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1 Convergence de séries par transformation d’Abel

1. Soit n € N*.

Sp =" arby = aoby + ¥ _ ar(Bx — Bi—1) = aobo + ¥ _ arBx — »_ axBi_1.
k=0 k=1 k=1 k=1

Dans la derniére somme, on effectue le changement d’indice j =k — 1 :

n n—1 n—1
S, = agby+ ZakBk — Z a/j+1Bj = agby + Z (ak — ak+1)Bk +a, B, —a1By
k=1 3=0 k=1
n—1
= aobo + Z (ak — ak+1)Bk — (ao — al)BO + aan — a160
k=0
c’est & dire le résultat demandé :
n—1
Vn € N*, S, = Z (ak — ak+1)Bk + an By,
k=0

2. (a)

La série Y (ar — axy1) est de méme nature que la suite (a,) (c’est du cours! revenir a la
définition de la convergence d’une série...). Comme les hypothéses nous assurent que (a,)
converge...

‘ > (ag — ag41) est convergente. ‘

11 s’agit ici de montrer que la suite (Sy,) est convergente. Puisque a, T 0 et (By,) est bornée,
n—-+oo

on a déja a, B, —+> 0, et on est donc ramené a la convergence de la suite de terme général
n——+0oo

n—1

> (ar — ag+1)By, ou encore de la série de terme général uy, = (ax — ag+1)Bk.

k=0

Si on note M un majorant de (|B,|), on a alors |ug| = |(ar — ak+1)Bk| < M(ax — ag+1). Or
> M(ap — apt+1) est convergente (question précédente), donc par comparaison de séries a
termes positifs, > |ux| est convergente.

Ainsi, Y uy est absolument convergente donc convergente, ce qui était le dernier morceau du

puzzle.

’ > apby, est convergente ‘

Je sais déja que je vais rencontrer beaucoup de majorations de sommes partielles pour prou-
ver les convergences... Allez, des majorations de modules de sommes partielles pour les plus
attentifs...

Commencons par 1’énoncé (qui ne parle pas du controle du reste) :

‘ Si Y uy, est alternée avec (Ju,|) décroissante de limite nulle, alors > u,, converge. ‘

Les hypothéses nous permettent d’écrire u, = (—1)" |u,| (ou (=1)"! |u,|, mais on va traiter
le premier cas). Prenons, pour n € N : a,, = |uy| et b, = (—1)". D’une part (a,) est bien
1 sin est pair
décroissante de limite nulle, et d’autre part on a pour tout n € N : B,, = 0 s P
sinon
donc (B;,) est bornée, donc le résultat prouvé dans la question précédente s’applique, nous
assurant que Y a, by, c’est-a-dire > u, est bien convergente.



3. (a) Puisque e? # 1, il est question de sommer les termes d'une suite géométrique de raison
différente de 1, ce qui ne pose normalement pas de probléme'!. Ensuite, on factorise via
Pangle moitié en haut et en bas pour voir apparaitre des sinus (et NON, je ne ferai pas le pari
que vous avez simplifié de téte les facteurs —2i s'ils n’apparaissent pas sur votre copie...) :

. ; N 1)0
ieZke - i (eze)k = 1 — e(n—‘rl)le — e(n+1)10/2(_2z) S (n+2 )
— = 1— e e?/2(—2¢) sin § ’
soit finalement :
. (n+1)6
Vn € N Zn: oikt — gnio/2M 3
’ k=0 sin g
inb

(b) On note bien entendu que

o 1
= —- Dé¢ja, si a < 0, alors (a) ne converge pas vers 0,

ne n n

in ein@
donc non plus, donc > diverge grossiérement.
ne ’ <) ne
nz

1 .
Il y a un autre cas assez simple : si @ > 1, alors > — est une série de Riemann convergente,
n

in

donc >

n>1 n

— est absolument convergente, donc est convergente.

. 1 . .
Supposons maintenant : 0 < a < 1. En prenant a,, = — et b, =€ ona (avec les notations
n

de I’énoncé) :

. (n+1)0 Sin M’ 1
B,| = onio/28M o _ 2
" sin 2 |sinQ| = |sinQ
2 2 2

ce qui permet d’appliquer la question II.2.b (puisque évidemment (a,) est décroissante de

o ezn@
limite nulle) : Y~ anb, = o est convergente.
ind grossiérement divergente si a <0
> est ¢ semi-convergente si0<a<1
>1 N .
"z absolument convergente sil < «
einw
4. La question précédente nous assure (« = 1/2) la convergence de >, ——= donc de la série des
n=1 \/ﬁ
sin(nzx)

parties imaginaires
n>1 \/{ﬁ

est également convergente.

siz € R\ (2nZ). Pour x € 27Z, on a u,(x) = 0, donc > uy,(x)

‘ > uy, converge simplement sur R. ‘

2 Convergence uniforme de séries

1. (a) Si on note G,, = a,F,, il vient immédiatement pour tout z € A (les a,, sont des réels positifs
puisqu’ils décroissent vers 0) : |G, (2)| = an, |Frn(2)| < ap M. Ceci étant valable pour tout z € A,
on a donc ||Gyl| < a,M — 0, donc |G|, —> 0, puis:

n—-+oo n—-+oo

‘ (anFy,) converge uniformément vers 0 sur A‘

Si on note cette fois Hy = (ar — agt1)Fr, alors |Hi|, = (ar — ars1) | Frl o, €t comme
(|| Hgll ) est convergente, elle est bornée, ce qui fournit une majoration de la forme || Hy||, <
M (ay, — ag41), et c’est gagné, car > (ar — ag+1) est convergente (toujours le méme argument :
(an) est une suite convergente). Par comparaison de séries a termes positifs, ) || H, ||, est
convergente.

1. Cette bonne blague...



‘ > (ar — ag41)Fy converge normalement sur A. ‘

n
(b) Les calculs sont identiques a ceux de la question 1. Pour tout n € N, en notant S, = > a, fn,
k=0

on trouve :
n

Vz € A, Sn(w) :Z(ak *ak—l-l)Fk(x)‘i’an Fn(x)
k=0

puis :
n

S, = E (ak — ak+1) Fi, +a, F,,.
k=0
Or, d’aprés la question 5.a, la série Y (ax —ag41)F) converge normalement donc uniformément,
n
donc la suite de terme général > (ar — ag41) Fi converge normalement donc uniformément,

k=0

et celle de terme général a,, F,, aussi, donc leur somme aussi. En d’autres termes? :

‘ > ap fr converge uniformément sur A.

2. (a) Une simple factorisation par arc moitié donne

1— e = eix/2(e—ix/2 _ eim/2) — —92isin % eim/2

(b) Fixons a €]0,7[. Notons A 'intervalle [a, 27 — a]. Si ’on utilise les notations de la question 5,
on pose, pour tout n € N* et tout x € A :

i = Y sin(kx e a _ b
fn(x) = sin(nx), F,(z) = kzzo (kx) t "=

Maintenant, on vérifie que :
— la suite (a,) est décroissante et de limite nulle;
— la suite (F},) est uniformément bornée sur A :

n

Im Z eik:av

k=0

sin ((n +1)z/2) o 1 1
sin(x/2) = sin(x/2)  sin(a/2)

Vee AVneN", |F,(z)= <

n
E ezkz _
k=0

D’aprés la question 5, la série Y w, converge uniformément sur A = [a, 27 — a).
n>1

La série de fonctions Y w, converge uniformément sur [a, 27 — a].
n>1

(Le fait que les sommes commencent ¢ 1 et non a 0 n’a évidemment aucune incidence sur la
validité de la transposition des raisonnements...)

(c¢) Puisque chaque fonction w, est continue sur ]0, 27|, le théoréme de continuité de la somme
d’une série de fonctions montre que la somme U de la série > a, f,, est continue sur chaque
[a, 2w — a], donc continue sur ]0, 27].

’ U est continue sur |0, 27]. ‘

(d) Comme dans la question 5.c, il suffit de prouver que la suite (V},) des sommes partielles de la
série > sin(nz) sin(pz) est uniformément bornée, cette fois sur [0, 7]. Or, d’aprés les calculs
déja faits, on a (attention, on traite a part le cas z = 0...)

. |sin pz|
<
Va €]0, 7] Vn € N*, [V (2)] < Sn(z/2)

L’inégalité gentiment donnée par I’énoncé (et prouvée plus loin) montre que

S.
LY

Va €]0, 7] Vn € N*, [V ()| < -

2. Attention, on passe sans arrét des suites aux séries et inversement...



en vertu d’une autre inégalité classique : |sint| < [t| pour tout réel .
Enfin, cette inégalité est également valable pour x = 0. Ainsi,

Vn € N*, Vallo < pm

c’est-a-dire que la suite (V;,) est uniformément bornée sur [0, 7).
On en déduit 3 que :

‘La série Y v, converge uniformément sur [0, 7]. ‘

Pour montrer linégalité donnée dans I’énoncé, on peut étudier la fonction différence v —
sin§ — £, qui s’avére étre croissante puis décroissante...

; ; — oy =sin(z/2
ol o =——rrll
— y=u/m

0 /4 /2 3m/4 ™

X

FIGURE 1 — Le graphe est situé dessus la corde

Fondamentalement, « la » bonne explication est la concavité de la fonction x — sin(x/2) sur
[0, ].

3 Convergence uniforme d’une série entiére

1. J’accepte bien entendu la version réelle :

‘La série Y ap, ™ converge uniformément sur tout segment [a,b] C] — R, R[‘

Mais aussi la version complexe

‘La série Y a, 2™ converge uniformément sur toute boule fermée By (0,7) C B,(0, R) (avec donc r < R). ‘

2. (a) Soit r > 0. La suite <\T/ﬁ

rayon de convergence, on obtient donc directement :

> est bornée si et seulement si 7 < 1. En revenant a la définition du

n
z
) T a pour rayon de convergence 1.
n

(b) Procédons par I’absurde en supposant qu’il y a convergence uniforme sur | — 1,1[. Puisque
n

x
chaque f,(z) = NG tend vers NG lorsque x tend vers 17, la convergence uniforme permet

d’appliquer le théoréme de la double limite :

1
— la série > —
vn

est convergente ;

3. La suite (ﬁ) étant toujours décroissante de limite nulle!



oo pn “+o0 1
N R
— n 1- n
n=1 =170 f

Bien entendu, le premier point est déja un peu problématique.

— ona

La série > — ne converge pas uniformément sur | — 1, 1].

NG

REMARQUE : En revanche, on montre classiquement que la convergence uniforme a lieu sur [—1,0] par

exemple, en controlant le reste d’une série alternée a ’aide de son premier terme.
(¢) Merci & monsieur Appel pour le joli dessin.
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(d) Soit z € D,. Déja, coup de chance, on est stir que z # 1, ce qui permet de sommer une série
géométrique :
2

Fn = I :
Fa(2) =

11—zt
‘ 1—=z

Or |l —z =1 —2)2+y%> (1—2)% Mais —1 <z < cosa, donc 1 —z > 1—cosa > 0, donc
|1 — 2| > 1—cosa > 0. Finalement :

2 2
Si z € Dy, alors |F,(2)] < < pour tout n € N.
11—z "~ 1—-cosa

La suite (F,) est donc uniformément bornée sur D,.

(e) Le fait que (F,,) soit uniformément bornée sur D, et que la suite de terme général 1//n
décroit et converge vers 0 montre (question 5) que :

n
. z . .
La série Y, — converge uniformément sur D, et ce pour tout « € ]O, 5 [
n

NG




