

Réduction

À rendre le mardi 11 novembre 2025 dernier délai (le lundi 10 dans mon casier, c'est mieux).

Ce sujet est composé d'un exercice (faisable en 30-45 minutes) puis d'un problème (faisable en 2H-2H30). Vous pouvez choisir de le faire « en mode DS » : trois heures de travail d'une seule traite, et basta! Ou « en mode DM » par petits passages. Vous n'êtes pas obligés de tout traiter, mais n'allez pas chercher un corrigé! Par contre comme d'habitude, n'hésitez pas à en discuter entre vous après avoir cherché individuellement.

En sujet alternatif (plutôt pour 5/2, parce que certaines notions ne seront vues qu'en fin de semaine), un très bon énoncé sur les « racines d'endomorphismes ».

1 Suites simultanément convergentes

- 1. Justifier que la matrice $A = \begin{pmatrix} -4 & 2 & -2 \\ -6 & 4 & -6 \\ -1 & 1 & -3 \end{pmatrix}$ est diagonalisable et déterminer une matrice P telle que $P^{-1}AP$ soit diagonale.
- 2. Application : On considère trois suites réelles $(u_n)_{n\in\mathbb{N}},\,(v_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$ telles que :

$$\left\{ \begin{array}{lll} u_{n+1} & = & -4u_n + 2v_n - 2w_n \\ v_{n+1} & = & -6u_n + 4v_n - 6w_n & \text{pour tout } n \in \mathbb{N}. \\ w_{n+1} & = & -u_n + v_n - 3w_n \end{array} \right.$$

Pour tout
$$n \in \mathbb{N}$$
, on pose $X_n = \begin{pmatrix} u_n \\ v_n \\ w_n \end{pmatrix}$ et $Y_n = P^{-1}X_n = \begin{pmatrix} \alpha_n \\ \beta_n \\ \gamma_n \end{pmatrix}$.

- (a) Exprimer, pour tout $n \in \mathbb{N}$, Y_n en fonction de α_0 , β_0 , γ_0 et n.
- (b) À quelle condition sur (u_0, v_0, w_0) les suites $(u_n)_{n \in \mathbb{N}}$, $(v_n)_{n \in \mathbb{N}}$ et $(w_n)_{n \in \mathbb{N}}$ convergent-elles simultanément? Expliciter alors ces suites.

PROBLÈME 1

Étude de matrices tridiagonales particulières

Présentation générale

Le but de ce problème est d'étudier quelques propriétés (diagonalisabilité, valeur du déterminant) de certaines matrices tridiagonales.

Plus précisément, pour un entier naturel $n \ge 2$, on considère n-1 couples de nombres complexes (a_k,b_k) , pour k variant de 1 à n, tels que $a_kb_k=-1$ et on s'intéressera alors à la matrice suivante de $\mathcal{M}_n(\mathbb{C})$:

$$M_n = \begin{pmatrix} 1 & b_1 & 0 & 0 & \dots & 0 \\ a_1 & 1 & b_2 & 0 & \dots & 0 \\ 0 & a_2 & 1 & b_3 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \ddots & 1 & b_{n-1} \\ 0 & 0 & 0 & \dots & a_{n-1} & 1 \end{pmatrix}.$$

On posera également $M_1 = (1)$ (matrice carrée d'ordre 1 dont le seul coefficient vaut 1).

Les quatre parties de ce problème sont indépendantes. Elles peuvent être traitées séparément.

Notations

- On note $\chi_A(X)$ le polynôme caractéristique d'une matrice carrée A et $E_{\lambda}(A)$ le sous-espace propre de A associé à un scalaire λ ;
- on note $\mathcal{M}_n(\mathbb{C})$ (respectivement $\mathcal{M}_n(\mathbb{R})$) l'espace vectoriel des matrices carrées d'ordre n à coefficients dans \mathbb{C} (respectivement dans \mathbb{R});
- on note $\mathcal{M}_{n,1}(\mathbb{C})$ (respectivement $\mathcal{M}_{n,1}(\mathbb{R})$) l'espace vectoriel des matrices colonnes à n lignes à coefficients dans \mathbb{C} (respectivement dans \mathbb{R});
- on note I_n la matrice identité d'ordre n;
- on note \overline{z} le conjugué d'un nombre complexe z.

Partie I - Un exemple dans $\mathcal{M}_3(\mathbb{C})$

Dans cette partie, on considère que n est égal à 3 et on pose $a_1 = a_2 = -1$ et $b_1 = b_2 = 1$.

On s'intéresse donc à la matrice M_3 de $\mathcal{M}_3(\mathbb{C})$ définie par :

$$M_3 = \begin{pmatrix} 1 & 1 & 0 \\ -1 & 1 & 1 \\ 0 & -1 & 1 \end{pmatrix}.$$

- **Q10.** Justifier que M_3 vérifie bien les données de l'énoncé.
- **Q11.** Déterminer le rang de M_3 I_3 et en déduire que M_3 admet au moins une valeur propre réelle à préciser.
- **Q12.** Déterminer $\chi_{M_3}(X)$. Ce polynôme est-il scindé dans \mathbb{R} ?
- **Q13.** Déduire de la question précédente la valeur du déterminant de M_3 .

Q14. Justifier que M_3 admet 3 valeurs propres complexes distinctes, dont une seule est réelle et les deux autres conjuguées. En déduire que M_3 est diagonalisable dans $\mathbb C$ et donner, sans aucun calcul, la dimension de ses sous-espaces propres.

On note dans la suite λ l'unique valeur propre réelle de M_3 et μ l'unique valeur propre complexe de M_3 dont la partie imaginaire est strictement positive. Ainsi, les valeurs propres de M_3 sont λ , μ et $\overline{\mu}$.

- **Q15.** Déterminer une base du sous-espace propre $E_{\lambda}(M_3)$.
- **Q16.** Déterminer les nombres complexes p tels que :

$$M_3 \begin{pmatrix} p \\ i\sqrt{2} \\ -p \end{pmatrix} = (1 + i\sqrt{2}) \begin{pmatrix} p \\ i\sqrt{2} \\ -p \end{pmatrix}.$$

En déduire une base du sous-espace propre $E_{\mu}(M_3)$.

Q17. Soit $N \in \mathcal{M}_3(\mathbb{C})$, une matrice à coefficients réels, $z \in \mathbb{C}$ et :

$$X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathcal{M}_{3,1}(\mathbb{C}).$$

Montrer que si X est un vecteur propre de N associé à la valeur propre z, alors le vecteur :

$$\overline{X} = \begin{pmatrix} \overline{x_1} \\ \overline{x_2} \\ \overline{x_3} \end{pmatrix}$$
,

est un vecteur propre de N associé à la valeur propre \overline{z} . En déduire une base de $E_{\overline{u}}(M_3)$.

Partie II - Cas général dans $\mathcal{M}_2(\mathbb{C})$

Uniquement dans cette partie, on considère que l'entier naturel n vaut 2. On s'intéresse donc à la matrice M_2 de $\mathcal{M}_2(\mathbb{C})$ définie par :

$$M_2 = \begin{pmatrix} 1 & b_1 \\ a_1 & 1 \end{pmatrix},$$

où a_1 et b_1 sont deux nombres complexes tels que $a_1b_1 = -1$.

- **Q18.** Déterminer $\chi_{M_2}(X)$.
- **Q19.** Si on considère a_1 et b_1 réels, la matrice M_2 est-elle diagonalisable dans \mathbb{R} ? Trigonalisable dans \mathbb{R} ?
- **Q20.** La matrice M_2 est-elle diagonalisable dans \mathbb{C} ? Aucune diagonalisation effective n'est demandée.
- **Q21.** Donner la valeur du déterminant de M_2 .

Objectif de la suite du problème

Dans la partie III, nous démontrerons certains résultats liés à la suite de Fibonacci.

Dans la **partie IV**, nous déterminerons la valeur du déterminant des matrices tridiagonales vérifiant les conditions de l'énoncé.

Partie III - La suite de Fibonacci

On définit la suite de Fibonacci $(F_n)_{n\geq 0}$ de la manière suivante : $F_0=1$, $F_1=1$ et :

$$\forall n \geq 0, F_{n+2} = F_{n+1} + F_n$$
.

- **Q22.** Montrer que pour tout entier naturel n, F_n est un entier naturel.
- **Q23.** Résoudre l'équation caractéristique associée à $(F_n)_{n\geq 0}$. En déduire l'expression de F_n pour tout entier naturel n.

On considère la fonction récursive suivante, prenant en argument un entier naturel n, et renvoyant la valeur de F_n :

```
def Fibo(n):
''' n : entier naturel.
Renvoie la valeur de Fn'''
if n<=1:
    return 1
return Fibo(n-1)+Fibo(n-2)</pre>
```

- Q24. Les trois questions suivantes sont liées à la fonction Fibo.
 - a) À l'aide d'un schéma, représenter les différents appels récursifs lors de l'exécution de l'instruction Fibo(4).
 - b) Expliquer, de manière simple et sans calcul, pourquoi cette fonction a une complexité de calcul élevée.
 - c) Écrire une fonction FiboV2, prenant en argument un entier naturel n et renvoyant la valeur du terme F_n . Cette fonction ne devra pas être récursive et devra avoir un coût de calcul moins élevé que Fibo.

Partie IV - Calcul du déterminant dans le cas général

On reprend les notations de la présentation générale et on considère donc les matrices M_n pour tout entier naturel $n \ge 1$. On note alors d_n le déterminant de M_n .

On rappelle que la suite de Fibonacci $(F_n)_{n\geq 0}$ est définie de la manière suivante : $F_0=1$, $F_1=1$ et :

$$\forall n \geq 0, F_{n+2} = F_{n+1} + F_n$$
.

- **Q25.** Donner les valeurs de d_1 et de d_2 puis calculer d_3 .
- **Q26.** Montrer que pour tout entier naturel $n \ge 1$, $d_{n+2} = d_{n+1} + d_n$. On pourra développer d_{n+2} par rapport à la dernière ligne de M_{n+2} .
- **Q27.** En déduire que pour entier naturel $n \ge 1$, $d_n = F_n$.