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1 Convergence de séries par transformation d’Abel
1. Soit n ∈ N∗.

Sn =

n∑
k=0

akbk = a0b0 +

n∑
k=1

ak(Bk −Bk−1) = a0b0 +

n∑
k=1

akBk −
n∑

k=1

akBk−1.

Dans la dernière somme, on effectue le changement d’indice j = k − 1 :

Sn = a0b0 +

n∑
k=1

akBk −
n−1∑
j=0

aj+1Bj = a0b0 +

n−1∑
k=1

(ak − ak+1)Bk + anBn − a1B0

= a0b0 +

n−1∑
k=0

(ak − ak+1)Bk − (a0 − a1)B0 + anBn − a1b0

c’est à dire le résultat demandé :

∀n ∈ N∗, Sn =
n−1∑
k=0

(ak − ak+1)Bk + anBn

2. (a) La série
∑

(ak − ak+1) est de même nature que la suite (an) (c’est du cours ! revenir à la
définition de la convergence d’une série...). Comme les hypothèses nous assurent que (an)
converge... ∑

(ak − ak+1) est convergente.

(b) Il s’agit ici de montrer que la suite (Sn) est convergente. Puisque an −→
n→+∞

0 et (Bn) est bornée,
on a déjà anBn −→

n→+∞
0, et on est donc ramené à la convergence de la suite de terme général

n−1∑
k=0

(ak − ak+1)Bk, ou encore de la série de terme général uk = (ak − ak+1)Bk.

Si on note M un majorant de (|Bn|), on a alors |uk| = |(ak − ak+1)Bk| ⩽ M(ak − ak+1). Or∑
M(ak − ak+1) est convergente (question précédente), donc par comparaison de séries à

termes positifs,
∑

|uk| est convergente.
Ainsi,

∑
uk est absolument convergente donc convergente, ce qui était le dernier morceau du

puzzle. ∑
anbn est convergente

Je sais déjà que je vais rencontrer beaucoup de majorations de sommes partielles pour prou-
ver les convergences... Allez, des majorations de modules de sommes partielles pour les plus
attentifs...

(c) Commençons par l’énoncé (qui ne parle pas du contrôle du reste) :

Si
∑

un est alternée avec (|un|) décroissante de limite nulle, alors
∑

un converge.

Les hypothèses nous permettent d’écrire un = (−1)n |un| (ou (−1)n+1 |un|, mais on va traiter
le premier cas). Prenons, pour n ∈ N : an = |un| et bn = (−1)n. D’une part (an) est bien

décroissante de limite nulle, et d’autre part on a pour tout n ∈ N : Bn =

{
1 si n est pair
0 sinon

donc (Bn) est bornée, donc le résultat prouvé dans la question précédente s’applique, nous
assurant que

∑
anbn, c’est-à-dire

∑
un est bien convergente.

c.q.f.d.
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3. (a) Puisque eiθ ̸= 1, il est question de sommer les termes d’une suite géométrique de raison
différente de 1, ce qui ne pose normalement pas de problème 1. Ensuite, on factorise via
l’angle moitié en haut et en bas pour voir apparaître des sinus (et NON, je ne ferai pas le pari
que vous avez simplifié de tête les facteurs −2i s’ils n’apparaissent pas sur votre copie...) :

n∑
k=0

eikθ =

n∑
k=0

(
eiθ

)k
=

1− e(n+1)iθ

1− eiθ
=

e(n+1)iθ/2(−2i) sin (n+1)θ
2

eiθ/2(−2i) sin θ
2

,

soit finalement :

∀n ∈ N,
n∑

k=0

eikθ = eniθ/2
sin (n+1)θ

2

sin θ
2

(b) On note bien entendu que
∣∣∣∣einθnα

∣∣∣∣ = 1

nα
· Déjà, si α ⩽ 0, alors

(
1

nα

)
ne converge pas vers 0,

donc
(

einθ

nα

)
non plus, donc

∑
n⩾1

einθ

nα
diverge grossièrement.

Il y a un autre cas assez simple : si α > 1, alors
∑ 1

nα
est une série de Riemann convergente,

donc
∑
n⩾1

einθ

nα
est absolument convergente, donc est convergente.

Supposons maintenant : 0 < α ⩽ 1. En prenant an =
1

nα
et bn = eniθ, on a (avec les notations

de l’énoncé) :

|Bn| =

∣∣∣∣∣eniθ/2 sin
(n+1)θ

2

sin θ
2

∣∣∣∣∣ =
∣∣∣sin (n+1)θ

2

∣∣∣∣∣sin θ
2

∣∣ ⩽
1∣∣sin θ

2

∣∣
ce qui permet d’appliquer la question II.2.b (puisque évidemment (an) est décroissante de

limite nulle) :
∑

anbn =
∑ einθ

nα
est convergente.

∑
n⩾1

einθ

nα
est


grossièrement divergente si α ⩽ 0

semi-convergente si 0 < α ⩽ 1

absolument convergente si 1 < α

4. La question précédente nous assure (α = 1/2) la convergence de
∑
n⩾1

einx√
n

donc de la série des

parties imaginaires
∑
n⩾1

sin(nx)√
n

si x ∈ R \ (2πZ). Pour x ∈ 2πZ, on a un(x) = 0, donc
∑

un(x)

est également convergente. ∑
un converge simplement sur R.

2 Convergence uniforme de séries
1. (a) Si on note Gn = anFn, il vient immédiatement pour tout z ∈ A (les an sont des réels positifs

puisqu’ils décroissent vers 0) : |Gn(z)| = an |Fn(z)| ⩽ anM . Ceci étant valable pour tout z ∈ A,
on a donc ∥Gn∥∞ ⩽ anM −→

n→+∞
0, donc ∥Gn∥∞ −→

n→+∞
0, puis :

(anFn) converge uniformément vers 0 sur A

Si on note cette fois Hk = (ak − ak+1)Fk, alors ∥Hk∥∞ = (ak − ak+1) ∥Fk∥∞, et comme
(∥Hk∥∞) est convergente, elle est bornée, ce qui fournit une majoration de la forme ∥Hk∥∞ ⩽
M(ak − ak+1), et c’est gagné, car

∑
(ak − ak+1) est convergente (toujours le même argument :

(an) est une suite convergente). Par comparaison de séries à termes positifs,
∑

∥Hn∥∞ est
convergente.

1. Cette bonne blague...
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∑
(ak − ak+1)Fk converge normalement sur A.

(b) Les calculs sont identiques à ceux de la question 1. Pour tout n ∈ N, en notant Sn =
n∑

k=0

an fn,

on trouve :

∀x ∈ A, Sn(x) =

n∑
k=0

(ak − ak+1)Fk(x) + an Fn(x)

puis :

Sn =

n∑
k=0

(ak − ak+1)Fk + an Fn.

Or, d’après la question 5.a, la série
∑

(ak−ak+1)Fk converge normalement donc uniformément,

donc la suite de terme général
n∑

k=0

(ak − ak+1)Fk converge normalement donc uniformément,

et celle de terme général an Fn aussi, donc leur somme aussi. En d’autres termes 2 :∑
anfn converge uniformément sur A.

2. (a) Une simple factorisation par l’arc moitié donne

1− eix = eix/2(e−ix/2 − eix/2) = −2i sin x
2 eix/2

(b) Fixons a ∈]0, π[. Notons A l’intervalle [a, 2π − a]. Si l’on utilise les notations de la question 5,
on pose, pour tout n ∈ N∗ et tout x ∈ A :

fn(x) = sin(nx), Fn(x) =

n∑
k=0

sin(kx) et an =
1√
n
·

Maintenant, on vérifie que :
— la suite (an) est décroissante et de limite nulle ;
— la suite (Fn) est uniformément bornée sur A :

∀x ∈ A ∀n ∈ N∗, |Fn(x)| =

∣∣∣∣∣Im
n∑

k=0

eikx
∣∣∣∣∣ ⩽

∣∣∣∣∣
n∑

k=0

eikx
∣∣∣∣∣ = sin ((n+ 1)x/2)

sin(x/2)
⩽

1

sin(x/2)
⩽

1

sin(a/2)
·

D’après la question 5, la série
∑
n⩾1

un converge uniformément sur A = [a, 2π − a].

La série de fonctions
∑
n⩾1

un converge uniformément sur [a, 2π − a].

(Le fait que les sommes commencent à 1 et non à 0 n’a évidemment aucune incidence sur la
validité de la transposition des raisonnements...)

(c) Puisque chaque fonction un est continue sur ]0, 2π[, le théorème de continuité de la somme
d’une série de fonctions montre que la somme U de la série

∑
an fn est continue sur chaque

[a, 2π − a], donc continue sur ]0, 2π[.

U est continue sur ]0, 2π[.

(d) Comme dans la question 5.c, il suffit de prouver que la suite (Vn) des sommes partielles de la
série

∑
sin(nx) sin(px) est uniformément bornée, cette fois sur [0, π]. Or, d’après les calculs

déjà faits, on a (attention, on traite à part le cas x = 0...)

∀x ∈]0, π] ∀n ∈ N∗, |Vn(x)| ⩽
|sin px|
sin(x/2)

·

L’inégalité gentiment donnée par l’énoncé (et prouvée plus loin) montre que

∀x ∈]0, π] ∀n ∈ N∗, |Vn(x)| ⩽ π
|sin px|

x
⩽ pπ,

2. Attention, on passe sans arrêt des suites aux séries et inversement...
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en vertu d’une autre inégalité classique : |sin t| ⩽ |t| pour tout réel t.
Enfin, cette inégalité est également valable pour x = 0. Ainsi,

∀n ∈ N∗, ∥Vn∥∞ ⩽ pπ

c’est-à-dire que la suite (Vn) est uniformément bornée sur [0, π].
On en déduit 3 que :

La série
∑

vn converge uniformément sur [0, π].

Pour montrer l’inégalité donnée dans l’énoncé, on peut étudier la fonction différence x 7→
sin x

2 − x
π , qui s’avère être croissante puis décroissante...

0 π/4 π/2 3π/4 π
x

0

1/2

1

y

y=sin(x/2)

y=x/π

Figure 1 – Le graphe est situé dessus la corde

Fondamentalement, « la » bonne explication est la concavité de la fonction x 7→ sin(x/2) sur
[0, π].

3 Convergence uniforme d’une série entière
1. J’accepte bien entendu la version réelle :

La série
∑

an x
n converge uniformément sur tout segment [a, b] ⊂]−R,R[

Mais aussi la version complexe

La série
∑

an z
n converge uniformément sur toute boule fermée Bf (0, r) ⊂ Bo(0, R) (avec donc r < R).

2. (a) Soit r > 0. La suite
(

rn√
n

)
est bornée si et seulement si r ⩽ 1. En revenant à la définition du

rayon de convergence, on obtient donc directement :∑ zn√
n

a pour rayon de convergence 1.

(b) Procédons par l’absurde en supposant qu’il y a convergence uniforme sur ] − 1, 1[. Puisque

chaque fn(x) =
xn

√
n

tend vers
1√
n

lorsque x tend vers 1−, la convergence uniforme permet

d’appliquer le théorème de la double limite :

— la série
∑ 1√

n
est convergente ;

3. La suite
(

1√
n

)
étant toujours décroissante de limite nulle !

4



— on a
+∞∑
n=1

xn

√
n

−→
x→1−

+∞∑
n=1

1√
n
·

Bien entendu, le premier point est déjà un peu problématique.

La série
∑ xn

√
n

ne converge pas uniformément sur ]− 1, 1[.

Remarque : En revanche, on montre classiquement que la convergence uniforme a lieu sur [−1, 0] par
exemple, en contrôlant le reste d’une série alternée à l’aide de son premier terme.

(c) Merci à monsieur Appel pour le joli dessin.

x

y

α

cosα

(d) Soit z ∈ Dα. Déjà, coup de chance, on est sûr que z ̸= 1, ce qui permet de sommer une série
géométrique :

|Fn(z)| =
∣∣∣∣1− zn+1

1− z

∣∣∣∣ ⩽ 2

|1− z|
·

Or |1− z|2 = (1− x)2 + y2 ⩾ (1− x)2. Mais −1 ⩽ x ⩽ cosα, donc 1− x ⩾ 1− cosα > 0, donc
|1− z| ⩾ 1− cosα > 0. Finalement :

Si z ∈ Dα, alors |Fn(z)| ⩽
2

1− x
⩽

2

1− cosα
pour tout n ∈ N.

La suite (Fn) est donc uniformément bornée sur Dα.
(e) Le fait que (Fn) soit uniformément bornée sur Dα et que la suite de terme général 1/

√
n

décroît et converge vers 0 montre (question 5) que :

La série
∑ zn√

n
converge uniformément sur Dα, et ce pour tout α ∈

]
0, π

2

[
.
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