déterminer les lois de Y_1 et Y_2 .
- 2. Calculer l'espérance et la variance de U_1 . En déduire pour $n \in \mathbb{N}^*$ l'espérance et la variance de Y_n .
- 3. Soit $n \in \mathbb{N}^*$. Montrer:

$$\forall j \in [0, n], \qquad \mathbb{P}(Y_n = -n + 2j) = \binom{n}{j} \left(\frac{1}{2}\right)^n$$

4. Calculer l'espérance de X_n .

1.2 Autre calcul de l'espérance de X_n

Soit $n \in \mathbb{N}$.

- 1. Montrer : $X_{n+1} = \begin{cases} e^{i\alpha}X_n & \text{avec probabilité } 1/2 \\ e^{-i\alpha}X_n & \text{avec probabilité } 1/2 \end{cases}$
- 2. Exprimer, pour $k \in \mathbb{Z}$, $\mathbb{P}(X_{n+1} = e^{ik\alpha})$ à l'aide de probabilités d'événements de la forme $X_n = e^{ij\alpha}$.
- 3. À l'aide des deux questions précédentes, trouver une relation entre $\mathbb{E}(X_n)$ et $\mathbb{E}(X_{n+1})$ puis conclure.

1.3 Répartition asymptotique sur le cercle trigonométrique

Dans toute cette partie, on fixe $N \geqslant 3$ un entier IMPAIR et on suppose $\alpha = \frac{2\pi}{N}$. On note $\omega = e^{i\alpha} = e^{2i\pi/N}$, et enfin, \mathbb{U}_N désigne l'ensemble des $z \in \mathbb{C}$ tels que $z^N = 1$.

1. Que vaut ω^N ? Expliciter \mathbb{U}_N à l'aide de ω (on ne demande pas de preuve). Représenter \mathbb{U}_3 et \mathbb{U}_5 .

- 2. Exprimer $X_1(\Omega)$, $X_2(\Omega)$ et $X_3(\Omega)$ à l'aide de ω . Les représenter sur le cercle trigonométrique. Que vaut $X_n(\Omega)$ lorsque n est assez grand? On pourra prendre N=5 pour se fixer les idées.
 - On définit, pour $n \in \mathbb{N}$, Z_n le vecteur colonne décrivant les probabilités de présence au temps n de

$$\textit{l'ivrogne aux différents points « atteignables » du cercle trigonométrique : } Z_n = \begin{pmatrix} \mathbb{P}(X_n = 1) \\ \mathbb{P}(X_n = \omega) \\ \vdots \\ \mathbb{P}(X_n = \omega^{N-1}) \end{pmatrix}$$

3. Exhiber (en justifiant) une matrice $A \in \mathcal{M}_N(\mathbb{R})$ telle que pour tout $n \in \mathbb{N}$, $Z_{n+1} = AZ_n$.

Dans toute la suite du problème, on considère $J \in \mathcal{M}_N(\mathbb{R})$ et les $V_k \in \mathcal{M}_{N,1}(\mathbb{R})$ définis par :

$$J = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ 0 & \dots & \dots & 0 & 1 \\ 1 & 0 & \dots & 0 & 0 \end{pmatrix} \quad \text{et} \quad \forall k \in [\![0, N-1]\!], \quad V_k = \begin{pmatrix} 1 \\ \omega^k \\ \omega^{2k} \\ \vdots \\ \omega^{(N-1)k} \end{pmatrix}$$

- 4. Vérifier que les V_k constituent une base de vecteurs propres de J. On commencera calmement par V_0 et V_1 !
- 5. Calculer $J^{\mathrm{T}}V_k$. En déduire que A est diagonalisable; expliciter $P \in \mathrm{GL}_N(\mathbb{R})$ et $D \in \mathcal{M}_N(\mathbb{R})$ diagonale telles que $P^{-1}AP = D$. On ne demande pas de calculer P^{-1} .
- 6. Vérifier que les valeurs propres de A autres que 1 sont toutes de module strictement inférieur à 1. Que peut-on en déduire pour D^n puis A^n lorsque n tend vers $+\infty$?
- 7. Que vaut PV_0 ? En déduire la valeur de $P^{-1}Z_0$.
- 8. Montrer que pour tout $k \in [0, N-1]$, $\mathbb{P}(X_n = \omega^k) \underset{n \to +\infty}{\longrightarrow} \frac{1}{N}$. Conclusion?

1.4 Un peu de Python

On dispose de la fonction random telle que pour $a,b \in \mathbb{N}$, l'appel de random(a, b) renvoie un entier aléatoire entre a et b inclus, avec probabilité uniforme.

- 1. Écrire une fonction marche prenant en entrée un paramètre $n \in \mathbb{N}^*$, réalisant n pas et retournant la position de l'ivrogne (dans \mathbb{Z}) après ces n pas.
- 2. Pour réaliser une marche sur le cercle trigonométrique, est-il préférable de prendre l'exponentielle d'une marche dans Z ou bien calculer à la volée des exponentielles?

 Par « calculer des exponentielles », on entend « évaluer des cosinus et des sinus ».
- 3. Écrire une fonction moyenne telle que moyenne (n, alpha, nb_marches) réalise nb_marches marches aléatoires de n pas sur le cercle trigonométrique (avec des « pas angulaires » de α), et retourne la moyenne des positions obtenues à l'issue de chacune de ces marches.

 On pourra retourner un couple (parties réelle/imaginaire), ou un complexe via complex(a, b)
- 4. À quoi peut-on s'attendre comme résultat asymptotique (i.e. : avec nb_marches « grand »)?

2 Autour de l'adjoint

Dans tout ce problème, E désigne un espace vectoriel euclidien de dimension n.

- 1. Soit $u \in \mathcal{L}(E)$.
 - (a) Soit $y \in E$. Montrer qu'il existe un unique $z \in E$ tel que pour tout $x \in E$, $\langle u(x)|y\rangle = \langle x|z\rangle$. On note $u^*(y) = z$, et on a ainsi :

$$\forall x, y \in E, \qquad \langle u(x)|y\rangle = \langle x|u^*(y)\rangle.$$

L'application u^* , qui va de E dans E, s'appelle l'adjoint de u.

- (b) Montrer que u^* est linéaire.
- (c) Montrer que si $u_1, u_2 \in \mathcal{L}(E)$ et $\lambda \in \mathbb{R}$, alors $(\lambda u_1 + u_2)^* = \lambda u_1^* + u_2^*$. Bref: $u \mapsto u^*$ est un endomorphisme de $\mathcal{L}(E)$!
- 2. Expliciter u^* lorsque:
 - (a) u est une homothétie $(x \mapsto \lambda x)$;
 - (b) u est une projection orthogonale;
 - (c) u est une symétrie orthogonale;
 - (d) u est une isométrie vectorielle (un automorphisme orthogonal).

Dans chaque cas, on établira une relation de la forme $\langle u(x)|y\rangle = \langle x|v(y)\rangle$ avant de conclure soigneusement.

- 3. On suppose que \mathcal{E} est une base de E.
 - (a) Rappeler (sans preuve) comment calculer $\langle x|y\rangle$ lorsqu'on dispose des coordonnées X et Y de x et y dans \mathcal{E} , ainsi que de la matrice du produit scalaire dans \mathcal{E} .
 - (b) Montrer que si \mathcal{F} est une base orthonormée de E, alors $\operatorname{Mat}(u^*, \mathcal{F}) = \operatorname{Mat}(u, \mathcal{F})^{\mathrm{T}}$.
 - (c) Retrouver alors les résultats de la question précédente.
- 4. On va caractériser ici les projections orthogonales de rang donné.
 - (a) Soient u une projection orthogonale de rang r et $\mathcal{E} = (e_1, ..., e_n)$ une base orthonormée de E. En décomposant chaque e_i selon une base adaptée, montrer : $\sum_{i=1}^n \|u(e_i)\|^2 = r$.
 - (b) Montrer que si $v \in \mathcal{L}(E)$ et \mathcal{E} est une base orthonormée de E, alors $\operatorname{tr}(v) = \sum_{i=1}^{n} \langle v(e_i) | e_i \rangle$.
 - (c) En déduire que si \mathcal{E} et \mathcal{F} sont deux bases orthonormées de E et $w \in \mathcal{L}(E)$, alors :

$$\sum_{i=1}^{n} \|w(e_i)\|^2 = \sum_{i=1}^{n} \|w(f_i)\|^2.$$

- (d) À l'aide du résultat précédent, reprendre la question 4.(a)
- (e) On suppose maintenant que u est une projection sur un sous-espace de dimension r, et $\sum_{i=1}^{n} \|u(e_i)\|^2 = r$ pour une certaine base orthonormée \mathcal{E} . Montrer que u est une projection orthogonale.

3 Polynômes de Laguerre

- 1. Préliminaires
 - (a) Justifier le fait que lorsque $R \in \mathbb{R}[X]$, l'application $t \mapsto R(t)e^{-t}$ est intégrable sur \mathbb{R}_+ .
 - (b) Calculer, pour $n \in \mathbb{N}$, $I_n = \int_0^{+\infty} t^n e^{-t} dt$. (On pourra établir une relation de récurrence entre les I_n .)

On définit, pour
$$P, Q \in E = \mathbb{R}[X], \langle P|Q \rangle = \int_0^{+\infty} P(t)Q(t)e^{-t}dt.$$

- (c) Justifier que $\langle | \rangle$ définit bien un produit scalaire sur E.
- 2. Une base orthonormée.
 - (a) Justifier l'existence d'une base orthogonale de E constituée de polynômes unitaires (coefficient dominant égal à 1).
 - (b) En s'intéressant, pour $n \in \mathbb{N}$, à l'orthogonal de $\mathbb{R}_{n-1}[X]$ dans $\mathbb{R}_n[X]$, prouver l'unicité d'une telle base
 - (c) Calculer explicitement une base orthonormée (P_0, P_1, P_2, P_3) de $\mathbb{R}_3[X]$.
- 3. Deux bornes inférieures.

(a) Déterminer la borne inférieure (si elle existe) de

$$\varphi(a,b,c) = \int_0^{+\infty} \left(t^3 - (at^2 + bt + c)\right)^2 e^{-t} dt$$

lorsque (a, b, c) décrit \mathbb{R}^3 .

(b) Même chose avec

$$\psi(a,b,c) = \int_0^{+\infty} (t^3 - (at^2 + bt + c)) e^{-t} dt$$

(sans carré!)

- 4. On définit, pour $n \in \mathbb{N}$ et $t \in \mathbb{R}$: $Q_n(t) = (-1)^n e^t (t^n e^{-t})^{(n)}$. (Il est question d'une dérivée n-ième...)
 - (a) Vérifier que Q_n est une application polynomiale. On assimilera maintenant Q_n à un polynôme...
 - (b) Déterminer Q_k pour $k \leq 3$. Donner le degré et le coefficient dominant de Q_n , pour $n \in \mathbb{N}$.
 - (c) Montrer ² que pour tout $n \in \mathbb{N}^*$, Q_n est orthogonal à $\mathbb{R}_{n-1}[X]$.
 - (d) Calculer $||Q_n||^2$.
 - (e) Établir une relation entre les Q_n et les P_n vus plus haut.
 - (f) Il vous reste du temps? Montrez que P_n (vu comme membre d'une famille de polynômes orthogonaux) possède n racines distinctes dans $]0, +\infty[$.
 - (g) Il vous reste du temps? Montrez à l'aide du lemme de Rolle (et d'une petite généralisation!) que Q_n possède n racines distinctes dans $]0, +\infty[$.

^{1.} Et OUI, je veux une preuve!

^{2.} Pour d'éventuelles (...) intégrations par parties dans le calcul de $\langle X^k|P_n\rangle$, on passera soigneusement par \int_0^T pour la première, et on pourra aller plus vite pour les autres.