

Nilpotents, commutants, exponentielle et logarithme de matrices

À rendre le mardi 4 novembre 2025 dernier délai (le lundi 3 dans mon casier, c'est mieux).

Dans tout le problème, le corps des scalaires est $\mathbb{K}=\mathbb{R}$ et n désigne un entier naturel.

Soit E un espace vectoriel sur \mathbb{R} , on note $\mathcal{L}(E)$ l'algèbre des endomorphismes de E (c'est-à-dire des applications linéaires de E dans E).

Soit $u \in \mathcal{L}(E)$.

- On note Id_E l'identité de E. On rappelle que $u^0=\mathrm{Id}_E$, que $u^1=u$, que $u^2=u\circ u$, etc.
- On dit que u est nilpotent s'il existe un entier naturel k tel que $u^k = 0$.

On définit alors son indice (de nilpotence) par

$$\alpha(u) = \operatorname{Min} \left\{ k \in \mathbb{N} \mid u^k = 0 \right\};$$

- on a donc $\alpha(u) \geqslant 1$.
- Soit F un sous-espace vectoriel de E, on dit que F est stable par u si $u(F) \subset F$.

Étant donné un entier naturel p non nul, on note $\mathcal{M}_p(\mathbb{R})$ l'algèbre des matrices carrées d'ordre p. On note I_p la matrice identité.

On définit de même que ci-dessus la notion de matrice nilpotente et l'indice d'une matrice nilpotente.

On note $\mathbb{R}[X]$ l'algèbre des polynômes à coefficients réels à une indéterminée.

Dans la suite, le mot polynôme désignera toujours un élément de $\mathbb{R}[X]$.

On note $\mathbb{R}_n[X]$ l'ensemble des polynômes de degré inférieur ou égal à n, c'est-à-dire :

$$\mathbb{R}_n[X] = \{ P \in \mathbb{R}[X] \mid \deg P \leqslant n \}.$$

On rappelle que $\mathbb{R}_n[X]$ est un sous-espace vectoriel de $\mathbb{R}[X]$.

On note $C = (X^k)_{k \in \mathbb{N}}$ la base canonique de $\mathbb{R}[X]$ et $C_n = (X^k)_{0 \le k \le n}$ la base canonique de $\mathbb{R}_n[X]$.

Partie I.

Soient
$$\Delta \parallel^{\mathbb{R}[X]} \stackrel{\longrightarrow}{\longrightarrow} \mathbb{R}[X] \stackrel{\mathbb{R}[X]}{\longrightarrow} P(X+1) - P(X)$$
 et $D \parallel^{\mathbb{R}[X]} \stackrel{\longrightarrow}{\longrightarrow} \mathbb{R}[X]$

- 1. Montrer que Δ est un endomorphisme de $\mathbb{R}[X]$.
- 2. Montrer que $\mathbb{R}_n[X]$ est stable par Δ .
- 3. On note Δ_n l'endomorphisme de $\mathbb{R}_n[X]$ induit par Δ . Expliciter la matrice de Δ_n relativement à la base \mathcal{C}_n .
- 4. L'endomorphisme Δ_n est-il diagonalisable?
- 5. L'endomorphisme Δ_n est-il nilpotent?
- 6. L'endomorphisme Δ est-il nilpotent?
- 7. Donner sans démonstration les résultats analogues pour D.

Partie II.

1. On note A et B les matrices respectives de D_2 et Δ_2 dans la base canonique $C_2 = (1, X, X^2)$ de $\mathbb{R}_2[X]$.

Pour tout $k \in \mathbb{N}$, expliciter A^k et B^k .

2. On considère la matrice $J_1 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

On note (E_1) l'équation matricielle $M^2 = J_1$ d'inconnue $M \in \mathcal{M}_3(\mathbb{R})$. Exhiber deux solutions distinctes de (E_1) .

- 3. Soit M une solution de (E_1) . On note f l'endomorphisme de $\mathbb{R}_2[X]$ canoniquement associé à M. Soit $g = f \circ f$.
 - (a) Montrer que $\operatorname{Ker} g$ et $\operatorname{Im} g$ sont stables par f.
 - (b) Montrer que f admet une unique valeur propre, que l'on précisera.
 - (c) En déduire toutes les solutions de (E_1) .
- 4. On considère la matrice $J_2 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$.

On note (E_2) l'équation matricielle $M^2 = J_2$ d'inconnue $M \in \mathcal{M}_3(\mathbb{R})$. Montrer que (E_2) n'admet aucune solution.

Partie III.

Dans cette partie E est un \mathbb{R} -espace vectoriel de dimension finie $n \geqslant 3$. Étant donné $f \in \mathcal{L}(E)$, on note

$$Com(f) = \{ g \in \mathcal{L}(E) \mid f \circ g = g \circ f \} \qquad \text{et} \qquad Pol(f) = \{ P(f) \mid P \in \mathbb{R}[X] \}.$$

Soit $u \in \mathcal{L}(E)$ nilpotent d'indice n. Soit $u' \in \mathcal{L}(E)$ nilpotent d'indice n - 1.

- 1. Montrer que $\operatorname{Pol}(f)$ et $\operatorname{Com}(f)$ sont des sous-espaces vectoriels de $\mathcal{L}(E)$ pour tout $f \in \mathcal{L}(E)$. Est-ce que ce sont des sous-algèbres de $\mathcal{L}(E)$?
- 2. Montrer qu'il existe une base $\mathcal{B}=(e_1,\ldots,e_n)$ de E telle que la matrice de u dans \mathcal{B} soit $N=(n_{i,j})_{1\leqslant i,j\leqslant n}$ définie par $\left\{\begin{array}{l} n_{i,j}=1 \text{ si } j=i+1,\\ n_{i,j}=0 \text{ sinon} \end{array}\right.$
- 3. Pour tout $k \in \{1, ..., n\}$, donner une base de Ker u^k .
- 4. Montrer que $(u^k)_{0 \leq k \leq n-1}$ est une base de $\operatorname{Pol}(u)$.
- 5. Soit $w \in \text{Com}(u)$. Soit $P \in \mathbb{R}[X]$. Montrer que Ker P(u) est stable par w.
- 6. Montrer que la matrice de w dans la base $\mathcal B$ est triangulaire supérieure.
- 7. Montrer que Com(u) = Pol(u). En déduire la dimension de Com(u).
- 8. Montrer qu'il existe une base $\mathcal{B}'=(e'_1,\ldots,e'_n)$ de E telle que la matrice de u' dans \mathcal{B}' soit $N'=\left(n'_{i,j}\right)_{1\leqslant i,j\leqslant n}$ définie par $\left\{\begin{array}{l}n'_{i,j}=1 \text{ si } j=i+1 \text{ et } j\leqslant n-1\\n'_{i,j}=0 \text{ sinon}\end{array}\right.$
- 9. Déterminer la dimension de Com(u').

Partie IV.

Toutes les matrices étudiées dans cette partie sont dans $\mathcal{M}_n(\mathbb{R})$ avec $n \ge 2$. Une matrice U est dite unipotente si $U - I_n$ est nilpotente.

Si A est une matrice nilpotente on note :

$$\exp\left(A\right) = \sum_{k=0}^{\infty} \frac{1}{k!} A^k,\tag{1}$$

$$\ln(I_n + A) = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} A^k.$$
 (2)

- 1. Exhiber deux matrices nilpotentes dont la somme n'est pas nilpotente. Même question pour le produit.
- 2. Soient A et B deux matrices nilpotentes qui commutent (c'est-à-dire telles que AB = BA).
 - (a) Montrer que AB est nilpotente et que $\alpha(AB) \leq \min \{\alpha(A), \alpha(B)\}$. Donner un exemple où cette inégalité est stricte.
 - (b) Montrer que A + B est nilpotente et que $\alpha(A + B) \leq \alpha(A) + \alpha(B) 1$. Donner un exemple où cette inégalité est en fait une égalité.
- 3. Soit A une matrice nilpotente d'indice $r \ge 2$.
 - (a) Montrer qu'il existe deux polynômes P et Q de même degré d (qu'on exprimera en fonction de r) tels que $\exp(A) = P(A)$ et $\ln(I_n + A) = Q(A)$.
 - (b) Montrer que pour x réel tendant vers 0,

$$Q(P(x) - 1) = x + o(x^d)$$
, et $P(Q(x)) = 1 + x + o(x^d)$.

- 4. Montrer que les relations (1) et (2) permettent de définir deux applications bijectives et réciproques l'une de l'autre entre l'ensemble des matrices nilpotentes et l'ensemble des matrices unipotentes.
- 5. Soient A et B deux matrices nilpotentes qui commutent; exprimer $\exp(A+B)$ en fonction de $\exp(A)$ et $\exp(B)$.
- 6. Soient U et V deux matrices unipotentes qui commutent; exprimer $\ln(UV)$ en fonction de $\ln(U)$ et $\ln(V)$.
- 7. Sur quel sous-ensemble de $\mathcal{M}_n(\mathbb{R})$ est-il possible de définir l'exponentielle d'une matrice par la relation (1)? Dans ce cadre plus général, que dire de $\exp(M_1 + M_2)$, $\exp(M_1)$ et $\exp(M_2)$ si M_1 et M_2 commutent?