
Psi 999 – 2025/2026 DM 9 – corrigé

Le corrigé du premier problème est écrit par Bruno Winckler (et retouché par mes soins, essentiellement
sur des questions de détails entre les programmes de MP/MPI et PSI). Le corrigé du deuxième problème
(également retouché) a été écrit par Stéphane Oiry.

1 Une somme classique
Q 1. NDSG : voici d’abord une rédaction où on somme en cassant joyeusement N∗ en deux paquets.

C’est raisonnable, et licite modulo les théorèmes sur les familles sommables. Sujet délicat qui sera
u peu abordé dansle chapitre sur les probabilités :
Par le théorème de sommation par paquets (qu’on peut utiliser ici sans hypothèse de sommabilité
puisqu’on somme des termes positifs), avec le recouvrement N \ {0} = (2N \ {0})⊔ (2N+1), on a :

+∞∑
n=1

1

n2
=

+∞∑
n∈2N\{0}

1

n2
+

+∞∑
n∈2N+1

1

n2
=

+∞∑
ℓ=1

1

(2ℓ)2
+

+∞∑
ℓ=0

1

(2ℓ+ 1)2
=

1

4

+∞∑
n=1

1

n2
+

+∞∑
ℓ=0

1

(2ℓ+ 1)2
.

Comme la série
∑
n⩾1

1

n2
converge évidemment (c’est une série de Riemann d’exposant 2 > 1), cette

égalité peut se réécrire : (
1− 1

4

) +∞∑
n=1

1

n2
=

+∞∑
ℓ=0

1

(2ℓ+ 1)2
=
π2

8
,

ce dont on déduit :

+∞∑
n=1

1

n2
=

1

3/4

π2

8
=
π2

6
·

NDSG : plus simplement, on peut considérer
2N∑
k=1

1

k2
qu’on casse en deux, et noter que quand N

tend vers +∞, tous les termes convergent.

Partie I

Q 2. Soit n ∈ N. La dérivée de x 7→ (sin(x))n+1 est x 7→ (n+ 1)(sin(x))n cos(x).

Pour obtenir une relation entre les intégrales Wn+2 =

∫ π
2

0

(sin(x))n+2dx et Wn =

∫ π
2

0

(sin(x))ndx,

nous allons intégrer par parties afin d’abaisser le degré de l’exposant n+2. Plus précisément : pour
obtenir l’exposant n, nous allons dériver x 7→ (sin(x))n+1 et intégrer x 7→ sin(x). La formule de
l’intégration par parties donne alors :

Wn+2 =

∫ π
2

0

(sin(x))n+2dx =
[
− cos(x) · (sin(x))n+1

]π
2

0
+ (n+ 1)

∫ π
2

0

cos(x) · (sin(x))n cos(x)dx,

donc : Wn+2 = (n+1)

∫ π
2

0

(sin(x))n(cos(x))2dx. En utilisant la formule : cos2 = 1−sin2, on obtient :

Wn+2 = (n+ 1)

∫ π
2

0

(sin(x))ndx− (n+ 1)

∫ π
2

0

(sin(x))n+2dx = (n+ 1)Wn − (n+ 1)Wn+2,

c’est-à-dire (n+ 2)Wn+2 = (n+ 1)Wn, puis :

Wn+2 =
n+ 1

n+ 2
Wn
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On en déduit la relation demandée par récurrence. Pour tout n ∈ N, soit Pn la proposition :

« W2n+1 =
22n(n!)2

(2n+ 1)!
· »

— Pour n = 0 on a : W1 =

∫ π
2

0

sin(x)dx = [− cos(x)]
π
2
0 = 1, et :

22·0(0!)2

(2 · 0 + 1)!
= 1 =W1, d’où P0.

— À présent, si n ∈ N est un entier tel que Pn est vérifiée, alors :

W2(n+1)+1 =W2n+3 =
2n+ 2

2n+ 3
W2n+1

[Pn]
=

2n+ 2

2n+ 3
· 22n(n!)2

(2n+ 1)!
=

(2n+ 2)2

(2n+ 3)(2n+ 2)
· 22n(n!)2

(2n+ 1)!

=
22 · (n+ 1)2 · 22n(n!)2

(2n+ 3)!

=
22(n+1)((n+ 1)!)2

(2(n+ 1) + 1)!
,

d’où Pn+1.
Ayant démontré l’initialisation et l’hérédité, par principe de récurrence on a bien :

Pour tout n ∈ N, W2n+1 =
22n(n!)2

(2n+ 1)!
·

NDSG : un calcul « avec des petits points » passait très bien.

Q 3. L’application x 7→ 1√
1− x2

peut s’écrire x 7→
(
1− x2

)− 1
2 : or nous connaissons le développement

en série entière de x 7→ (1+x)α pour tout α ∈ C. Nous allons l’utiliser avec α = − 1
2 et le composer

avec x 7→ −x2, pour obtenir celui demandé. On a, pour rappel :

∀α ∈ C \ N, ∀x ∈]− 1, 1[, (1 + x)α = 1 +

+∞∑
n=1

n−1∏
k=0

(α− k)

n!
xn.

NDSG : n’hésitez pas à utiliser la notation
(
α
n

)
!

Posons α = − 1
2 . Pour tout x ∈]− 1, 1[, on a −x2 ∈]− 1, 1[, et on peut donc évaluer en −x2 l’égalité

ci-dessus pour obtenir :

∀x ∈]− 1, 1[, (1− x2)−
1
2 = 1 +

+∞∑
n=1

n−1∏
k=0

(
− 1

2 − k
)

n!

(
−x2

)n
.

Pour les besoins de la question suivante, nous allons simplifier le terme général. Pour tout n ∈
N \ {0}, on a :

n−1∏
k=0

(
−1

2
− k

)
=

n−1∏
k=0

(
−1

2
· (2k + 1)

)
=

(−1)n

2n

n−1∏
k=0

(2k + 1).

La méthode pour écrire sous forme compacte un produit d’entiers impairs est standard : on multiplie
et divise par le produit de tous les entiers pairs, afin de faire apparaître le produit de tous les entiers
jusqu’à un certain rang (et donc une factorielle), et on factorise chaque entier pair par 2. On obtient
alors :

∀n ∈ N \ {0},
n−1∏
k=0

(2k + 1) =

n−1∏
k=0

(2k + 1)

n∏
k=1

(2k)

n∏
k=1

(2k)
=

(2n)!

2n
n∏

k=1

k
=

(2n)!

2nn!
.
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Ainsi :

∀n ∈ N \ {0},
n−1∏
k=0

(
−1

2
− k

)
=

(−1)n

2n
× (2n)!

2nn!
=

(−1)n(2n)!

22nn!
.

Comme, de plus, pour tout x ∈]−1, 1[ et tout n ∈ N\{0} on a :
(
−x2

)n
= (−1)nx2n, on en déduit :

Pour tout x ∈]− 1, 1[, (1− x2)−
1
2 = 1 +

+∞∑
n=1

(2n)!

22n(n!)2
x2n =

+∞∑
n=0

(2n)!

22n(n!)2
x2n.

NDSG : pitié, utilisez des petits points !

Passons à l’arc sinus. On a :

Arcsin(x) =

∫ x

0

dt√
1− t2

=

∫ x

0

+∞∑
n=0

(2n)!

22n(n!)2
t2ndt.

Or la série entière
∑
n⩾0

(2n)!

22n(n!)2
x2n est de rayon de convergence 1, donc on peut l’intégrer terme à

terme sur tout segment inclus dans ]− 1, 1[. On en déduit :

Arcsin(x) =

+∞∑
n=0

∫ x

0

(2n)!

22n(n!)2
t2ndt =

+∞∑
n=0

(2n)!

22n(n!)2
x2n+1

2n+ 1
·

En conclusion :

Pour tout x ∈]− 1, 1[,
1√

1− x2
=

+∞∑
n=0

(2n)!

22n(n!)2
x2n, Arcsin(x) =

+∞∑
n=0

(2n)!

22n(n!)2
x2n+1

2n+ 1
·

NDSG : on aura noté qu’il n’est pas question de je ne sais quelle primitive formelle
∫
... dx mais

bien d’une intégrale
∫ x

0

... dt

Q 4. Soit t ∈
[
0, π2

[
. En posant x = sin(t) ∈ [0, 1[ dans le développement en série entière de l’arc sinus,

on obtient :

Arcsin(sin(t)) =

+∞∑
n=0

(2n)!

22n(n!)2
(sin(t))

2n+1

2n+ 1
,

et Arcsin(sin(t)) = t car t ∈
[
0, π2

[
⊆
[
−π

2 ,
π
2

]
, d’où le résultat désiré (quitte à renommer t en x).

Q 5. Il s’agit de justifier l’interversion des symboles
+∞∑
n=0

et
∫ π

2

0

. Nous allons utiliser le théorème d’inté-

gration terme à terme positif. Posons :

∀n ∈ N, ∀x ∈
[
0,
π

2

[
, gn(x) =

(2n)!

22n(n!)2
(sin(x))

2n+1

2n+ 1
·

L’application gn se prolonge en une fonction continue sur le segment
[
0, π2

]
, donc elle y est intégrable

et elle est intégrable sur
[
0, π2

[
. De plus elle est positive sur cet intervalle et sa somme est continue

(c’est la fonction x 7→ x d’après la question précédente), donc par le théorème d’intégration terme
à terme positif on a : ∫ π

2

0

+∞∑
n=0

gn =

+∞∑
n=0

∫ π
2

0

gn

ce qui donne immédiatement le résultat voulu.
NDSG : on pouvait ausi utiliser la convergence normale de

∑
gn... pour peu qu’on estime effec-

tivement ∥gn∥∞ : toute affirmation de convergence normale qui n’est pas précédée par une telle
évaluation va forcément directement à la poubelle !

3



Q 6. D’après la question 2 on a :
∫ π

2

0

(sin(x))
2n+1

dx = W2n+1 =
22n(n!)2

(2n+ 1)!
. Donc par la question

précédente et la question 4 :∫ π
2

0

xdx =

+∞∑
n=0

(2n)!

22n(n!)2
1

2n+ 1
· 22n(n!)2

(2n+ 1)!
=

+∞∑
n=0

1

2n+ 1
· (2n)!

(2n+ 1)!
=

+∞∑
n=0

1

(2n+ 1)2
·

Or on a facilement :
∫ π

2

0

xdx =

[
x2

2

]π
2

0

=
π2

8
· Donc :

π2

8
=

+∞∑
n=0

1

(2n+ 1)2
·

On conclut avec la question 1, et on a :

+∞∑
n=1

1

n2
=
π2

6
·

Partie II

Q 7. Soit x ∈]− 1, 1[. On a : |x2| < 1, donc :

1

x2 − 1
= − 1

1− x2
= −

+∞∑
n=0

(x2)n = −
+∞∑
n=0

x2n.

On a donc :
ln(x2)

x2 − 1
=

+∞∑
n=0

(−x2n ln(x)) pour tout x ∈ [0, 1[, puis :

∫ 1

0

ln(x)

x2 − 1
dx =

∫ 1

0

+∞∑
n=0

(−x2n ln(x))dx (∗)
=

+∞∑
n=0

∫ 1

0

(−x2n ln(x))dx,

pour peu qu’on justifie l’interversion (∗)
— Chaque fonction fn : x 7→ −x2n ln(x) (n ∈ N) est continue par morceaux sur ]0, 1[.

— La série de fonctions
∑
n⩾0

fn converge simplement et sa somme qui vaut x 7→ ln(x)

x2 − 1
, est bien

continue sur ]0, 1[.
— Il reste à justifier l’intégrabilité sur ]0, 1[ de fn pour tout n ∈ N (comme fn ⩾ 0 pour tout

n ∈ N, cela équivaut à la convergence de son intégrale sur ]0, 1[) puis la convergence de∑∫ 1

0

|fn| ; nous allons faire mieux en calculant l’intégrale sur ]0, 1[ de fn en même temps, via

une intégration par parties, où l’on dérive x 7→ − ln(x) et intègre x 7→ x2n. Puisque

lim
x→0

− x2n+1

2n+ 1
ln(x) = lim

x→1
− x2n+1

2n+ 1
ln(x) = 0,

la formule de l’intégration par parties assure que les intégrales
∫ 1

0

−x2n ln(x)dx et
∫ 1

0

− x2n

2n+ 1
dx

sont de même nature (donc convergentes, puisque la seconde est l’intégrale d’une fonction
continue sur un segment), et on a :∫ 1

0

−x2n ln(x)dx =

[
− x2n+1

2n+ 1
ln(x)

]1
0

+
1

2n+ 1

∫ 1

0

x2ndt =
1

(2n+ 1)2
,

ce qui montre à la fois l’intégrabilité de fn pour tout n ∈ N sur ]0, 1[, et que son intégrale

égale
1

(2n+ 1)2
· On en déduit pour le même prix la convergence de

∑∫ 1

0

|fn|.

NDSG : on pouvait aussi réaliser l’IPP sur [ε, 1 − ε] et constater que tout converge quand ε
tend vers 0+.
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En conclusion, on a montré :

∫ 1

0

ln(x)

x2 − 1
dx =

+∞∑
n=0

∫ 1

0

(−x2n ln(x))dx =

+∞∑
n=0

1

(2n+ 1)2
·

Q 8. Nous allons utiliser le théorème de continuité des intégrales à paramètres. Posons :

∀(x, t) ∈ (R+)
2, g(x, t) =

Arctan(tx)

1 + t2
·

Alors :
— pour tout t ∈ R+, l’application x 7→ g(x, t) est continue sur R+ ;
— pour tout x ∈ R+, l’application t 7→ g(x, t) est continue par morceaux sur R+ ;
— pour tout (t, x) ∈ (R+)

2, on a :

|g(x, t)| ⩽ 1

1 + t2
hypothèse de domination

et l’application φ : t 7→ 1

1 + t2
est intégrable sur [0,+∞[ puisqu’elle est continue sur cet

intervalle, et que |φ| = φ admet comme primitive l’arc tangente, qui admet une limite finie
(égale à

π

2
) en +∞.

NDSG : ou encore : φ(t) ∼ 1

t2
donc φ est intégrable au voisinage de +∞.

Par le théorème de continuité sous le signe intégrale, d’une part t 7→ g(x, t) est intégrable sur R+

pour tout x ∈ R+, et d’autre part :

f est définie et continue sur R+.

Q 9. On reprend les notations de la question précédente. Nous allons utiliser le théorème de dérivation
des intégrales à paramètres :

— pour tout t ∈ R+, l’application x 7→ g(x, t) est de classe C1 sur ]0, 1] et on a :

∀(t, x) ∈ R+×]0, 1],
∂g

∂x
(x, t) =

t

1 + (xt)2
1

1 + t2
;

— pour tout x ∈]0, 1], l’application t 7→ g(x, t) est intégrable sur R+ d’après la question précé-
dente ;

— pour tout x ∈]0, 1], l’application t 7→ ∂g

∂x
(x, t) est continue par morceaux sur R+ ;

— pour tout segment [a, b] inclus dans ]0, 1] et tout (t, x) ∈ R+ × [a, b], on a :∣∣∣∣∂g∂x (x, t)
∣∣∣∣ ⩽ t

(1 + (at)2)(1 + t2)
hypothèse de domination

Justifions que l’application φ : t 7→ t

(1 + (at)2)(1 + t2)
est intégrable sur [0,+∞[ : elle est

continue sur cet intervalle, et on a : φ(t) ∼
t→+∞

1

a2
1

t3
, donc φ est intégrable au voisinage de

+∞.
Par le théorème de dérivation sous le signe intégrale, vérifié sur tout segment de ]0, 1], d’une part

t 7→ ∂g

∂x
(x, t) est intégrable sur R+ pour tout x ∈]0, 1], et d’autre part :

f est de classe C1 sur ]0, 1] avec pour tout x ∈]0, 1] : f ′(x) =
∫ +∞

0

t

1 + (xt)2
1

1 + t2
dt
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Q 10. Soit (t, x) ∈ R+×]0, 1[. On a :

t

1 + t2
− x2t

1 + t2x2
=
t(1 + t2x2)− x2t(1 + t2)

(1 + t2)(1 + t2x2)
= (1− x2)

t

(1 + t2)(1 + t2x2)

et on en déduit, par la question précédente :

∀x ∈]0, 1[, f ′(x) =
1

1− x2

∫ +∞

0

(
t

1 + t2
− x2t

1 + t2x2

)
dt =

1

1− x2

[
ln(1 + t2)− ln(1 + t2x2)

2

]+∞

0

=
1

1− x2

[
1

2
ln

(
1 + t2

1 + t2x2

)]+∞

0

=
ln
(

1
x2

)
2(1− x2)

= − ln(x)

1− x2
,

d’où le résultat, quitte à multiplier par −1 le dénominateur.
Q 11. On a immédiatement :

f(0) =

∫ +∞

0

0dt = 0 et f(1) =
∫ +∞

0

Arctan(t)

1 + t2
dt =

[
Arctan(t)2

2

]+∞

0

=
π2

8
·

Or en intégrant la relation de la question précédente, on a l’existence de c ∈ R tel que :

∀x ∈]0, 1[, f(x) = c+

∫ x

0

ln(t)

t2 − 1
dt.

Calculons la limite de chaque membre en 0. Comme l’intégrale
∫ 1

0

ln(x)

x2 − 1
dx converge par la

question 7, on a : lim
x→0

∫ x

0

ln(t)

t2 − 1
dt = 0. De plus f est continue en 0 par la question 8, donc :

lim
x→0

f(x) = f(0) = 0. Ainsi l’égalité ci-dessus donne, quand x→ 0 :

0 = c.

Cette même égalité donne, quand x→ 1, toujours par continuité de f :∫ 1

0

ln(x)

x2 − 1
dx = f(1) =

π2

8
·

On en déduit, par la question 7 :
+∞∑
n=0

1

(2n+ 1)2
=
π2

8
·

On conclut avec la question 1, et on a :

+∞∑
n=1

1

n2
=
π2

6
·

2 Une intégrale classique

Partie I : Calcul d’une intégrale à l’aide d’une série

Q 12. — La fonction φ : x 7→ xα−1

1 + x
est continue sur ]0,+∞[.

— En 0, on a φ(t) ∼
x→0

1

x1−α
qui est intégrable au voisinage de 0 car 1− α < 1, donc la fonction

φ est intégrable sur ]0, 1].

— En +∞, on a φ(x) ∼
x→+∞

1

x2−α
qui est intégrable au voisinage de +∞ car 2− α > 1, donc la

fonction φ est intégrable sur [1,+∞[.
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Q 13. On a I(1− α) =

∫ 1

0

x−α

1 + x
dx ; le changement de variable x =

1

u
(bijection C1 strictement décrois-

sante de ]0, 1] sur [1,+∞[) fournit alors

I(1− α) =

∫ 1

+∞

uα

1 + 1
u

(
− du

u2

)
=

∫ +∞

1

uα−1

u+ 1
du = J(α)

Q 14. Pour x fixé dans ]0, 1[, fn(x) est le terme général d’une série géométrique et |fn(x)| < 1, la série

est donc convergente, avec
+∞∑
n=0

fn(x) = xα−1
+∞∑
n=0

xn =
xα−1

1 + x
·

Supposons que la série converge uniformément sur ]0, 1[. Puisque pour tout n ∈ N on a fn(x) −→
x→1−

(−1)n,

le théorème de la double limite entraînerait que
+∞∑
n=0

(−1)n converge... ce qui n’est pas le cas.

La série ne converge pas uniformément sur ]0, 1[.

Q 15. Comme Sn(x) = xα−1
n∑

k=0

(−x)k =
xα−1

1 + x
(1− (−x)n+1).

On note φn : x 7→ xα−1

1 + x
(1− (−x)n+1).

• ∀n ∈ N, x 7→ φn(x) est continue sur [0, 1].
• ∀x ∈]0, 1[, φn(x) −→

n→+∞
φ(x) = 0 et φ est continue par morceaux sur ]0, 1[.

• ∀n ∈ N, ∀x ∈]0, 1[, |φn(x)| ⩽
xα−1

1 + x
× 2 et la fonction x 7→ 2

xα−1

1 + x
est intégrable sur ]0, 1]

d’après la question 19.

Donc d’après le théorème de convergence dominée,

lim
n→+∞

∫ 1

0

Sn(x) dx =

∫ 1

0

lim
n→+∞

Sn(x) dx = I(α)

Comme
∫ 1

0

Sn(x) dx =

n∑
k=0

(−1)k
∫ 1

0

xα+k−1 dx =

n∑
k=0

(−1)k

α+ k
, on peut faire tendre n vers +∞ :

I(α) =

+∞∑
k=0

(−1)k

α+ k

Q 16. Avec la relation de Chasles, on a immédiatement I(α) + J(α) =

∫ +∞

0

xα−1

1 + x
dx. Par ailleurs :

I(α) + J(α) = I(α) + I(1− α) =

+∞∑
k=0

(−1)k

α+ k
+

+∞∑
k=0

(−1)k

−α+ 1 + k

=
1

α
+

+∞∑
k=1

(−1)k

α+ k
+

+∞∑
p=1

(−1)p−1

−α+ p
=

1

α
+

+∞∑
n=1

(−1)n
(

1

α+ n
− 1

−α+ n

)
Soit finalement :

I(α) + J(α) =
1

α
+ 2α

+∞∑
n=1

(−1)n

α2 − n2
·
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Q 17. En posant x = 0 dans l’expression que l’on admet, on obtient :

1 =
sin(πα

π

(
1

α
+

+∞∑
n=1

(−1)n
2α

α2 − n2

)
On en déduit donc avec le résultat de la question précédente que∫ +∞

0

xα−1

1 + x
dx =

π

sin(απ)

Partie II - Lien avec la fonction Gamma
Q 18. Soit x > 0, on note ψx : t 7→ tx−1e−t.

— ψx est continue sur ]0,+∞[.

— ψx(t) ∼
t→0

1

t1−x
avec 1− x < 1 donc ψx est intégrable au voisinage de 0.

— t2ψx(t) −→
t→+∞

0, donc ψx(t) =
t→+∞

o

(
1

t2

)
et donc ψx est intégrable au voisinage de +∞.

Finalement, ψx est intégrable sur ]0,+∞[, et ainsi :

Γ est bien définie sur ]0,+∞[.

Q 19. • Pour x = 0, on retrouve fα(0) =
π

sin(απ)
d’après la question 14.

• Soit x > 0 :

— µ : t 7→ tα−1

t+ 1
e−xt est continue sur ]0,+∞[.

— µ(t) ∼
t→0

1

t1−α
et on donc µ est intégrable au voisinage de 0.

— t2µ(t) −→
t→+∞

0, donc µ(t) =
t→+∞

o

(
1

t2

)
et donc µ est intégrable au voisinage de +∞.

µ est finalement intégrable sur ]0,+∞[, donc fα(x) existe.
Ainsi :

fα est bien définie sur [0,+∞[.

Démontrons maintenant que fα est continue sur [0,+∞[.

On note λ la fonction définie sur [0,+∞[×]0,+∞[ par λ : (x, t) 7→ tα−1

t+ 1
e−xt

• Pour tout t ∈]0,+∞[, x 7→ λ(x, t) est continue sur [0,+∞[.
• Pour tout x ∈ [0,+∞[, t 7→ λ(x, t) est continue par morceaux (car continue) sur ]0,+∞[.

• Pour tout (x, t) ∈ [0,+∞[×]0,+∞[, |λ(x, t)| ⩽ tα−1

t+ 1
et t 7→ tα−1

t+ 1
est intégrable sur ]0,+∞[

d’après la question 9.

Donc, par théorème de continuité des intégrales à paramètres :

La fonction fα est continue sur [0,+∞[.

NDSG : le théorème de continuité utilisé inclut la définition de fα dans ses conclusion.
Q 20. Soient a et b réels tels que 0 < a < b. On conserve la notation de λ de la question précédente que

l’on définit cette fois sur [a, b]×]0,+∞[
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• ∀x ∈ [a, b], t 7→ λ(x, t) est intégrable sur ]0,+∞[ d’après la question 16 (comme elle est
positive, le fait que l’intégrale soit définie équivaut au fait que la fonction soit intégrable).

• ∀t ∈]0,+∞[, x 7→ λ(x, t) est de classe C1 sur [a, b].

• ∀x ∈ [a, b], t 7→ ∂f

∂x
(x, t) =

tα

1 + t
e−xt est continue sur ]0,+∞[.

• ∀(x, t) ∈ [a, b]×]0,+∞[,
∣∣∣∣∂f∂x (x, t)

∣∣∣∣ ⩽ tα

1 + t
e−at et t 7→ tα

1 + t
e−at est continue sur [0,+∞[ et

c’est un o
t→+∞

(
1

t2

)
, donc elle est intégrable sur [0,+∞[.

On peut donc conclure par théorème de dérivation que fα est de classe C1 sur [a, b]. Ceci étant
pour tout a et b de ]0,+∞[, on en conclut :

fα est de classe C1 sur ]0,+∞[, et pour tout x > 0, f ′α(x) =
∫ +∞

0

tα

1 + t
e−xt dt

NDSG : Le théorème au programme permet de conclure au caractère C1 sur ]0,+∞[ sans passer
par le caractère C1 sur chaque [a, b].

Q 21. On applique cette fois-ci le théorème de convergence dominée généralisé (avec un paramètre réel,
pas forcément entier).

Soit x > 0, on note λx : t 7→ tα−1

t+ 1
e−xt définie sur ]0,+∞[.

• ∀x > 0, t 7→ λx(t) est continue sur ]0,+∞[.
• ∀t ∈]0,+∞[, λx(t) −→

x→+∞
λ(t) = 0 et t 7→ 0 est continue par morceaux sur ]0,+∞[.

• ∀(x, t) ∈ (]0,+∞[)2, |λx(t)| ⩽
tα−1

t+ 1
et t 7→ tα−1

t+ 1
est intégrable sur ]0,+∞[ (vu à la question

précédente).

Donc par théorème de convergence dominée généralisé :

lim
x→+∞

fα(x) =

∫ +∞

0

lim
x→+∞

λx(t) dt = 0

Q 22. La fonction ψ : t 7→ e−t

tα
est continue sur ]0,+∞[, ψ(t) ∼

t→0

1

tα
et α < 1 donc ψ est intégrable au

voisinage de 0, et t2ψ(t) −→
t→+∞

0, donc ψ(t) =
t→+∞

o

(
1

t2

)
et donc ψ est intégrable au voisinage de

+∞.
Ainsi :

t 7→ e−t

tα
est intégrable sur ]0,+∞[.

On a pour tout x > 0,
∫ +∞

0

e−t

tα
dt =

∫ x

0

e−t

tα
dt+

∫ +∞

x

e−t

tα
dt.

L’intégrale étant convergente, on en déduit que

lim
x→+∞

∫ +∞

x

e−t

tα
dt = 0
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Partie III - Vers la formule des compléments
Q 23. Avec les calculs précédents et la linéarité de l’intégrale on a :

fα(x)− f ′α(x) =

∫ +∞

0

tα−1 + tα

t+ 1
e−xt dt =

∫ +∞

0

tα−1e−xt dt.

Le changement de variable linéaire u = xt fournit alors :

fα(x)− f ′α(x) =

∫ +∞

0

uα−1

xα−1
e−u 1

x
du =

Γ(α)

xα

NDSG : pour un changement de variable affine dans une intégrale impropre, inutile dans faire des
caisses, mais signaler le mot « affine » (ou « linéaire » ici) et éventuellement préciser « dans
l’intégrale convergente... »

Q 24. Calcul préliminaire : on note g : x 7→
∫ +∞

x

e−t

tα
dt. On a g qui est définie d’après la question 19 et

de classe C1 d’après le théorème fondamental de l’analyse et g′(x) = −e−x

xα
· gα est donc de classe

C1 comme produit de fonctions de classe C1 et on a

g′α(x) = Γ(α)ex
∫ +∞

x

e−t

tα
dt+ Γ(α)ex

(
−e−x

xα

)
= gα(x)−

Γ(α)

xα
·

Ainsi :

gα est une solution particulière de l’équation différentielle y − y′ =
Γ(α)

xα
·

Considérons l’équation différentielle : y − y′ =
Γ(α)

xα
pour x > 0

— L’équation sans second membre associée est y′ − y = 0 dont les solutions sont les x 7→ k ex où
k décrit R.

— Comme gα est une solution particulière de l’équation les solutions de l’équation complète sont
les x 7→ k ex + gα(x) où k décrit R.

fα étant solution de cette équation, on en déduit qu’il existe un réel k tel que pour tout x > 0,
fα(x) = k ex + gα(x). Il reste à déterminer la valeur de k.

On a de l’équation précédente l’égalité e−xfα(x) = k+Γ(α)

∫ +∞

x

e−t

tα
dt. En utilisant les résultats

des questions 18 et 19, on obtient en faisant tendre x vers +∞ que k = 0.

Pour tout x > 0, fα(x) = gα(x)

Q 25. En posant x = 0 dans l’égalité précédente, on aurait l’égalité souhaitée, mais l’égalité ne vaut que
pour x > 0.
On sait d’après la question 16 que fα est continue sur [0,+∞[ donc en particulier en 0 :

fα(0) = lim
x→0+

fα(x) = lim
x→0+

gα(x) = Γ(α)

∫ +∞

0

e−t

tα
dt

D’autre part, comme fα(0) =
∫ +∞

0

tα−1

t+ 1
dt, on obtient l’égalité demandée.

Q 26. On sait d’après la question 14 que fα(0) =
π

sin(απ)
· Avec l’égalité de la question précédente, on a

donc :

π

sin(απ)
= Γ(α)

∫ +∞

0

t−α e−t dt = Γ(α)Γ(1− α)
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Q 27. On pose u = t2 dans l’intégrale (bijection C1 de ]0,+∞[ sur lui-même), et on obtient∫ +∞

0

e−t2 dt =

∫ +∞

0

e−u du

2
√
u
=

1

2
Γ

(
1

2

)

Par ailleurs, avec la question précédente et α = 1
2 , on a Γ

(
1

2

)
× Γ

(
1

2

)
=

π

sin( 12π)
= π.

On en déduit que Γ

(
1

2

)
=

√
π (car Γ

(
1

2

)
⩾ 0 comme intégrale d’une fonction positive), et donc :

∫ +∞

0

e−t2 dt =

√
π

2

FIN
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