

Suites et séries de fonctions

Modes de convergence 1

Exercice 1 – *Mines 2022 [6/10]*

Soit $(t_n)_{n\in\mathbb{N}}$ une suite de réels de [0,1[telle que $(t_n^n)_{n\in\mathbb{N}}$ ne converge pas vers 0. On définit par ailleurs, pour $n \in \mathbb{N} : P_n = X^n - X^{n+1}$.

- 1. Donner un exemple de suite (t_n) telle que (t_n) ne converge pas vers 0.
- 2. Montrer que (la suite de fonctions polynomiales associées à) (P_n) converge uniformément sur [0,1].
- 3. Montrer que $P_n(t_n) \underset{n \to +\infty}{\longrightarrow} 0$.
- 4. En partant de la relation

$$x^{n} - x^{n+1} = x^{n} \frac{1}{\frac{1}{1-x}} = \frac{x^{n}}{\sum_{k=0}^{\infty} x^{k}},$$

montrer d'une deuxième façon que $P_n(t_n) \underset{n \to +\infty}{\longrightarrow} 0$.

Exercice 2 - TPE 2017 [5/10]

On définit, pour $n \in \mathbb{N}$, l'application

$$f_n: t \longmapsto n \cos t \sin^n t.$$

Étudier la convergence de $(f_n)_{n\in\mathbb{N}}$ sur $[0,\pi/2]$.

Exercice 3 – TPE 2017 (deux fois) [3/10] On définit, pour $n \in \mathbb{N}$ et $x \in \mathbb{R}$: $f_n(x) = \frac{nx}{1 + n^2x^2}$

- 1. Étudier la convergence simple de (f_n) sur \mathbb{R} .
- 2. A-t-on convergence uniforme?
- 3. Prouver la convergence uniforme sur $[a, +\infty[$, lorsque a > 0.

Exercice 4 - CCINP 2009 [2/10]

On pose, pour $n \in \mathbb{N}$: $f_n(x) = ne^{-n^2x^2}$.

- 1. Étudier la convergence simple de $(f_n)_{n\in\mathbb{N}}$ sur \mathbb{R} .
- 2. Montrer la convergence uniforme sur tout intervalle de la forme $[a, +\infty[$ avec a > 0.
- 3. Étudier la convergence uniforme sur $]0, +\infty[$.

Exercice 5 – [3/10]

Soit $f \in \mathcal{C}(\mathbb{R}^+,\mathbb{R})$. On définit sur $\mathbb{R}^+: f_n(x) = f(x/n)$. Étudier la convergence simple et uniforme de $(f_n)_{n\geqslant 1}$.

Exercice 6 - [8/10]

Soit $f \in \mathcal{C}(\mathbb{R}, \mathbb{R}_*^+)$. On définit sur $\mathbb{R}: f_n(x) = \left(f\left(\frac{x}{\sqrt{n}}\right)\right)^n$. Étudier la convergence simple et uniforme $de(f_n)_{n\geqslant 1}$.

Exercice 7 – [8/10]

Soit $f \in \mathcal{C}(\mathbb{R}, \mathbb{R})$. On définit :

$$\forall x \in \mathbb{R}, \ \forall n \in \mathbb{N}^*, \qquad f_n(x) = \sqrt{f(x)^2 + \frac{1}{n}}.$$

Étudier la convergence de $(f_n)_{n\geqslant 1}$.

Exercice 8 - Convergence des fonctions convexes [9/10]

Soit $(f_n)_{n\geqslant 0}$ une suite de fonctions convexes convergeant simplement vers f sur un intervalle I.

- 1. Montrer que f est convexe.
- 2. On suppose que I est un segment. La convergence des (f_n) est-elle uniforme sur I?
- 3. Montrer que si S est un segment contenu dans l'intérieur de I, alors les f_n sont équilipschitziennes sur S
- 4. En déduire que (f_n) converge uniformément sur S.

Exercice 9 - |5/10|

Étudier la suite de fonctions (f_n) définies sur \mathbb{R} par :

$$\forall n \in \mathbb{N} \ \forall x \in \mathbb{R}$$
 $f_n(x) = \begin{cases} \frac{x}{n} & \text{si } x \text{ est un entier pair } \\ \frac{1}{n} & \text{sinon} \end{cases}$

2 Régularité des sommes de séries de fonctions

Exercice 10 - CCP 2017 [6/10]

On pose, pour
$$n \in \mathbb{N}^*$$
 et $x \in [0, +\infty[$: $f_n(x) = \frac{x^n}{n^2(1+x^{2n})}$

- 1. Étudier la convergence simple de $(f_n)_{n\in\mathbb{N}}$.
- 2. Déterminer la limite de $\int_0^1 f_n(t)dt$ lorsque n tend vers $+\infty$.
- 3. Montrer que pour tout $x \ge 0$, $\sum f_n(x)$ converge. On note S(x) la somme de cette série.
- 4. Exprimer, pour x > 0, S(1/x) en fonction de S(x).
- 5. Étudier la continuité de S sur $[0, +\infty[$.
- 6. Préciser la limite de S en $+\infty$.

Exercice 11 - IMT 2017 [6/10]

On s'intéresse à
$$S(x) = \sum_{n=1}^{+\infty} \frac{(-1)^n e^{-x\sqrt{n}}}{n}$$
.

- 1. Donner le domaine de définition de S.
- 2. Montrer que S est dérivable sur son domaine de définition.
- 3. Montrer que $\sum f'_n$ converge uniformément.
- 4. Montrer que S est monotone sur son ensemble de définition.
- 5. Que dire de S au voisinage de $+\infty$?

Exercice 12 - CCP 2017 [8/10]

Soient a > 0 et I = [-a, a]. On suppose que $\varphi \in \mathcal{C}(I, \mathbb{R})$ est telle qu'il existe C > 0 tel que pour tout $x \in I$, $|\varphi(x)| \leq C|x|$.

On s'intéresse alors à l'ensemble E des fonctions f telles que f(0) = 0, et $f(x) - f(x/2) = \varphi(x)$ pour tout $x \in I$.

2

- 1. Montrer que l'application $\Phi: x \mapsto \sum_{n=0}^{+\infty} \varphi\left(\frac{x}{2^n}\right)$ est définie, puis continue, puis appartient à E.
- 2. Que dire de la différence de deux éléments de E?
- 3. En déduire E.
- 4. On suppose φ de classe \mathcal{C}^1 . Montrer que Φ est dérivable.

Questions bonus:

- 1. Si φ est de classe \mathcal{C}^{∞} , que dire de Φ ?
- 2. Montrer que la continuité sur I et la dérivabilité en 0 imposent l'existence de C telle que pour tout $x \in I$, $|\varphi(x)| \leq C|x|$.

Exercice 13 - Mines 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2021... [6/10]

- 1. Déterminer le domaine de convergence de $f(x) = \sum_{n=0}^{\infty} e^{-x\sqrt{n}}$.
- 2. Montrer que f est \mathcal{C}^{∞} sur ce domaine.
- 3. Donner un équivalent de f en 0.

Exercice 14 – C^{∞} [6/10]

Soit $\alpha > 0$. Montrer qu'en posant, pour x > 0, $f(x) = \sum_{n \ge 1} e^{-n^{\alpha}x}$, on définit une fonction de classe \mathcal{C}^{∞} sur \mathbb{R}_{+}^{*} .

3 Des indications

Exercice 1 – J'imagine que $t_n = 1 - 1/n$ fait le job. Ensuite, $|P_n|$ est maximale en n/(n+1) et y vaut O(1/n); puis : $|P_n(t_n)| \le ||P_n||_{\infty}$. La minoration $\sum_{k=0}^{\infty} t_n^k \ge \sum_{k=0}^{n} t_n^k \ge (n+1)t_n^n$ doit permettre de conclure.

Exercice 2 – Il y a convergence simple vers la fonction nulle. Je pense que la tête de f_n invite à considérer $\int_0^{\pi/2} f_n$, qui vaut $\frac{n}{n+1}$, donc ne tend pas vers 0 lorsque n tend vers $+\infty$... ce qui devrait être le cas si la convergence était uniforme.

Exercice 3 – f_n est maximale en 1/n, où elle vaut 1/2...

Exercice 4 - On a $||f||_{\infty,[a,+\infty[} = f_n(a)$, et $||f_n||_{\infty,[0,+\infty[} = n$ par continuité de f_n en 0.

Exercice 5 – Convergence simple vers f(0), uniforme sur [-A, A] par continuité en 0, mais pas sur \mathbb{R} (prendre f non bornée par exemple).

Exercice 6 - Tout est fonction de la position de f(0) vis-à-vis de 1 en première approximation :

- si f(0) < 1, il y a convergence simple vers 0 (uniforme sur [-A, A] mais pas \mathbb{R});
- si f(0) > 1, il y a « divergence simple »!
- si f(0) = 1, différents scénarios peuvent se produire : regarder f(x) = 1 x, $f(x) = 1 x^2$, $f(x) = 1 x^3$...

Exercice 7 – Il y a convergence simple vers |f|. L'inégalité des accroissements finis nous dit que si $A\geqslant M$ et B>0, alors $\left|\sqrt{A+B}-\sqrt{A}\right|\leqslant \frac{1}{2\sqrt{M}}B$. Ceci assure la convergence uniforme « là où f ne s'approche pas trop de 0 ». Il reste à epsiloniser pour prouver la convergence uniforme partout...

Exercice 8 – Passage d'inégalités à la limite; penser à $x \mapsto x^n$. Contrôler les pentes dans S par des pentes prises à l'extérieur de S... et finir en ε !

Exercice 9 – Convergence simple vers la fonction nulle. Uniforme sur toute partie bornée et non uniforme sur \mathbb{R} .

Exercice 10 - Sauf erreur, $||f_n||_{\infty} \leq \frac{1}{n^2} \cdots$

Exercice 11 – Une vague connaissance des séries alternées aidera le candidat. Pour le dernier point, il me semble que le théorème de double-limite s'applique (convergence uniforme...).

Exercice 12 – Les convergences me semblent normales, grâce à la condition sur φ . Pour prouver cette condition sur φ lorsque cette fonction est dérivable en 0, on note que le rapport $\frac{\varphi(x)}{x}$ possède une limite finie en 0 et est continu sur]0,a], donc (petite epsilonisation) est borné sur]0,a] (et aussi bien entendu sur [-a,0[).

Exercice 13 – La convergence des séries dérivées est normale sur $[a, +\infty[$, d'où le caractère \mathcal{C}^{∞} . Au voisinage de 0, une comparaison somme/intégrale fournit comme équivalent : $\frac{2}{x^2}$. Au fait :

> int(exp(-sqrt(u)),u=0..infinity);

2

Et en $+\infty$? Prolongez l'exercice...

Exercice 14 – C'est essentiellement la même chose que le cas $\alpha=1/2$ traité en cours!