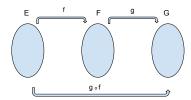


1 Composition d'injections

Montrer que la composée de deux applications injectives est injective.

On commence par les patates, comme il se doit, ce qui fixe les notations :



Supposons que f est une application injective de E dans F et que g est une application injective de F dans G. On va montrer que $g \circ f$, qui est une application de E dans G, est injective. On fixe pour cela $x_1, x_2 \in E$ tels que $(g \circ f)(x_1) = (g \circ f)(x_2)...$ et on espèce montrer que $x_1 = x_2$.

On a $g(f(x_1)) = g(f(x_2))$, donc par injectivité de g on peut en déduire que $f(x_1) = f(x_2)$. L'injectivité de f permet ensuite de dire que $f(x_1) = f(x_2)$ de que $f(x_1) = f(x_2)$ de $f(x_1) = f(x_2)$ de f(

La composée de deux injections est bien une injection.

2 Une limite

Montrer que $(\cos(1/n))^{n^2}$ possède une limite quand n tend vers $+\infty$.

On a $(\cos(1/n))^{n^2} = \exp(n^2 \ln(\cos(1/n)))$. Or $\cos(1/n) = 1 - \frac{1}{2n^2} + o(1/n^2)$ et $\ln(1+u) \sim u$ donc

$$\ln\left(\cos(1/n)\right) \sim -\frac{1}{2n^2} + o(1/n^2) \sim -\frac{1}{2n^2}$$

donc $n^2 \ln(\cos(1/n)) \sim -1/2$ donc $n^2 \ln(\cos(1/n)) \underset{n \to +\infty}{\longrightarrow} -1/2$ puis **par continuité** de la fonction exponentielle :

$$(\cos(1/n))^{n^2} \underset{n \to +\infty}{\longrightarrow} e^{-1/2}.$$

3 Image surjective d'une famille génératrice

Montrer que si $u \in \mathcal{L}(E, F)$ est surjective et $(e_1, ..., e_n)$ est une famille génératrice de E, alors $(u(e_1), ..., u(e_n))$ est une famille génératrice de F. (E et F sont deux \mathbb{K} -espaces vectoriels)

Sous les hypothèses de l'énoncé, on fixe $y \in F$ et on souhaite montrer qu'il est combinaison linéaire des $u(e_i)$. Il semble assez raisonnable d'utiliser la surjectivité de u qui nous fournit l'existence de $x \in E$ tel que u(x) = y. Mais $(e_1, ..., e_n)$ est une famille génératrice de E, donc il existe des scalaires λ_i tels que $x = \sum_{i=1}^n e_i$. En appliquant u et en utilisant sa linéarité on obtient alors

$$y = u(x) = u\left(\sum_{i=1}^{n} e_i\right) = \sum_{i=1}^{n} u(e_i),$$

ce qu'on souhaitait démontrer.

L'image d'une famille génératrice par une application linéaire surjective est bien génératrice.

4 Complexes

Soit $n \in \mathbb{N}^*$. Montrer: $\{z \in \mathbb{C}; z^n = 1\} = \{e^{2ik\pi/n} | k \in [0, n-1]\}$

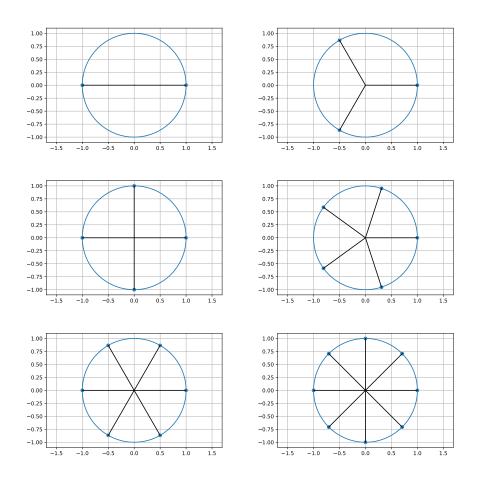
Notons E_1 l'ensemble de gauche et E_2 celui de droite.

- L'inclusion $E_2 \subset E_1$ est une simple vérification : si $z \in E_2$ alors il existe $k \in [0, n-1]$ tel que $z = e^{2ik\pi/n}$, et on a alors $z^n = e^{2ik\pi} = 1$, donc $z \in E_1$.
- Réciproquement : si $z \in E_1$, on l'écrit $z = \rho e^{i\theta}$ avec $\rho \geqslant 0$ et $\theta \in [0, 2\pi[$ (en cherchant la preuve au brouillon vous avez probablement écrit $\theta \in \mathbb{R}$ dans un premier temps, avant de réaliser en fin de preuve que pour localiser k, il était pratique de localiser θ dans l'intervalle suffisant $[0, 2\pi[...)$. On a $\rho^n e^{ni\theta} = 1$, donc en observant le module on a $\rho^n = 1$, ce qui impose (puisque ρ est un réel positif) : $\rho = 1$. On obtient ensuite $e^{ni\theta} = 1$, donc il existe $k \in \mathbb{Z}$ tel que $n\theta = 2k\pi$.

Bien entendu personne n'aura écrit un charabia à base de $e^{ni\theta} = e^{2ik\pi}$ pour tout k donc... donc quoi? Donc $n\theta = 2k\pi$ bien entendu! Ce qu'on utilise c'est le fait que les seuls réels φ vérifiant $e^{i\varphi} = 1$ sont ceux de la forme $2k\pi$ avec k entier.

Bref, $z={\rm e}^{2ik\pi/n}$, et il reste à localiser k, ce qu'on obtient facilement grâce à l'encadrement $0 \le \theta < 2\pi$ qui fournit $0 \le k < n$ et permet de conclure puisque k est entier.

Bonus : les ensembles en question pour $n \in \{2, 3, 4, 5, 6, 8\}$!



5 Une décomposition en éléments simples

Décomposer en éléments simples dans
$$\mathbb{R}(X)$$
 et $\mathbb{C}(X)$: $F = \frac{X^2 + X + 1}{(X - 1)(X + 2)(X^2 + 1)}$

La fraction a un degré strictement négatif (sans quoi il aurait fallu commencer par une division euclidienne), donc le théorème de décomposition en éléments simples nous assure l'existence de coefficients réels tels que :

$$F = \frac{X^2 + X + 1}{(X - 1)(X + 2)(X^2 + 1)} = \frac{a}{X - 1} + \frac{b}{X + 2} + \frac{cX + d}{X^2 + 1}.$$

Il est évidement hors de question de mettre tout ceci sous même dénominateur et de procéder à je ne sais quelles identification, concept à manipuler avec la plus grande prudence... en tout cas cette année. Par contre considérer la fraction (X-1)F (sous ses deux formes) puis l'évaluer en 1 (et il n'est aucunement question de faire tendre X vers 1!) fournit :

$$((X-1)F)(1) = a = \frac{3}{3 \times 2} = \frac{1}{2}$$

(On aura noté l'importance des parenthèses autour de $(X-1)F\ldots$) De même :

$$((X+2)F)(-2) = b = \frac{3}{-3 \times 5} = -\frac{1}{5}$$

On passe ensuite par $\mathbb C$ pour déterminer deux réels en même temps (par identification des parties réelles et imaginaires) :

$$((X^2+1)F)(i) = ci + d = \frac{i}{(i-1)(i+2)} = \frac{i}{-3+i} = \frac{i}{10}(-3-i) = \frac{1}{10} - \frac{3}{10}i,$$

donc $s = -\frac{3}{10}$ et $d = \frac{1}{10}$ et finalement :

$$\frac{X^2 + X + 1}{(X - 1)(X + 2)(X^2 + 1)} = \frac{1/2}{X - 1} - \frac{1/5}{X + 2} + \frac{-\frac{3}{10}X + \frac{1}{10}}{X^2 + 1}.$$

Avant de passer à la suite j'ai fait deux petites vérifications peu coûteuses : que vaut F(0)? Et quelle est la limite de tF(t) quand t tend $vers +\infty$? « D'une part... et d'autre part... » Il reste à décomposer sur $\mathbb C$ le petit morceau :

$$G = \frac{-\frac{3}{10}X + \frac{1}{10}}{X^2 + 1} = \frac{-\frac{3}{10}X + \frac{1}{10}}{(X - i)(X + i)} = \frac{\alpha}{X - i} + \frac{\beta}{X + i},$$

ce qu'on fait par multiplication-évaluation :

$$((X-i)G)(i) = \alpha = \frac{1}{2i} \left(-\frac{3}{10}i + \frac{1}{10} \right) = -\frac{3}{20} - \frac{1}{20}i$$

et

$$((X+i)G)(-i) = \beta = \frac{1}{-2i} \left(\frac{3}{10}i + \frac{1}{10} \right) = -\frac{3}{20} + \frac{1}{20}i$$

En regroupant les morceaux :

$$\frac{X^2 + X + 1}{(X - 1)(X + 2)(X^2 + 1)} = \frac{1/2}{X - 1} - \frac{1/5}{X + 2} + \frac{-\frac{3}{20} - \frac{1}{20}i}{X - i} + \frac{-\frac{3}{20} + \frac{1}{20}i}{X + i}.$$

