Psi 999 — 2025/2026 DM 9 — corrigé

Le corrigé du premier probléme est écrit par Bruno Winckler (et retouché par mes soins, essentiellement
sur des questions de détails entre les programmes de MP /MPI et PSI). Le corrigé du deuxiéme probléme
(également retouché) a été écrit par Stéphane Oiry.

Q 2.

Une somme classique

. NDSG : wvoici d’abord une rédaction ou on somme en cassant joyeusement N* en deur paquets.

C’est raisonnable, et licite modulo les théorémes sur les familles sommables. Sujet délicat qui sera
u peu abordé dansle chapitre sur les probabilités :

Par le théoréme de sommation par paquets (qu’on peut utiliser ici sans hypothése de sommabilité
puisqu’on somme des termes positifs), avec le recouvrement N\ {0} = (2N\ {0})U(2N+1),on a:

o0 1 B 00 1 +o0 1 400 1 1
Zlﬁ_ D 2t 2 n? Z(ze) + (20+1)2 Zn2 Z%H
n= nc2N\{0} ne2N+1

. 1 . . .
Comme la série E — converge évidemment (c’est une série de Riemann d’exposant 2 > 1), cette
n
n>1
égalité peut se réécrire :

ce dont on déduit :

iol 1 72 2
2T 2/ @
=n 3/4 8 6

2N

NDSG : plus simplement, on peut considérer Z qu’on casse en deuzx, et noter que quand N

k2
tend vers +oo, tous les termes convergent.

Partie I

Soit n € N. La dérivée de z + (sin(z))" ! est x — (n + 1)(sin(z))" cos(z).

™

2 2
Pour obtenir une relation entre les intégrales W, o = / (sin(z))""2dx et W, = / (sin(z))"dz,

0
nous allons intégrer par parties afin d’abaisser le degré de ’exposant n + 2. Plus précisément : pour
obtenir 'exposant n, nous allons dériver x +— (sin(x))"*! et intégrer x ~— sin(z). La formule de
I'intégration par parties donne alors :

Whao = /Oi(sin(a:))"“dx = [~ cos(x) - (sin(m))"“]f +(n+1) /05 cos(z) - (sin(z))" cos(x)dz,

donc : Wy 42 = (n+1) (sin(x))"(cos(x))?dz. En utilisant la formule : cos? = 1—sin?, on obtient :

S—
[ME]

Wss = (n+1) /  (sin(z))"de — (n+ 1) / * (sin(@))™2dz = (n+ )Wy — (n+ )W,

c’est-a-dire (n + 2)W,42 = (n + 1)W,, puis :

n+1

Whao = ——
12 n+2




On en déduit la relation demandée par récurrence. Pour tout n € N, soit P, la proposition :

22n n! 2
« Wopy1 = (2n(—|—1))' »
5 - 22-0(0!)2
— Pourn=0ona: W, = /0 sin(z)dz = [—cos(x)]§ =1, et : 20+ =1=Wy, dou Py.
— A présent, si n € N est un entier tel que P,, est vérifiée, alors :
w. _w B 2n+2W P 2n+2  22"(nl)? (2n + 2)? 221 (n!)?
At DL IS T o T3 T 913 20+ 1) (2n+3)2n+2) (2n+ 1)

22 (n+1)%-22"(n!)?
(2n + 3)!
22(”#F1)((Tl_% 1)!)2
2n+1)+1) 7

d’ott Py

Ayant démontré l'initialisation et I’hérédité, par principe de récurrence on a bien :

227 (nl)?

Pour tout n € N, Wo,,11 = @Cn+ 1)

NDSG : un calcul « avec des petits points » passait trés bien.

1
Q 3. L’application z — peut s’écrire x +— (1 — x2) 2 : or nous connaissons le développement

1
V1—2?
en série entiére de x — (1+ ) pour tout a € C. Nous allons 'utiliser avec o = —% et le composer
avec T — —x2, pour obtenir celui demandé. On a, pour rappel :

n—1

+oo H(a_k)
Va € C\N, Vo el - 1,1, (L+2)* =1+ =0 —pn.

n=1

NDSG : n’hésitez pas a utiliser la notation (Z) !
Posons a = —%. Pour tout # €] —1,1[, on a —a* €] — 1, 1], et on peut donc évaluer en —z? I'égalité
ci-dessus pour obtenir :

n—1 1

R Y
2-1 _ = 2\
voel-1,1], (1—a?) z_1+21 - (—a?)".
n—

Pour les besoins de la question suivante, nous allons simplifier le terme général. Pour tout n €
N\ {0}, on a:

ﬁ (‘i - k) = nl:[1 (—; - (2k + 1)) = (;L)n n]:[l(zk +1).

k=0 k=0 k=0

La méthode pour écrire sous forme compacte un produit d’entiers impairs est standard : on multiplie
et divise par le produit de tous les entiers pairs, afin de faire apparaitre le produit de tous les entiers
jusqu’a un certain rang (et donc une factorielle), et on factorise chaque entier pair par 2. On obtient

alors :
n—1 n—1 H (2]{/‘)
vneN\{0}, JJ@k+1)= H@kﬂ)k? _ (22)! _ (22:),!~
k=0 k=0 IT (2k) on I] k n:



Ainsi :

vneN\{0h, ] on gnpl T 2%ng
k=0

n-1 (_1 _k) _ Dt en)  (c1ren)!

Comme, de plus, pour tout « €] —1,1[ et tout n € N\ {0} ona: (—2?)" = (—1)"2?", on en déduit :

= _|_+f:o (2n)! 2":§ﬂx2n.

1 220 (nl)2 2 92n(nl)?

[N

Pour tout z €] — 1,1[, (1 — 2?)~

NDSG : pitié, utilisez des petits points!

Passons a ’arc sinus. On a :

T +°0
2
Arcsin(z / m / 22n st mdt.

Or la série entiére Z 22n))2x2” est de rayon de convergence 1, donc on peut 'intégrer terme a
n=0
terme sur tout segment inclus dans | — 1,1[. On en déduit :

+oo —+oo
@) o, (2n)!  x2nHl
Arcsin(z E / 22 ()2 ot dt = nEZO W ST o

En conclusion :

= (2n)! g+l

2n Arcsi _ _\ery)e .
\/1 — a2 Z 22n n' . Arcsin(a) ; 220 (n!)2 20, + 1

Pour tout = €] — 1,1],

NDSG : on aura noté qu’il n’est pas question de je ne sais quelle primitive formelle / dx mais

x
bien d’une intégrale / .. dt
0

. Soit t € [O, 5 [ En posant « = sin(¢) € [0, 1] dans le développement en série entiére de 1’arc sinus,

on obtient : n n+1
o X (@2n)! (sin(t)*""
Arcsin(sin(t)) = Z 22“(73!)2 ( 2;1) 1

n=0

et Arcsin(sin(t)) =t car t € [0, Z[ C [~%, %], d'ou le résultat désiré (quitte & renommer ¢ en z).
+o00

. Il s’agit de justifier 'interversion des symboles Z et / Nous allons utiliser le théoréme d’inté-

n=0
gration terme a terme positif. Posons :

(2n)! (sin(z))*" "
22n(ph)2 2n+1

Vn eN, Vx € [O,g[, gn(z) =

L’application g, se prolonge en une fonction continue sur le segment [O, g} , donc elle y est intégrable
et elle est intégrable sur [O, 3 [ De plus elle est positive sur cet intervalle et sa somme est continue
(c’est la fonction x — = d’aprés la question précédente), donc par le théoréme d’intégration terme

a terme positif on a :
+oo
[[So-3 ("

ce qui donne immédiatement le résultat voulu.

NDSG : on pouvail ausi utiliser la convergence normale de ), gy,... pour peu qu’on estime effec-
tivement ||gn| ., : toute affirmation de convergence normale qui n’est pas précédée par une telle
évaluation va forcément directement o la poubelle !



Q 6.

Q.

[ME)

221 (n!)?

m. Donc par la question

D’apreés la question 2 on a : / (sin(z))*" ™ dz = Wapyy =
0
précédente et la question 4 :

™ +00

3 o)l 1 22 X1 2n)! R |
/mdx=§: (2n) 27§ SECOINNE :
0 =22’ 2n+1 (2n+ 1)l “=2n+1 (2n+1)! = (2n+1)?

2

z 277% 2
Or on a facilement : / zdr = r = —-Donc: — = Z
0 2 1, 8 = 0 2n—|— 1)2

On conclut avec la question 1, et on a :

Partie 11
Soit €] — 1,1[. On a : |2?| < 1, donc :
1 1 = =
_ _ 2yn _ 2
22 1 1—x2 __Z(‘r )n__zmn'
n=0 n=0
On a donc : Ina%) _ Ji:w(—x% In(z)) pour tout = € [0, 1], puis :
. 332 _ 1 - —~ P ) y P .
1 1 +oo
ln 2n *) 2n
/O $2_1 / In( Z/ In(z))dz,

n=0
pour peu qu’on justifie I'interversion (*)

— Chaque fonction f, : 2 — —z?"In(x) (n € N) est continue par morceaux sur ]0, 1[.

In(z)

— La série de fonctions E fn converge simplement et sa somme qui vaut x 5
z
n=0

, est bien

continue sur |0, 1.

— 1l reste a justifier I'intégrabilité sur ]0,1[ de f,, pour tout n € N (comme f,, > 0 pour tout
n € N, cela équivaut a la convergence de son intégrale sur ]0,1[) puis la convergence de

> / | fr|; nous allons faire mieux en calculant 'intégrale sur 0, 1[ de f,, en méme temps, via
0

une intégration par parties, ott 'on dérive x — —In(x) et intégre = — x?". Puisque

dx

I2n+1 I2n+1
lim — In(z) = lim — In(x) =0,
z—=0 2n+1 z—1 2n+1
1 1 an
la formule de I'intégration par parties assure que les intégrales / —zn In(x)dx et / R
0 0 n

sont de méme nature (donc convergentes, puisque la seconde est l'intégrale d’une fonction
continue sur un segment), et on a :

L g2t ! 1 L 1
—2?" In(z)dz = |- 1 L T —
/0 ¢ Infz)de [ om+ 1 n(x)]0+2n+1/0 v 2n+1)2°

ce qui montre & la fois I'intégrabilité de f, pour tout n € N sur |0, 1[, et que son intégrale

1
soale —
égale Gt 1)
NDSG : on pouvait aussi réaliser U'IPP sur [e,1 — €] et constater que tout converge quand €
tend vers 0.

- On en déduit pour le méme prix la convergence de > / | fnl-
0



En conclusion, on a montré :

! In(z) B Xt " B = 1
/0 . 1dac = Z/o (—z*In(z))dz = Z (Sl

n=0 n=0

Q 8. Nous allons utiliser le théoréme de continuité des intégrales a paramétres. Posons :

Vw0 € Ry, glat) = S,
Alors :
— pour tout ¢ € Ry, Papplication x — g(x,t) est continue sur R ;
— pour tout & € Ry, Papplication ¢ — g(x,t) est continue par morceaux sur R ;

— pour tout (t,x) € (R1)? ona:

HYPOTHESE DE DOMINATION

1
lg(z,t)] < T

et application ¢ : t — 5 est intégrable sur [0, 4+00[ puisqu’elle est continue sur cet

141
intervalle, et que |p| = ¢ admet comme primitive arc tangente, qui admet une limite finie

(égale a %) en +oo.
1
NDSG : ou encore : p(t) ~ 2 donc @ est intégrable au voisinage de +00.

Par le théoréme de continuité sous le signe intégrale, d’une part t — g(z,t) est intégrable sur R
pour tout x € Ry, et d’autre part :

’ f est définie et continue sur R,. ‘

Q 9. On reprend les notations de la question précédente. Nous allons utiliser le théoréme de dérivation
des intégrales & paramétres :

— pour tout t € R, Papplication x — g(x,t) est de classe C! sur ]0,1] et on a :

dg t 1
V(t,z) € Ry x]0,1], =(x,t) = Tr(@Pis e

— pour tout x €]0, 1], application t — g(z,t) est intégrable sur R, d’aprés la question précé-
dente;
N Jg .
— pour tout z €]0, 1], application t — a—(x, t) est continue par morceaux sur R, ;
xz

— pour tout segment [a, b] inclus dans |0, 1] et tout (¢,z) € Ry X [a,b], on a :

dg
— <
9 (z, t)‘ <

t
(14 (at)?)(1 +¢2)

t
(1+ (at)?)(1+t2)
continue sur cet intervalle, et on a : o(t) e 2
+00.

Par le théoréme de dérivation sous le signe intégrale, vérifié sur tout segment de ]0, 1], d’une part

HYPOTHESE DE DOMINATION

Justifions que l'application ¢ : t —

est intégrable sur [0, +oo] : elle est

donc ¢ est intégrable au voisinage de

0
t— a—g(:v, t) est intégrable sur R pour tout z €]0, 1], et d’autre part :
x

“+oo
t 1
f est de classe C! sur ]0,1] avec pour tout = €]0,1] : f'(z) = / 1T (202
0

@it




Q 10. Soit (¢,z) € R4 x]0,1[. On a :

t
1+ 2)(1 + t222)

t 2t t(1 4+ t222) — 2%(1 + t2) (122
- — — —x
148 1+4+t222 (14 t2)(1 4 t222?)

et on en déduit, par la question précédente :
1 /+°° t 2t gt — 1 In(1 + #2) — In(1 + t222)] "
1—22 1+82  1+4+t222)  1-—22 2 0

1 Fln<1+t2>rw In(%)  In(a)

T 1—x2 |2 1+ t222 -

vV €]0,1], f'(x)

0 21 —a2)  1—a2’

d’ott le résultat, quitte a multiplier par —1 le dénominateur.

Q 11. On a immédiatement :

oo +°0 Arctan(t) Arctan(t)? too 2
f(O)—/O Odt—Oetf(l)—/O o dt—{ . ]O ==

Or en intégrant la relation de la question précédente, on a I'existence de ¢ € R tel que :

vz €]0,1], f(z)=c+ /Ox In(t) dt.

2 -1
Lo . U n()
Calculons la limite de chaque membre en 0. Comme l'intégrale / 5 1d5L‘ converge par la
o T —
. . * In(t) . .
question 7, on a : hr% 2 dt = 0. De plus f est continue en 0 par la question 8, donc :
z—0 J —

lir% f(z) = f(0) = 0. Ainsi I’égalité ci-dessus donne, quand = — 0 :
r—r
0=c.

Cette méme égalité donne, quand x — 1, toujours par continuité de f :

Ry
0

2 -1

On en déduit, par la question 7 :

n=0
On conclut avec la question 1, et on a :

+

P IETLE
— R

n=1 n 6

2 Une intégrale classique

Partie I : Calcul d’une intégrale a ’aide d’une série

a—1

14z

Q 12. — La fonction ¢ : z — est continue sur |0, +o00].

qui est intégrable au voisinage de 0 car 1 — « < 1, donc la fonction

— En0,ona(t) ~

z—0 pl—o

© est intégrable sur |0, 1].

— En 400, on a ¢(z) qui est intégrable au voisinage de 400 car 2 —a > 1, donc la

w—;:-oo r2-o
fonction ¢ est intégrable sur [1, +o00].



—Q

1
dx ; le changement de variable x = — (bijection C! strictement décrois-
U

1
x
Q 13. Onal(lfa)—/o T

sante de ]0, 1] sur [1,4o00[) fournit alors

1 « +o0o , a—1
u du Uu
I(l—a)= | L (&%) _
(1-a) /+ool+i< u2) /1 u+1du J(@)

Q 14. Pour z fixé dans |0, 1], f.(x) est le terme général d’une série géométrique et |f,(z)| < 1, la série

+oo +oo xoc—l
_ a—1 n __ .
est donc convergente, avec Z fo(z) == Z =1
n=0 n=0
Supposons que la série converge uniformément sur ]0, 1[. Puisque pour tout n € Non a f,,(z) — (=1)",
r—1—
00 v
le théoréme de la double limite entrainerait que Z(—l)” converge... ce qui n’est pas le cas.
n=0

’ La série ne converge pas uniformément sur |0, 1[. ‘

n a—1
Q 15. Comme S, (z) = 2! Z(*I)k = f+ x(l — (—z)"*).
k=0
a—1
On note ¢, : T (1= (=2)").

1+

e Vn € N, z — ¢, (z) est continue sur [0, 1].

o Vz €0, 1], ¢n(x) = @w(x) =0 et ¢ est continue par morceaux sur |0, 1[.
n——+0o0

a—1 a—1

e Vn € N, Va €]0,1], |on(z)| < f—!—x x 2 et la fonction z > 2 Tz

est intégrable sur ]0, 1]

d’aprés la question 19.

Donc d’aprés le théoréme de convergence dominée,

1 1
nll)rfw ; Sp(x) d:vz/0 nll)rilooSn(x) dz = I(«a)

n

1 1 n k
. -1
Comme / Sp(x)de = g (—1)"/ xRy = E (=1) , on peut faire tendre n vers +00 :
0

k=0 0 e
+oo k
-1
—at
+o00 xa—l
Q 16. Avec la relation de Chasles, on a immédiatement I(a) 4+ J(«) = / T dz. Par ailleurs :
0 €T
+o00 (_1)k +00 (—l)k
I J =1 I(1—a)=
)=o) 10 -0y =5 L SE U
k=0 k=0
+oo k +o0 —1 +o0
1 (—1) (—1)? 1 1 1
== ) —1)» _
a+za+k+z—a—|—p aJrZ( ) a+n —a+n
k=1 p=1 n=1
Soit finalement :
—+oo
1 (=)™
I =—+2 .
() +J(0) = —+ a;azinz




Q 17. En posant x = 0 dans I’expression que ’on admet, on obtient :

1_Sin(7ra l—l—io(—l)” 2a
oo o a? —n?

On en déduit donc avec le résultat de la question précédente que

/+oo o1 T
dr = —
0o 14z sin(o)

Partie II - Lien avec la fonction Gamma

Q 18. Soit > 0, on note v, : t > t* " let,

— 1), est continue sur |0, +o0].

~ —— avec 1 —x < 1 donc v, est intégrable au voisinage de 0.
t—0 tl1-=
1
42 _ 1 o .
t* 1), (t) t_>—>+oo 0, donc ¥, (t) 300 © (t2> et donc v, est intégrable au voisinage de +oo.

Finalement, v, est intégrable sur |0, +o00[, et ainsi :

‘1" est bien définie sur ]0, +oo]. ‘

Q 19. e Pour x = 0, on retrouve f,(0) = d’aprés la question 14.

sin(a)
e Soit z >0 :
ta—l
— pite o e~ est continue sur ]0, +o0].
— u(t) o e et on donc p est intégrable au voisinage de 0.
t—>

1
2 _ 1 . -
4 u(t) v 0, donc p(t) e © (tQ) et donc p est intégrable au voisinage de +o0.

w est finalement intégrable sur |0, +oo[, donc f,(x) existe.
Ainsi :

‘ fa est bien définie sur [0, +-o0]. ‘

Démontrons maintenant que f, est continue sur [0, +o0].
a—1

On note A la fonction définie sur [0, +00[x]0, +oo[ par A : (z,t) — T et

e Pour tout ¢ €]0, +o0[, x — A(z,t) est continue sur [0, +o0[.

e Pour tout = € [0, +00], t — A(x,t) est continue par morceaux (car continue) sur |0, +o00].
a—1 a—1

t
e Pour tout (x,t) € [0, +00[%]0, 4+o00[, |A(z,?)| < 1 et t — ——

est intégrable sur |0, +o0|

d’aprés la question 9.

Donc, par théoréme de continuité des intégrales & paramétres :

‘La fonction f, est continue sur [0, +oo]. ‘

NDSG : le théoréme de continuité utilisé inclut la définition de f, dans ses conclusion.

Q 20. Soient a et b réels tels que 0 < a < b. On conserve la notation de A de la question précédente que
Pon définit cette fois sur [a, b] x]0, +00]



Q 21.

Q 22.

Vr € [a,b], t — A(z,t) est intégrable sur ]0,+oco[ d’aprés la question 16 (comme elle est
positive, le fait que l'intégrale soit définie équivaut au fait que la fonction soit intégrable).

vt €]0, +oc[, 2 — A(z,t) est de classe C! sur [a, b)].
of t*

o Vx € [a,b], t — %(a:,t) =11 te_zt est continue sur |0, +o0].
e V(z,t) € [a,b]x]0,+00] g(x t)| < i e ot t ° e est continue sur [0, 400 et
’ ’ ' oz T Lt 14t '

1
cestun o (), donc elle est intégrable sur [0, 4+o00].
t—+oo \ 12

On peut donc conclure par théoréme de dérivation que f, est de classe C* sur [a,b]. Ceci étant
pour tout a et b de |0, +o00[, on en conclut :

“+oo ta
e %t dt

fa est de classe C! sur 0, o0, et pour tout z > 0, f.(z) = / 1%
0

NDSG : Le théoréme au programme permet de conclure au caractére Ct sur |0, +o0o| sans passer
par le caractére C* sur chaque [a, b].

On applique cette fois-ci le théoréme de convergence dominée généralisé (avec un parameétre réel,

pas forcément entier).
a—1

t+1
o Vx>0, t+— A\;(t) est continue sur ]0, +o0].

Soit > 0, on note A, : ¢ +—>

e *! définie sur ]0, +o0].

o YVt €]0, +00[, Ay (t) - A(t) = 0 et t — 0 est continue par morceaux sur |0, +0o0].
Tr—+00

a—1 a—1

et t—

e V(z,t) € (]O, +OOD27 1Az ()] < t+1 t+1

précédente).

est intégrable sur ]0, +oo[ (vu a la question

Donc par théoréme de convergence dominée généralisé :

T—+00 T—+00

+o0o
lim f,(z) :/0 lim A, (t)dt=0

—t

e 1
La fonction ) : t pr est continue sur |0, +o00[, 1(t) o e et a < 1 donc 1) est intégrable au
—

voisinage de 0, et t4)(t) o 0, donc ()
—+00

—+o00.
Ainsi :

1
= o0 ) et donc 9 est intégrable au voisinage de
t—+00 12

—t
e
t— b est intégrable sur ]0, +oo.

+oo e—t T e—t +o00 e_t
Onapourtoutx>0,/ —dt:/ —dt—i—/ — dt.
0 t 0o 1* «

L’intégrale étant convergente, on en déduit que

+oo e*t

lim —dt=0
t(]’

Tr—r+00 x




Partie III - Vers la formule des compléments

Q 23.

Q 24.

Q 25.

Q 26.

Avec les calculs précédents et la linéarité de I'intégrale on a :

oo ya—1 « +oo
/ t +t —uxt / a—1_—at
alx) — = —e dt = t rhdt.

Le changement de variable linéaire © = xt fournit alors :

+oo , a—1 1 r
o) = fofe) = [ e du @)

xa

NDSG : pour un changement de variable affine dans une intégrale impropre, inutile dans faire des
caisses, mais signaler le mot « affine » (ou « linéaire » ici) et éventuellement préciser « dans
l'intégrale convergente... »

+oo -t
e
Calcul préliminaire : on note g : x +— / o dt. On a g qui est définie d’aprés la question 19 et
T
efw
de classe C! d’aprés le théoréme fondamental de I'analyse et ¢'(z) = — - go €st donc de classe

J:Ot
C! comme produit de fonctions de classe C! et on a

+oo —t —x
e e IN'a
s =gt [ S ar vt (<55 ) = gale) - T
z t T T
Ainsi :
. SR P ,_ T(a)
go est une solution particuliére de I'équation différentielle y —y' = ——=-
T
. BT URPY N ()
Considérons I'équation différentielle : y —y' = —— pour z > 0
x
— L’équation sans second membre associée est ' —y = 0 dont les solutions sont les x — ke® ou

k décrit R.

— Comme g, est une solution particuliére de I’équation les solutions de ’équation compléte sont
les x — ke® 4 go(z) ou k décrit R.

fa étant solution de cette équation, on en déduit qu’il existe un réel k£ tel que pour tout = > 0,
fa(z) = ke® 4+ go(x). Il reste & déterminer la valeur de k.
+oo —t
e
On a de P’équation précédente 1'égalité e~ * f (r) = k+ () o dt. En utilisant les résultats
des questions 18 et 19, on obtient en faisant tendre x vers —|—omo que k = 0.

Pour tout = > 0, fo(r) = gu(z) ‘

En posant x = 0 dans ’égalité précédente, on aurait [’égalité souhaitée, mais l’égalité ne vaut que
pour x > 0.
On sait d’aprés la question 16 que f, est continue sur [0, 4+o00[ donc en particulier en O :

+oo | —t
fa(0) = lim fo(z) = lim ga(z) =T(a) /0 e;Ta dt
+oo tafl

—— dt, on obtient 1’égalité demandée.

D’autre part, comme f,(0) :/
“ o t+1

m

On sait d’aprés la question 14 que f,(0) = ﬁ Avec I’égalité de la question précédente, on a
sin(amr

donc :

s

+oo
~ T(a) /O et dt = T(a)T(1 - a)

sin(am)
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Q 27. On pose u = t? dans I'intégrale (bijection C! de |0, +oo[ sur lui-méme), et on obtient

+0o0 . +oo
/ e dt = / e*“—du = 1F (1>
0 0 2vu 2 \2

1 1

Par ailleurs, avec la question précédente et o = %, onal <> x T () = T

= T.

2 2 sin(37)

1 1
On en déduit que I’ <2) = /7 (car T (2> > 0 comme intégrale d’une fonction positive), et donc :

2

/+oo ot dr = VT
0

FIN
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