

À rendre le lundi 15 décembre 2025 dans mon casier.

Au choix : le petit problème proposé ici, ou bien le sujet complet (long et difficile) « DM 8 bis ». Je donne ce sujet bis... mais je pense que tout le monde peut rédiger plutôt le sujet « normal » : soyez raisonnables!

1 Convergence de séries par transformation d'Abel

1. On considère une suite de réels (a_n) , une suite de complexes (b_n) et on note pour tout $n \in \mathbb{N}$:

$$S_n = \sum_{k=0}^n a_k b_k \qquad \text{et} \qquad B_n = \sum_{k=0}^n b_k$$

En remarquant que, pour $k \geqslant 1, \, b_k = B_k - B_{k-1},$ démontrer :

$$\forall n \in \mathbb{N}^*, \qquad S_n = \sum_{k=0}^{n-1} (a_k - a_{k+1}) B_k + a_n B_n$$

Cette façon de réécrire S_n s'appelle la transformation d'Abel.

- 2. On suppose que (B_n) est bornée et que (a_n) est décroissante de limite nulle.
 - (a) Démontrer que la série $\sum (a_k a_{k+1})$ converge.
 - (b) En déduire que la série $\sum a_n b_n$ converge.
 - (c) En appliquant le résultat précédent au cas où $b_n = (-1)^n$, donner une démonstration du théorème de convergence des séries alternées, après l'avoir énoncé.
- 3. Dans cette question, θ est un réel différent de $2k\pi$ $(k \in \mathbb{Z})$ et $\alpha \in \mathbb{R}$.
 - (a) Calculer pour n entier naturel, $\sum_{k=0}^{n} e^{ik\theta}$.
 - (b) Discuter en fonction du réel α la nature de la série $\sum_{n\geq 1} \frac{\mathrm{e}^{in\theta}}{n^{\alpha}}$.
- 4. On s'intéresse à la série de fonctions $\sum_{n\geqslant 1}u_n$, avec :

$$\forall n \in \mathbb{N}^* \ \forall x \in \mathbb{R}, \qquad u_n(x) = \frac{\sin(nx)}{\sqrt{n}}.$$

Démontrer que cette série de fonctions converge simplement en tout point de \mathbb{R} .

On pourra utiliser sans démonstration le fait qu'une série de complexes $\sum u_n$ converge si et seulement si $\sum \operatorname{Re}(u_n)$ et $\sum \operatorname{Im}(u_n)$) convergent.

On notera U sa fonction somme :

$$\forall x \in \mathbb{R}, \qquad U(x) = \sum_{n=1}^{\infty} \frac{\sin(nx)}{\sqrt{n}}.$$

2 Convergence uniforme de séries

1. On considère une suite de réels (a_n) et (f_n) une suite de fonctions définies sur une partie A de \mathbb{C} , et à valeurs dans \mathbb{C} .

On pose, pour tout $z \in A$ et pour tout entier naturel n, $F_n(z) = \sum_{k=0}^n f_k(z)$.

On suppose que (a_n) est décroissante de limite nulle et qu'il existe $M \in \mathbb{R}^+$, tel que pour tout $z \in A$ et tout $n \in \mathbb{N}, |F_n(z)| \leq M$ (la suite (F_n) est dite uniformément bornée)

- (a) Démontrer que la suite de fonctions $(a_n F_n)$ converge uniformément sur A et que la série de fonctions $\sum (a_k - a_{k+1}) F_k$ converge normalement sur A.
- (b) À l'aide d'une transformation d'Abel, en déduire que la série de fonctions $\sum a_n f_n$ converge uniformément sur A.
- 2. Pour x réel et n entier naturel non nul, $u_n(x) = \frac{\sin(nx)}{\sqrt{n}}$
 - (a) Démontrer que pour tout $x \in \mathbb{R}$, $1 e^{ix} = -2i\sin\left(\frac{x}{2}\right)e^{i\frac{x}{2}}$.
 - (b) Démontrer que la série de fonctions $\sum_{n\geq 1}u_n$ converge uniformément sur tout intervalle $[a,2\pi-a]$
 - (c) En déduire que la fonction U est continue sur l'intervalle $]0, 2\pi[$.
 - (d) On fixe $p \in \mathbb{N}$, et on considère la série de fonctions $\sum_{n \geqslant 1} v_n$ où pour x réel et n entier naturel

non nul, $v_n(x) = \frac{\sin(nx)\sin(px)}{\sqrt{n}}$. Démontrer que $\sum_{n\geqslant 1} v_n$ converge uniformément sur l'intervalle $[0,\pi]$.

On pourra, par exemple, utiliser 1 :

$$\forall x \in [0, \pi], \qquad \frac{x}{\pi} \leqslant \sin \frac{x}{2}.$$

3 Convergence uniforme d'une série entière

- 1. Si $\sum a_n z^n$ est une série entière de la variable complexe de rayon R>0, rappeler le résultat du cours concernant la convergence uniforme de cette série de fonctions.
- 2. On considère la série de la variable complexe $\sum_{n\geqslant 1} \frac{z^n}{\sqrt{n}}$
 - (a) Justifier le fait que cette série entière a pour rayon de convergence 1.
 - (b) On note $D=\{z\in\mathbb{C},\ |z|<1\}.$

Démontrer que la série de la variable réelle $\sum_{n\geq 1} \frac{x^n}{\sqrt{n}}$ ne converge pas uniformément sur]-1,1[

(en particulier la série $\sum_{n\geqslant 1}\frac{z^n}{\sqrt{n}}$ ne converge pas uniformément sur D).

(c) Pour $\alpha \in \left]0, \frac{\pi}{2}\right[$, on note D_{α} l'ensemble des complexes z, tels que $|z| \leqslant 1$ et dont la partie réelle vérifie $Re(z) \leq \cos \alpha$.

Représenter géométriquement l'ensemble D_{α} dans un repère orthonormé du plan. On confondra évidemment un point de \mathbb{R}^2 et son affixe.

(d) On note pour $z \in \mathbb{C}$ et n entier naturel, $F_n(z) = \sum_{k=0}^n z^k$.

Démontrer que pour tout $z \in D_{\alpha}$ et tout entier naturel n, si x = Re(z):

$$|F_n(z)| \le \frac{2}{1-x} \le \frac{2}{1-\cos\alpha}$$

^{1.} Une petite prime sera généreusement offerte à ceux justifiant cette inégalité, cette prime sera augmentée si la preuve est accompagnée d'un dessin pertinent..

(e) Démontrer que la série entière $\sum_{n\geqslant 1}\frac{z^n}{\sqrt{n}}$ converge uniformément sur toutes les parties D_{α} (pour $\alpha \in \left]0, \frac{\pi}{2}\right[$).

Le debrieff... 4

Quelques remarques signalées après avoir corrigé les copies...

- Majorations de complexes!!!
- $-|S_n| \leq \dots \text{ donc } (S_n) \text{ est convergente...}$ $-(\text{nimpe}) \text{ donc } (S_n) \text{ est convergente...}$
- « passages à la limite » sans savoir qu'elles existent.
- Pitié, pas de récurrence.
- Savoir enfin sommer les suites géométriques...
- Que vaut $e^{i\theta}$?
- Bravo pour l'uniforme convergence sur \dots