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Partie I

I.A 1) La formule du binôme donne
n
∑

k=0

(

n

k

)

xk(1− x)n−k = (x+ 1− x)n = 1.

2) Pour k > 1, k

(

n

k

)

=
n!

(k − 1)!(n− k)!
= n

(

n− 1

k − 1

)

.

Donc
n
∑

k=0

k

(

n

k

)

xk(1− x)n−k = nx

n
∑

k=1

(

n− 1

k − 1

)

xk−1(1− x)n−k = nx(x+ 1− x)n−1 = nx.

3) Pour k > 2, k(k − 1)

(

n

k

)

=
n!

(k − 2)!(n− k)!
= n(n− 1)

(

n− 2

k − 2

)

.

Donc

n
∑

k=0

k(k−1)

(

n

k

)

xk(1−x)n−k = n(n−1)x2
n
∑

k=2

(

n− 2

k − 2

)

xk−2(1−x)n−k = n(n−1)x2(x+

1− x)n−2 = n(n− 1)x2.

4)

(

x− k

n

)2

= x2 − 2x
k

n
+
k2 − k

n2
+

k

n2
donne avec 1), 2) et 3):

n
∑

k=0

(

x− k

n

)2(

n

k

)

xk(1− x)n−k = x2 − 2x2 +
n(n− 1)x2

n2
+
x

n
=
x− x2

n
.

I.B 1) a) SV (x) 6
1√
n

∑

k∈V

(

n

k

)

xk(1− x)n−k
6

1√
n

n
∑

k=0

(

n

k

)

xk(1− x)n−k =
1√
n
.

b) Pour k ∈W on a
√
n

∣

∣

∣

∣

x− k

n

∣

∣

∣

∣

> 1 donc
√
n

∣

∣

∣

∣

x− k

n

∣

∣

∣

∣

< n

(

x− k

n

)2

.

Par suite,
√
nSW (x) < n

n
∑

k=0

(

x− k

n

)2(

n

k

)

xk(1− x)n−k = x(1− x) par I.A.4

D’où SW (x) 6
x(1− x)√

n
.

c) f(x) = x(1− x) a un maximum égal à
1

4
(obtenu pour x =

1

2
).

Donc SW (x) 6
1

4
√
n

et S(x) = SV (x) + SW (x) 6
1√
n
+

1

4
√
n
=

5

4
√
n

2) a) L’inégalité de Cauchy-Schwarz s’écrit: |
n
∑

k=0

akbk| 6

√

√

√

√

n
∑

k=0

a2k

√

√

√

√

n
∑

k=0

b2k.

b) Pour ak =

∣

∣

∣

∣

x− k

n

∣

∣

∣

∣

√

(

n

k

)

xk(1− x)n−k et bk =

√

(

n

k

)

xk(1− x)n−k on obtient:

S(x) 6

√

x(1− x)

n
(en utilisant I.A.1 et I.A.4).

De x(1− x) 6
1

4
on déduit S(x) 6

1

2
√
n
.

I.C 1) Pour f(x) = x2 on calcule en écrivant k2 = k(k − 1) + k et en utilisant les I.A.2 et I.A.3:

Bn(f)(x) =

n
∑

k=0

k2

n2

(

n

k

)

xk(1− x)n−k =
1

n2
(n(n− 1)x2 + nx) =

(n− 1)x2 + x

n
.
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Par suite, Bn(f)(x)− x2 =
x(1− x)

n
d’où ||Bn(f)− f ||∞ =

1

4n
puisque 0 6 x(1− x) 6

1

4
, le

maximum étant atteint pour x =
1

2
.

2) Immédiat avec le I.A.1.

3) a) Si f est δ-lipschitzienne, |f(k
n
)−f(x)| 6 δ|k

n
−x| d’où |Bn(f)(x)−f(x)| 6 δS(x) 6 δ

1

2
√
n

avec le I.B.2.

C’est vérifié pour tout x ∈ [0, 1] donc ||Bn(f)− f ||∞ 6
δ

2
√
n
.

b) Si f est de classe C1, elle est δ-lipschitzienne sur [0, 1] par l’inégalité des accroissements

finis (avec δ = ||f ′||∞). On peut donc lui appliquer le a) et c =
δ

2
.

c) L’inégalité des accroissements finis s’applique plus généralement à une fonction continue
et de classe C1 par morceaux sur un segment: f est donc δ-lipschitzienne sur [0, 1] avec
δ = ||f ′||∞ et le résultat du b) est encore valable.

4) Soit r > 0 et un entier n tel que
c√
n
< r. Le polynôme P = Bn(f) vérifie pour tout x ∈ [0, 1]:

|P (x)− f(x)| 6 c√
n
6 r donc f(x)− r 6 P (x) 6 f(x) + r.

Partie II

II.A 1)
1

1− x2
est la somme de la série géométrique de raison x2 et de premier terme 1, donc bn = 1

si n est pair, 0 si n est impair.

2) En prenant an = 2bn on obtient f(x) =
2

1− x2
qui vérifie bien f(x) ∼ 1

1− x
au voisinage de

1−. Mais la suite (an) diverge puisque a2n = 2 et a2n+1 = 0.

II.B 1) Par dérivation de
1

1− t
=

+∞
∑

n=0

tn pour t ∈]−1, 1[ on obtient
1

(1− t)2
=

+∞
∑

n=1

ntn−1 avec le même

rayon de convergence égal à 1. La série diverge pour t = 1 et pour t = −1 puisque son terme
général ne tend pas vers 0.

2) En posant t = x2 et en changeant n en n+1 on obtient ϕ(x) =
+∞
∑

n=0

(n+1)x2n pour x ∈]−1, 1[.

Par suite, u2n = n+ 1 et u2n+1 = 0.

ψ(x) = (1 − x)ϕ(x) =

+∞
∑

n=0

(n + 1)(x2n − x2n+1) pour x ∈] − 1, 1[. Par suite, v2n = n + 1 et

v2n+1 = −(n+ 1).

3) Puisque v2n + v2n+1 = 0 on déduit ṽ2n+1 = 0 et ṽ2n =
n+ 1

2n+ 1
.

4) En prenant an = 4vn, on obtient f(x) =
4

(1 + x)2(1− x)
qui vérifie bien f(x) ∼ 1

1− x
au

voisinage de 1−. Mais la suite (ãn) diverge puisque ã2n+1 = 0 alors que ã2n tend vers 2.

II.C 1) Pour x ∈ [0, 1[ et k 6 n on a xk > xn. De plus an > 0.

On en déduit: f(x) >

n
∑

k=0

akx
k
>

n
∑

k=0

akx
n = Anx

n.
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2) Par hypothèse, (1 − x)f(x) tend vers 1 quand x tend vers 1. Il existe donc ε > 0 tel que
1− ε 6 x < 1 entraine (1− x)f(x) 6 2.

Comme e−1/n tend vers 1 quand n tend vers l’infini on déduit qu’il existe N > 0 tel que n > N

entraine 1− ε 6 e−1/n < 1 et donc (1− e−1/n)f(e−1/n) 6 2, d’où f(e−1/n) 6
2

1− e−1/n
.

3) Pour x = e−1/n et n > N on a Ane
−1 6 f(e−1/n) 6

2

1− e−1/n
d’où:

ãn 6
2e

(n+ 1)(1− e−1/n)
6

2ee1/n

n(e1/n − 1)
6 2e2 puisque ex − 1 > x et n > 1.

La suite ãn est majorée pour n > N , donc aussi pour tout n.

II.D 1) a) (1 − x)

n
∑

k=0

Akx
k =

n
∑

k=0

Akx
k −

n
∑

k=0

Akx
k+1 =

n
∑

k=0

Akx
k −

n+1
∑

k=1

Ak−1x
k = A0 +

n
∑

k=1

(Ak −

Ak−1)x
k−Anx

n+1 =
n
∑

k=0

akx
k−Anx

n+1. Comme pour x ∈]−1, 1[, |Anx
n+1| 6 An|x|n+1 6

(n+ 1)µ|x|n+1 tend vers 0 quand n tend vers l’infini, on déduit (1− x)

+∞
∑

k=0

Akx
k = f(x).

b)
f(x)

1− x
=

N−1
∑

k=0

Akx
k+

+∞
∑

k=N

Akx
k
6

N−1
∑

k=0

AN−1x
k+

+∞
∑

k=N

(k+1)µxk (puisque x > 0, que la suite

Ak est croissante et que Ak 6 (k+1)µ). Par suite,
f(x)

1− x
6 AN−1

1− xN

1− x
+µ

+∞
∑

k=N

(k+1)xk.

c) On en déduit (toujours pour x ∈ [0, 1[): f(x) 6 AN−1 + µ

+∞
∑

k=N

(k + 1)(xk − xk+1).

n
∑

k=N

(k+1)(xk−xk+1) =
n
∑

k=N

(k+1)xk−
n+1
∑

k=N+1

kxk = (N+1)xN +
n
∑

k=N+1

xk−(n+1)xn+1

qui tend vers (N + 1)xN +
xN+1

1− x
quand n tend vers l’infini.

On a donc f(x) 6 AN−1 + µ

(

(N + 1)xN +
xN+1

1− x

)

.

2) a) Par hypothèse, (1−x)f(x) tend vers 1 quand x tend vers 1, donc (1−e−x)f(e−x) tend vers
1 quand x tend vers 0. Il existe donc ε > 0 tel que 0 < x 6 ε entraine (1−e−x)f(e−x) > 1

2
.

D’autre part, e−x > 1− x entraine pour x > 0:
1

1− e−x
>

1

x
. On en déduit f(e−x) >

1

2x

pour 0 < x 6 ε. En posant x =
λ

N
on obtient f(e−

λ

N ) >
N

2λ
pour N > N0.

b) En prenant x = e−
λ

N dans II.D.1.c on obtient avec II.D.2.a (pour N > N0):

AN−1 >
N

2λ
− µ

(

(N + 1)e−λ +
e−λe−

λ

N

1− e−
λ

N

)

.

Avec ãN−1 =
AN−1

N
on obtient ãN−1 >

1

2λ
− µe−λ

(

1 +
1

N
+

e−
λ

N

N(1− e−
λ

N )

)

.

c) Avec 1 − e−x ∼ x au voisinage de 0 on déduit que N(1 − e−
λ

N ) ∼ λ quand N tend vers
l’infini. Par suite le membre de droite du II.D.2.b a pour limite (quand N tend vers

l’infini):
1

2λ
− µe−λ

(

1 +
1

λ

)

=
1

2λ
(1− 2µe−λ(λ+ 1)) = 2ν.

d) lim
λ 7→+∞

e−λ(λ+ 1) = 0 entraine que ν > 0 pour λ assez grand.

3) Pour un tel λ on obtient ãn > ν > 0 pour n > N0 + 1.
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II.E 1)

∫ 1

0

g+(t)dt =

∫ e−1
−ε

0

0dt+
1

2
eε+

∫ 1

e−1

1

t
dt =

1

2
eε+ 1.

∫ 1

0

g−(t)dt =

∫ e−1

0

0dt+
1

2

1

e−1 + ε
ε+

∫ 1

e−1+ε

1

t
dt =

1

2

ε

e−1 + ε
− ln(e−1 + ε).

2) Pour P (x) = xk: (1 − x)

+∞
∑

n=0

anx
nP (xn) =

1− x

1− xk+1
(1 − xk+1)f(xk+1). Comme

1− x

1− xk+1
=

1

1 + x+ x2 + ...+ xk
tend vers

1

k + 1
quand x tend vers 1 on déduit avec lim

x 7→1
(1− x)f(x) = 1

que (1− x)

+∞
∑

n=0

anx
nP (xn) tend vers

1

k + 1
=

∫ 1

0

P (t)dt quand x tend vers 1.

Par linéarité de la limite et de l’intégrale le résultat s’étend à tout polynôme.

3) La fonction g− − ε

2
est continue et de classe C1 par morceaux sur [0, 1]. On peut donc lui

appliquer le résultat du I.C.4 pour r =
ε

2
: il existe un polynôme P tel que g−(x)−ε 6 P (x) 6

g−(x) pour x ∈ [0, 1].

De même la fonction g+ +
ε

2
est continue et de classe C1 par morceaux sur [0, 1], on peut lui

appliquer le résultat du I.C.4 pour r =
ε

2
: il existe un polynôme Q tel que g+(x) 6 Q(x) 6

g+(x) + ε pour x ∈ [0, 1].

Comme g−(x) 6 g(x) 6 g+(x) on a bien obtenu g−(x)− ε 6 P (x) 6 g(x) 6 Q(x) 6 g+(x)+ ε

pour x ∈ [0, 1].

4) Puisque xN = e−1/N tend vers 1 quand n tend vers l’infini, on déduit du II.E.2 que

(1− xN )

+∞
∑

n=0

anx
n
NP (x

n
N ) >

∫ 1

0

P (t)dt− ε pour N > A.

De même, (1− xN )

+∞
∑

n=0

anx
n
NQ(xnN ) 6

∫ 1

0

Q(t)dt+ ε pour N > B.

Les deux inégalités sont donc vérifiées pour N > N1 = max(A,B).

5) xnN = e−
n

N > e−1 ⇔ n 6 N . Par suite xnNg(x
n
N ) = 0 si n > N et 1 si n 6 N , donc

(1− xN )

+∞
∑

n=0

anx
n
Ng(x

n
N ) = (1− xN )AN . Puisque anx

n
N > 0 on déduit du II.E.3:

(1−xN )

+∞
∑

n=0

anx
n
NP (x

n
N ) 6 (1−xN )

+∞
∑

n=0

anx
n
Ng(x

n
N ) = (1−xN )AN 6 (1−xN )

+∞
∑

n=0

anx
n
NQ(xnN ).

Puis avec le II.E.4:

∫ 1

0

P (t)dt− ε 6 (1− xN )AN 6

∫ 1

0

Q(t)dt+ ε pour N > N1.

Puis avec le II.E.3:

∫ 1

0

g−(t)dt− 2ε 6 (1− xN )AN 6

∫ 1

0

g+(t)dt+ 2ε.

∫ 1

0

g+(t)dt =
1

2
eε+ 1 6 1 + 2ε donne (1− xN )AN 6 1 + 4ε 6 1 + 5ε.

∫ 1

0

g−(t)dt =
1

2

ε

e−1 + ε
− ln(e−1 + ε) > − ln(e−1 + ε) = 1 − ln(1 + eε) > 1 − eε en utilisant

ln(1 + x) 6 x. On obtient

∫ 1

0

g−(t)dt > 1− 3ε d’où (1− xN )AN > 1− 5ε.

6) On a donc démontré que lim
N 7→+∞

(1− e−1/N )AN = 1.

Donc lim
N 7→+∞

ãN = lim
N 7→+∞

AN

N + 1
= lim

N 7→+∞

N

N + 1
(1− e−1/N )AN

1

N(1− e−1/N )
= 1.

4
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Mathématiques 1
Présentation du sujet
L’objet du problème est de prouver un Théorème de Hardy-Littlewood sur les séries entières,
via une méthode due à Karamata. Plus précisément il s’agit de prouver que toute série entière
(
�

anxn) dont les coefficients an sont des réels positifs, de rayon de convergence 1 et équivalente
à la fonction 1

1−x
en 1, est telle que la suite (an) converge en moyenne vers 1.

La première partie du sujet consiste à démontrer la densité des fonctions polynomiales dans l’en-
semble des fonctions continues sur [0, 1]. Ce théorème de Stone-Weierstrass figure au programme
de PC et la preuve qui en est donnée ici par les polynômes de Bernstein est très accessible.

La seconde partie comporte trois temps. Elle commence par deux contre-exemples de séries entières
qui éclairent l’importance de l’hypothèse concernant le signe de la suite. Enfin le théorème est
prouvé à l’aide d’un encadrement utilisant la propriété démontrée partie I.

Analyse globale des résultats
Le sujet est de longueur raisonnable et a permis de bien discriminer les candidats, qui ont pu
s’exprimer sur des difficultés progressives, certaines copies l’ont traité entièrement. Il comporte
deux parties bien distinctes. La première est très proche du programme de première année et
nécessite des qualités de rigueur, notamment dans les majorations. Les résultats de cette partie
sont dans leur ensemble assez décevants car de nombreux candidats ont étés déstabilisés dès le
début du problème par des égalités liées au binôme de Newton et des majorations sur des sommes
tronquées : ceci a permis de valoriser les étudiants rigoureux. La seconde partie utilise les résultats
du cours d’analyse portant sur les séries entières. La notion même de série entière n’est pas vraiment
assimilée par bon nombre de candidats qui pensent que le coefficient an de la série (

�

anxn) peut
dépendre de x, ce qui entraine automatiquement une disqualification pour les questions II.A et
II.B. La partie II.C et II.D nécessite une bonne maitrise de la définition d’un équivalent et d’une
limite, dont la connaissance a été le facteur de réussite des bonnes copies. Quelques candidats
ont traité le sujet correctement en entier, ce qui doit être souligné car c’est un exploit, mais de
nombreuses copies parfois très copieuses présentent un tel manque de rigueur qu’il n’est possible
de valoriser aucune réponse.

Commentaires sur les réponses apportées et conseils aux candidats
Dans ce sujet de nombreuses questions donnaient le résultat à prouver. Certaines copies tentent de
berner le correcteur en s’arrangeant pour obtenir ce résultat contre vents et marées. Le correcteur
repère systématiquement ce type de falsification, et bien entendu sanctionne ce comportement,
mais surtout il aura pour la suite des raisonnements un regard beaucoup plus critique. L’honnêteté
est donc bien entendu la règle numéro un pour les candidats.

L’argumentation est le fer de lance du candidat et doit avoir la taille requise. Par exemple, pour
étudier la convergence de la série (

�

n), la phrase « il est évident que la série diverge » est à
proscrire, on argumentera en disant que le terme général ne tend pas vers 0. A contrario pour
étudier ‖f‖∞ lorsque f(x) = x2

−x, une étude complète de la fonction avec tableau de variation et
signe de la dérivée peut être avantageusement remplacée par une phrase : « la fonction f positive
sur [0, 1] atteint son maximum en 1/2 ».
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Les questions de majoration sont souvent l’occasion de fautes de raisonnement, ce fait est signalé
chaque année. On peut signaler entre autres l’oubli des valeurs absolues, par exemple voici ce
qu’on peut lire parfois à la question I.C.3 : pour tout x ∈ [0, 1], Bn(f)(x) − f(x) �

δ

2
√

n
donc

‖Bn(f) − f‖∞ �
δ

2
√

n
. Au passage, on rappelle que la majoration d’une borne supérieure d’un

sous-ensemble de R ne peut se faire directement et doit obligatoirement passer par une majoration
de chaque terme de ce sous-ensemble. On oublie de justifier que pour qu’une somme partielle soit
majorée par la somme totale il faut un argument sur le signe de la somme des termes restants.

Partie I

I.A.1 Traité sur toutes les copies.

I.A.2-3 On dénombre au moins quatre démonstrations bien différentes de ces questions : l’utili-
sation de la formule k

�

n

k

�

= n
�

n−1
k−1

�

est sans doute la plus simple ; la dérivation de l’expression
(x+(1−x))n, variante plus compliquée de la dérivation par rapport à x de l’expression (x+y)n ; la
démonstration par récurrence basée sur la formule de Pascal est la plus longue à rédiger. Certains
bons candidats se sont trop attardés sur ces deux questions. D’autres ne pensent pas à préciser qu’ils
réindicent certaines sommes en cours de calcul, par exemple en précisant « on pose k = p + 1 » :
c’est très déroutant pour le correcteur, qui se met parfois à douter de la sincérité de raisonnements
trop laconiques qui débouchent sur le bon résultat.

I.A.4 En général bien traitée

I.B.1.a La notation
�

k∈V

apparait mal comprise sur de nombreuses copies et ceci transparait quand

le candidat écrit :
�

k∈V

�

n

k

�

xk(1 − x)n−k = 1.

I.B.1.b Cette question a donné lieu à des démonstrations fantaisistes basées sur l’inégalité x < x2.
La bonne démarche consistait à prendre le problème à l’envers en utilisant I.A.4, ce qui a permis
de valoriser les candidats méthodiques et rigoureux.

I.B.1.c On voit parfois apparaitre ici une factorisation, bien inutile, du polynôme 1 + x(1 − x)
pour obtenir son maximum sur [0, 1]

I.B.2.a Les candidats, qui ont oublié la valeur absolue sur le produit scalaire, n’ont pas obtenu les
points. Le produit scalaire canonique sur R

n+1 n’est cité que dans une copie sur deux.

I.B.2.b Une question qui a permis de cerner les candidats astucieux et généralement n‘est traitée
que sur les très bonnes copies.

I.C 1-2 Souvent bien traitée.

I.C.3.a Les candidats qui ont effectué leur majoration directement sur la norme infinie n’ont pas
obtenu les points de cette question. La valeur absolue disparait de la définition « Lipschitzienne ».

I.C.3.b On attendait, au minimum, que l’on explique que l’inégalité des accroissements finis peut
s’appliquer sur le segment [0, 1] puisque la fonction f y étant de classe C 1, sa fonction dérivée est
continue donc bornée sur cet intervalle.

I.C.3.c La démonstration complète de l’extension aux fonctions continues et de classe C 1 par
morceaux de la propriété démontrée au b) était semble-t-il hors de portée de la majorité des
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candidats, ou nécessitait un soin que les conditions du concours ne permettaient pas à ceux qui
avaient compris le problème : ont étés prises en compte les réponses cohérentes.

I.C.4 « On pose r = c√
n

» n’est pas la réponse attendue car ce n’est pas n qui est donné ici ! On
commence à voir dans la réponse à cette question les candidats qui maitrisent la notion de limite.

II.A.1 Cette question a donné lieu à des réponses très diverses. Plus du tiers des candidats pro-

posent bn = xn, ayant constaté que 1
1 − x2 =

+∞
�

n=0
x2n. La décomposition en éléments simples ou

le produit de Cauchy sont parfois utilisés, ce qui d’ailleurs évite le piège précédent. On trouve
aussi dans cette partie l’éternelle erreur qui consiste à changer d’indice : « je pose p = 2n » sans
se soucier des nombres impairs qui n’ont pas d’antécédent.

II.A.2 On constate ici que de très nombreux candidats ne maitrisent pas la notion d’équivalent.
L’erreur la plus répandue consiste à dire que f(x) = 1

1 − x2 ∼
x=1

1
(1 − x)(1 + x) ∼

x=1

1
1 − x

. Les

raisonnements que l’on applique aux « o » sont valables pour les « ∼ ». Ce type d’erreur se voit
d’ailleurs même dans de bonnes copies.

II.B.1 Les formules toutes prêtes pour développer 1
(1−x)a

sont finalement pénalisantes car elles
obligent à réfléchir à une simplification des factorielles, travail qui n’est souvent pas finalisé : il
est plus simple ici d’appliquer une dérivée. Trop de candidats ne précisent pas les conditions
d’utilisation des formules sur les séries entières : addition, dérivation, produit.

II.B.2 On retrouve dans cette question les erreurs signalées au II.A.1. La méthode du produit
de Cauchy est celle qui apparait le plus souvent (ne pas oublier de citer les conditions d’appli-
cation), mais concernant ψ , ce n’est clairement pas la meilleure car elle nécessite de simplifier la

somme
n

�

k=0
(−1)kk. On trouve également, bien que ce ne soit pas explicitement au programme, une

décomposition en éléments simples.

II.B.3-4 Seuls les candidats soigneux arrivent à bout de ces questions.

Le sujet change ensuite de registre et teste la capacité des candidats à rédiger proprement des
raisonnements de majoration.

II.C.1 Il faut justifier les minorations, en particulier
n

�

k=0
akxk �

n
�

k=0
akxn mérite une explication.

D’ailleurs certaines copies écrivent
n

�

k=0
akxk = Anxn.

II.C.2 Les candidats qui se ramènent à (1−e−1/n)f(e−1/n) → 1 s’en sortent bien avec la définition
d’une limite, mais rares sont ceux qui aboutissent en restant sur la définition de l’équivalent car
ils confondent souvent les deux notions. Par exemple on lit : « pour ε = 1/(1 − e−1/n), on a le
résultat demandé en utilisant l’inégalité |f(e−1/n) − 1/(1 − e−1/n)| � ε ». D’ailleurs, la majoration

demandée est très souvent considérée comme évidente à partir de f(x) ∼
x=1

1
1 − x

.

II.C.3 Pour une suite, être majorée ne signifie pas que son terme général soit majoré par une
autre suite, or c’est une réponse très répandue dans les copies. De plus, la plupart des candidats
conscients du problème ont considéré implicitement qu’une suite majorée par une suite convergente
est bornée, il aurait été utile de signaler au moins cette évidence.
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II.D.1.a La réponse la plus simple passait par le calcul du produit de Cauchy f(x) 1
1−x

car elle

évite de montrer que la série
∞

�

k=0
Akxk converge sur ]−1, 1[. Cette question a donné lieu à des

raccourcis malhonnêtes.

II.D.1.b-c De nombreux candidats qui sont arrivés dans cette partie du problème, indépendante
du reste, se sont enlisés dans les arguments de majoration pourtant très simples ici. On attend bien
entendu un argument sur la monotonie de la suite (Ak). On trouve aussi des copies où le résultat
de la question apparait miraculeusement en cours de majoration.

II.D.2.a-b Pour la première inégalité, on retrouve les préjugés sur les équivalents cités plus haut.
Pour la seconde, plusieurs méthodes sont exploitées dont une inégalité de convexité pour la fonction
ex.

II.D.2.c-d Le piège du N(1 − e−λ/N ) −→

N→+∞
+∞ se referme facilement, surtout en fin d’épreuve,

mais c’est tout de même une erreur inadmissible à ce niveau !

Le sujet à partir de cet endroit monte une marche dans la difficulté et s’adresse aux très bons
candidats. Le grappillage n’a que très peu fonctionné.

II.E.1 Les réponses qui donnent, sans le simplifier, le résultat en fonction de coefficients a et b

d’une droite, et cela même si ces coefficients ont étés obtenus correctement, n’ont pas étés pris en
compte ou seulement partiellement. L’expression de l’intégrale comme une aire de triangle a permis
un gain de temps intéressant. À noter que de nombreux candidats considèrent que la fonction affine
a pour formule g(t) = t.

II.E.2-6 Ces questions ont été correctement traitées sur quelques très bonnes copies : c’est un
plaisir de voir que certains candidats allient facilité de calcul et très bonne intuition, même si il
faut ici reconnaitre que le texte guidait bien.

Conclusions
Ce sujet s’est avéré très classant. Il valorise plus une bonne compréhension de la définition des
objets utilisés que la connaissance des techniques étudiées en PC. C’est par exemple le cas pour la
notion de série entière qui est mal assimilée par de nombreux candidats, ainsi que la définition d’un
équivalent. Nous en profitons donc pour rappeler aux futurs candidats que pour faire de bonnes
mathématiques, l’effort de préparation doit se porter avant tout sur le cadrage des définitions.


