Corrigé de Centrale 2012 PC math 1

Partie I

I.A 1) La formule du binéme donne Z <Z> fl-—p)"F=@+1-2)"=1.
k=0

2) Pour k > 1, k(Z) :MM:’L(Z:D

n n _ 1
Donc kZ_()k;(Z)xk(l —z)" k= nxz (Z B 1>xk_1(1 —x)" P =na(z+1-2)""! = na.

3) Pour k > 2, k(kl)(Z) _M‘M_n(nl)@_;).

Donc kz::Ok:(k:— 1) (Z) 2F(1—2)"F = n(n—1)a? zn: (Z - ;) 2P 2(1—2)"F = n(n—1)a2(z +

k=2
1—z)" %2 =n(n—1)2*

k\? ko k2—k  k
4) (x - > =22 20— + 5— + — donne avec 1), 2) et 3):
n n n n

n k 2 —1)z2 — 72
Z x—— nxk(l—x)"_k:$2—2x2+u+gzx T
n k n? n

IB 1) a) s fkg() (1—z)" \FZ(> 1-;1;”*’“:%.

r——|<nlxr—— .
n n

b) Pour k € W on a /n

x—k’>1donc\/ﬁ

2
Par suite, /nSw (x) < nz (x - ) (Z) 2F(1 —2)" % = 2(1 — ) par LA4

D'ot Sy (2) < u.

N
¢) f(z) =z(1 —x) a un maximum égal & % (obtenu pour x = 1)
1 1 1 )
< — = < — —_—
Donc Sy (z) < N et S(z) = Sv(z) + Sw(zx) < NG + NN

2) a) L’inégalité de Cauchy-Schwarz s’écrit: | Z arby| < Z a? Z b
k=0 k=0
x—‘\/ k(1 —x)"F et bk—\/(k>xk (1 — x)»=* on obtient:

1—
S(z) < ¥ (en utilisant LA.1 et T.A.4).
1
o/

b) Pour a; =

De z(1 —x) < i on déduit S(z) <

IL.C 1) Pour f(x) = 22 on calcule en écrivant k% = k(k — 1) + k et en utilisant les .A.2 et 1.A.3:

Bn(f)(w) = Z % (Z)Ik(l —a)" k= %(n(n —1)2? +nx) = M+H
k=0
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1)

1-— 1 1
Par suite, B, (f)(z) — 2% = 2l-2) d’ott [|Bn(f) — flloo = e puisque 0 < z(1 — z) < 7 le
n n
1
maximum étant atteint pour z = 3
Immeédiat avec le I.A.1.
1

k k
. e . k. <515 dor _ < s b
a) Si f est d-lipschitzienne, |f(n) f@)] < 6‘71 z| dou | B, (f)(z)— f(z)] < 6S(x) < 52\/5
avec le I.B.2. 5
C’est vérifié pour tout x € [0, 1] donc ||Bn(f) — flleo < 5

2/n’
b) Si f est de classe C*, elle est d-lipschitzienne sur [0, 1] par I'inégalité des accroissements
)
finis (avec § = || f'||oo). On peut donc lui appliquer le a) et ¢ = 7

¢) L’inégalité des accroissements finis s’applique plus généralement & une fonction continue
et de classe C! par morceaux sur un segment: f est donc d-lipschitzienne sur [0, 1] avec
0 = ||f']|oo et le résultat du b) est encore valable.

Soit r > 0 et un entier n tel que £ < r. Le polynéme P = B, (f) vérifie pour tout z € [0, 1]:
n

-
|P(a) — f(2)] < ~= < r done f(z) —r < P(x) < f(x) +r.

Partie I1

1.2 est la somme de la série géométrique de raison z2 et de premier terme 1, donc b,, = 1
—x
si n est pair, 0 si n est impair.

En prenant a,, = 2b,, on obtient f(z) = au voisinage de

2
1 qui vérifie bien f(z) ~
-z

17. Mais la suite (a,) diverge puisque as, = 2 et as,+1 = 0.

1 X 1 =
Par dérivation de = t" pour t €]—1,1] on obtient ———— = nt" ! avec le méme
v 1t nz_:o P =11 1-1)72 ,2—:1 v
rayon de convergence égal a 1. La série diverge pour ¢ = 1 et pour ¢ = —1 puisque son terme

général ne tend pas vers 0.

“+oo
En posant t = 22 et en changeant n en n+ 1 on obtient ¢(z) = Z(nJr 1)2*" pour z €] —1,1].
n=0
Par suite, ug, =n+1 et ugpy1 = 0.
+oo
Y(x) = (1 —z)p(x) = Z(n + 1)(z* — 2*"*1) pour = €] — 1,1[. Par suite, v, = n + 1 et
n=0

Van+1 = —(n + 1)

n+1

Puisque vz, + van41 = 0 on déduit 99,41 = 0 et ¥gp, = ———.
n+1

4

(I14+2)%(1—2)
voisinage de 17. Mais la suite (a,) diverge puisque ag,+1 = 0 alors que as, tend vers 2.

En prenant a,, = 4v,, on obtient f(z) = qui vérifie bien f(z) ~ 1

Pour x € [0,1[ et k < n on a z* > z". De plus a, > 0.
n

On en déduit: f(x) > Zakxk > apr” = Apx™.
k=0 k=0



II.D

2) Par hypothese, (1 — z)f(z) tend vers 1 quand x tend vers 1. Il existe donc € > 0 tel que
1 —e <z <1entraine (1 —z)f(z) < 2.

Comme e~ /™ tend vers 1 quand n tend vers I'infini on déduit qu’il existe N > 0 tel que n > N
2
entraine 1 —e < e /" < 1 et donc (1 — e~ Y/™)f(e=/") <2, dott f(e™1/™) < T i
—e n
_ ,—1/n 1 —1/n 2 ) N
3) Pour z =e etn NOH&A@ <f( ) 17_1/(1011.
—e n

1)

an <

2¢ 2eel/m
(D =7 (e )

§262 puisque e* —1 >z etn > 1.

La suite a,, est majorée pour n > N, donc aussi pour tout n.

a)

)

n+1

(1 — 1‘) iAk{L‘k = iAka'k — iAkl‘kJrl = iAk:L‘k — ZAkflxk = AO + i(Ak —
k=0 k=0 k=0 k=0 k=1 k=1

n
Ap_1)azb— A,z = Zakxk—Anaz"H. Comme pour z €]—1,1[, |4, 2" < A, |z|" T <

+oo
(n + 1)p|z|"*! tend vers 0 quand n tend vers I'infini, on déduit (1 — z) Z Apa® = f(x).
k=0
N-1 +o0 N-1 +o0
A+ Z Apz® < Z An_12¥+ Z (k+1)px® (puisque = > 0, que la suite
k=0 k=N k=0 k=N

/() NS b
Ay, est croissante et que A < (k+1)u). Par suite, 1 < An_1 1 +u (k+1)x
-z -z

k=N
+oo
On en déduit (toujours pour z € [0,1]): f(z) < Anv_1+u Z (k+1)(zF — 2**1).
k=N
n n n+1
Do (k1) (@F —aH ) = 3 (k4 1)aF = Y ket = (N+ 12N+ Z o —(n+ 1)t
k=N k=N k=N+1 k=N-+1

.’L‘N+1

qui tend vers (N + 1)a™V + I

quand n tend vers U'infini.

LN+
On a done f(z) < Ay—1 +u((N+1)mN+ 1 >

— T

Par hypothese, (1—x)f(z) tend vers 1 quand z tend vers 1, donc (1— ”C) ( ) tend vers
(

1 quand z tend vers 0. Il existe donc € > 0 tel que 0 < z < € entraine ( NfEe™) = %

1 1 1

D’autre part, e™* > 1 — « entraine pour x > 0: e . On en déduit f(e™?) > Z o5
P

A N
pour 0 < z < . En posant z = N on obtient f(e~ va) > 3y pour N > Ng.

En prenant z = e~ ~ dans IL.D.1.c on obtient avec IL.D.2.a (pour N > Np):
A -
e e N

N
Anv_1 > — — Nale s+ 2~
N-1 2 oy M(( +1)e +1 -

— e

2>

_ 1 1 e
Avec ay_1 = L on obtient aN_1 > — — ,ue*’\ 1+ =+ —
2A N N(l — e‘%)
Avec 1 — e~ ~ z au voisinage de 0 on déduit que N(1 — e~ ~) ~ A quand N tend vers

linfini. Par suite le membre de droite du II.D.2.b a pour limite (quand N tend vers

Iinfini): % — e (1 + ;\) 21>\(1 —2ue (A +1)) = 2v.

lim e *(\+1) = 0 entraine que v > 0 pour \ assez grand.
A—=~+o00

3) Pour un tel A on obtient a, > v > 0 pour n > Ny + 1.



ILE 1)

2)

1

1 1
/ / Odt+fes+/ —dt = —ee + 1.
0 o1 t 2

1 | 1
/ / Odt+775+/ —dt= - ———— —In(e”! +e).
0 +¢ e—lqe b 2e ' +¢

. l1—=2 l—2
Pour P(z) = 2*: (1 — x) Zanx P(z") = W(l — 2" f(2*1). Comme T =
1
T + o tend vers Pl quand z tend vers 1 on déduit avec iﬂ(l —x)f(z)=1
1 1
que (1 —=z Z an ) tend vers i1 /0 P(t)dt quand z tend vers 1.

Par hnearlte de la limite et de 'intégrale le résultat s’étend a tout polynome.

La fonction g~ — g est continue et de classe C'' par morceaux sur [0,1]. On peut donc lui
appliquer le résultat du I.C.4 pour r = g: il existe un polynéme P tel que g~ (z) —e < P(x) <
g~ (z) pour z € [0, 1].

De méme la fonction g + g est continue et de classe C'' par morceaux sur [0, 1], on peut lui
appliquer le résultat du I.C.4 pour r = g: il existe un polynome @ tel que g*(z) < Q(z) <
g7 () + & pour z € [0,1].

Comme ¢~ (z) < g(x) < g*(x) on a bien obtenu g~ (z) —e < P(z) < g(z) < Q(x) < gt (z) +¢
pour z € [0, 1].

Puisque 2y = e YN tend vers 1 quand n tend vers l'infini, on déduit du ILE.2 que

+o0 1
(lfo)Zan:cR/P(xR,) 2/ P(t)dt — e pour N > A.
n=0 0
+oo
De méme, (1 —zy) ZanzNQ 'y) / Q(t)dt 4+ € pour N > B.
n=0

Les deux inégalités sont donc vérifiées pour N > Ny = max(A4, B).

= e_% > e ! & n < N. Par suite 2%g(z%) = 0sin > N et 1sin < N, donc

(1—zn Z antyg(xy) = (1 — xn)An. Puisque an2% > 0 on déduit du IL.E.3:

n=0
+o00 +oo o

(1=2n) Y anaRP(zR) < (1—2n) Y anag(aly) = (1—zn)Ay < (1-28) Y anz{Q(z}).
n=0 n=0 n=0

1 1
Puis avec le I1.E.4: / Pt)dt —e < (1 —zn)ANn < / Q(t)dt + & pour N > Nj.
0 0
1 1
Puis avec le IL.E.3: / g (t)dt—2¢e < (1—2xn)AN < / gt (t)dt + 2e.
. , 0 0
/ g+(t)dt:§ea+1<1+25 donne (1 —zn)An <1+4e <1+ 5e.
0
1
1
/ g~ (t)dt = ,+ —In(e™' +¢) > —In(e' +¢) =1 —1In(1+ec) =1 — ec en utilisant
0 2e 1l 4¢
1
In(1+4 z) < 2. On obtient / g (t)dt>1—-3e dou (1 —zn)An =1 — 5e.
0

On a donc démontré que lim (1 —e /M)Ay = 1.

Nr—=—+oco
Ay 1
Donc lim ay = lim l—e VMyAy——— 1.
one Hm ay = lim g M ma e NN —e /M)
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Mathématiques 1

Présentation du sujet

L’objet du probléme est de prouver un Théoreme de Hardy-Littlewood sur les séries entieres,

via une méthode due a Karamata. Plus précisément il s’agit de prouver que toute série entiere

(>~ anx™) dont les coefficients a, sont des réels positifs, de rayon de convergence 1 et équivalente
1

& la fonction = en 1, est telle que la suite (a,) converge en moyenne vers 1.

La premicere partie du sujet consiste & démontrer la densité des fonctions polynomiales dans 'en-
semble des fonctions continues sur [0,1]. Ce théoréme de Stone-Weierstrass figure au programme
de PC et la preuve qui en est donnée ici par les polynomes de Bernstein est trés accessible.

La seconde partie comporte trois temps. Elle commence par deux contre-exemples de séries entiéres
qui éclairent I'importance de I’hypothése concernant le signe de la suite. Enfin le théoréme est
prouvé & 'aide d’'un encadrement utilisant la propriété démontrée partie 1.

Analyse globale des résultats

Le sujet est de longueur raisonnable et a permis de bien discriminer les candidats, qui ont pu
s’exprimer sur des difficultés progressives, certaines copies l'ont traité entierement. Il comporte
deux parties bien distinctes. La premiére est trés proche du programme de premiére année et
nécessite des qualités de rigueur, notamment dans les majorations. Les résultats de cette partie
sont dans leur ensemble assez décevants car de nombreux candidats ont étés déstabilisés des le
début du probléme par des égalités liées au bindme de Newton et des majorations sur des sommes
tronquées : ceci a permis de valoriser les étudiants rigoureux. La seconde partie utilise les résultats
du cours d’analyse portant sur les séries entiéres. La notion méme de série entiére n’est pas vraiment
assimilée par bon nombre de candidats qui pensent que le coefficient a,, de la série (3° a,,z™) peut
dépendre de z, ce qui entraine automatiquement une disqualification pour les questions II.A et
I1.B. La partie II.C et IL.D nécessite une bonne maitrise de la définition d’un équivalent et d’une
limite, dont la connaissance a été le facteur de réussite des bonnes copies. Quelques candidats
ont traité le sujet correctement en entier, ce qui doit étre souligné car c’est un exploit, mais de
nombreuses copies parfois trés copieuses présentent un tel manque de rigueur qu’il n’est possible
de valoriser aucune réponse.

Commentaires sur les réponses apportées et conseils aux candidats

Dans ce sujet de nombreuses questions donnaient le résultat & prouver. Certaines copies tentent de
berner le correcteur en s’arrangeant pour obtenir ce résultat contre vents et marées. Le correcteur
repére systématiquement ce type de falsification, et bien entendu sanctionne ce comportement,
mais surtout il aura pour la suite des raisonnements un regard beaucoup plus critique. L’honnéteté
est donc bien entendu la régle numéro un pour les candidats.

L’argumentation est le fer de lance du candidat et doit avoir la taille requise. Par exemple, pour
étudier la convergence de la série (3_n), la phrase « il est évident que la série diverge » est &
proscrire, on argumentera en disant que le terme général ne tend pas vers 0. A contrario pour
étudier || f[o lorsque f(x) = 22 —x, une étude complete de la fonction avec tableau de variation et
signe de la dérivée peut étre avantageusement remplacée par une phrase : « la fonction f positive
sur [0,1] atteint son maximum en 1/2 ».
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Les questions de majoration sont souvent 'occasion de fautes de raisonnement, ce fait est signalé
chaque année. On peut signaler entre autres I'oubli des valeurs absolues, par exemple voici ce
qu’on peut lire parfois & la question I.C.3: pour tout = € [0,1], B, (f)(z) — f(z) < %ﬁ donc
|Bn(f) — flo < %A Au passage, on rappelle que la majoration d’une borne supérieure d'un
sous-ensemble de R ne peut se faire directement et doit obligatoirement passer par une majoration
de chaque terme de ce sous-ensemble. On oublie de justifier que pour qu'une somme partielle soit
majorée par la somme totale il faut un argument sur le signe de la somme des termes restants.

Partie I
I.A.1 Traité sur toutes les copies.

I.A.2-3 On dénombre au moins quatre démonstrations bien différentes de ces questions : 1'utili-
sation de la formule k(z) = "(Zj) est sans doute la plus simple ; la dérivation de l'expression
(z+(1—=2))™, variante plus compliquée de la dérivation par rapport & z de I'expression (z+y)" ; la
démonstration par récurrence basée sur la formule de Pascal est la plus longue a rédiger. Certains
bons candidats se sont trop attardés sur ces deux questions. D’autres ne pensent pas a préciser qu'ils
réindicent certaines sommes en cours de calcul, par exemple en précisant « on pose k =p+1»:
c’est tres déroutant pour le correcteur, qui se met parfois & douter de la sincérité de raisonnements
trop laconiques qui débouchent sur le bon résultat.

I.A.4 En général bien traitée

I.B.1.a La notation Z apparait mal comprise sur de nombreuses copies et ceci transparait quand
keV
. P n —
le candidat écrit : Z (k)ac’c(l —z)" k=1,
kev

1.B.1.b Cette question a donné lieu & des démonstrations fantaisistes basées sur 'inégalité = < x2.
La bonne démarche consistait & prendre le probleme a ’envers en utilisant I.A.4, ce qui a permis
de valoriser les candidats méthodiques et rigoureux.

I.B.1.c On voit parfois apparaitre ici une factorisation, bien inutile, du polynéme 1 + z(1 — z)
pour obtenir son maximum sur [0, 1]

1.B.2.a Les candidats, qui ont oublié la valeur absolue sur le produit scalaire, n’ont pas obtenu les
points. Le produit scalaire canonique sur R"*! n’est cité que dans une copie sur deux.

I.B.2.b Une question qui a permis de cerner les candidats astucieux et généralement n‘est traitée
que sur les trés bonnes copies.

I.C 1-2 Souvent bien traitée.

I.C.3.a Les candidats qui ont effectué leur majoration directement sur la norme infinie n’ont pas
obtenu les points de cette question. La valeur absolue disparait de la définition « Lipschitzienne ».

1.C.3.b On attendait, au minimum, que I’on explique que I'inégalité des accroissements finis peut
s’appliquer sur le segment [0, 1] puisque la fonction f y étant de classe C'!, sa fonction dérivée est
continue donc bornée sur cet intervalle.

1.C.3.c La démonstration complete de I'extension aux fonctions continues et de classe C'! par
morceaux de la propriété démontrée au b) était semble-t-il hors de portée de la majorité des
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candidats, ou nécessitait un soin que les conditions du concours ne permettaient pas a ceux qui
avaient compris le probléme : ont étés prises en compte les réponses cohérentes.
I.C.4 « On pose r = <= » n’est pas la réponse attendue car ce n’est pas n qui est donné ici! On

NG
commence & voir dans la réponse a cette question les candidats qui maitrisent la notion de limite.

I1.A.1 Cette question a donné lieu & des réponses tres diverses. Plus du tiers des candidats pro-

400

1
posent b, = z", ayant constaté que 1 5 = Z 22", La décomposition en éléments simples ou
—

n=0
le produit de Cauchy sont parfois utilisés, ce qui d’ailleurs évite le piege précédent. On trouve
aussi dans cette partie I'éternelle erreur qui consiste a changer d’indice : « je pose p = 2n » sans
se soucier des nombres impairs qui n’ont pas d’antécédent.

I1.A.2 On constate ici que de trés nombreux candidats ne maitrisent pas la notion d’équivalent.
1

L’erreur la plus répandue consiste a dire que f(z) = Les

1-22 2=1 (1-2)(1+2) 2=1 1—z’
raisonnements que 'on applique aux « o » sont valables pour les « ~ ». Ce type d’erreur se voit
d’ailleurs méme dans de bonnes copies.

I1.B.1 Les formules toutes prétes pour développer ﬁ sont finalement pénalisantes car elles
obligent & réfléchir & une simplification des factorielles, travail qui n’est souvent pas finalisé : il
est plus simple ici d’appliquer une dérivée. Trop de candidats ne précisent pas les conditions

d’utilisation des formules sur les séries entieres : addition, dérivation, produit.

I1.B.2 On retrouve dans cette question les erreurs signalées au II.A.1. La méthode du produit

de Cauchy est celle qui apparait le plus souvent (ne pas oublier de citer les conditions d’appli-

cation), mais concernant 1), ce n’est clairement pas la meilleure car elle nécessite de simplifier la
n

somme Z(—l)kk. On trouve également, bien que ce ne soit pas explicitement au programme, une
k=0

décomposition en éléments simples.

I1.B.3-4 Seuls les candidats soigneux arrivent a bout de ces questions.

Le sujet change ensuite de registre et teste la capacité des candidats a rédiger proprement des
raisonnements de majoration.
n n
I1.C.1 1I faut justifier les minorations, en particulier Z apz® > Z arx™ mérite une explication.
" k=0 k=0
Drailleurs certaines copies écrivent Z apzh = Az,
k=0

I1.C.2 Les candidats qui se raménent a (1—e~/™) f(e=1/") — 1 s’en sortent bien avec la définition
d’une limite, mais rares sont ceux qui aboutissent en restant sur la définition de I’équivalent car
ils confondent souvent les deux notions. Par exemple on lit : « pour ¢ = 1/(1 — e /™), on a le
résultat demandé en utilisant I'inégalité | f(e=*/") —1/(1 —e~/")| < & ». Dailleurs, la majoration
1
demandée est trés souvent considérée comme évidente & partir de f(z) s
z=1 1—x

I1.C.3 Pour une suite, étre majorée ne signifie pas que son terme général soit majoré par une
autre suite, or c’est une réponse trés répandue dans les copies. De plus, la plupart des candidats
conscients du probléme ont considéré implicitement qu’une suite majorée par une suite convergente
est bornée, il aurait été utile de signaler au moins cette évidence.
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II.D.1.a La réponse la plus simple passait par le calcul du produit de Cauchy j(z)ﬁ car elle

oo
évite de montrer que la série ZAkwk converge sur |—1,1[. Cette question a donné lieu & des

k=0
raccourcis malhonnétes.

II.D.1.b-c De nombreux candidats qui sont arrivés dans cette partie du probléme, indépendante
du reste, se sont enlisés dans les arguments de majoration pourtant trés simples ici. On attend bien
entendu un argument sur la monotonie de la suite (Ax). On trouve aussi des copies ot le résultat
de la question apparait miraculeusement en cours de majoration.

II.D.2.a-b Pour la premiére inégalité, on retrouve les préjugés sur les équivalents cités plus haut.
Pour la seconde, plusieurs méthodes sont exploitées dont une inégalité de convexité pour la fonction

e’.

II.D.2.c-d Le pi¢ge du N(1 — c’*/N) — 400 se referme facilement, surtout en fin d’épreuve,
N—+o00
mais c’est tout de méme une erreur inadmissible & ce niveau !

Le sujet a partir de cet endroit monte une marche dans la difficulté et s’adresse aux trés bons
candidats. Le grappillage n’a que trés peu fonctionné.

II.E.1 Les réponses qui donnent, sans le simplifier, le résultat en fonction de coefficients a et b
d’une droite, et cela méme si ces coefficients ont étés obtenus correctement, n’ont pas étés pris en
compte ou seulement partiellement. L’expression de I'intégrale comme une aire de triangle a permis
un gain de temps intéressant. A noter que de nombreux candidats considerent que la fonction affine
a pour formule g(t) = t.

II.E.2-6 Ces questions ont été correctement traitées sur quelques trés bonnes copies : c’est un
plaisir de voir que certains candidats allient facilité de calcul et trés bonne intuition, méme si il
faut ici reconnaitre que le texte guidait bien.

Conclusions

Ce sujet s’est avéré tres classant. Il valorise plus une bonne compréhension de la définition des
objets utilisés que la connaissance des techniques étudiées en PC. C’est par exemple le cas pour la
notion de série entiere qui est mal assimilée par de nombreux candidats, ainsi que la définition d’un
équivalent. Nous en profitons donc pour rappeler aux futurs candidats que pour faire de bonnes
mathématiques, U'effort de préparation doit se porter avant tout sur le cadrage des définitions.
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