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Généralisation d’une intégrale de Dirichlet et application

Partie I : Calcul d’une intégrale

Dans tout ce qui suit, x est un élément de ]0, 1[ fixé et

f :











]0,+∞[ −→ C

t 7−→
tx−1

1 + teiθ

1 ⊲ Soit θ ∈ ]−π, π[, on a eiθ 6= −1 et 1+ teiθ 6= 0 pour tout t ∈ ]0,+∞[ , donc f est bien définie et continue

sur ]0,+∞[ .

• En 0 :

On a |f(t)| ∼
t→0

1

t1−x
, comme 1 − x < 1 alors la fonction t 7→

1

t1−x
est intégrable au voisinage de 0 par suite

f est intégrable au voisinage de 0 .

• En +∞ :

On a |f(t)| ∼
t→+∞

1

t2−x
, puisque 2 −x > 1 donc la fonction t 7→

1

t2−x
est intégrable au voisinage de +∞ par

suite f est intégrable au voisinage de +∞ .

Ainsi f est intégrable sur ]0,+∞[ .

Soit r la fonction définie par

r :











]−π, π[ −→ C

θ 7−→

∫ +∞

0

tx−1

1 + teiθ
dt

2 ⊲ Considérons la fonction u :











]−π, π[ × ]0,+∞[ −→ C

(θ, t) 7−→
tx−1

1 + teiθ
dt

• Soit β ∈ ]0, π[, θ ∈ [−β, β] et t ∈ [0,+∞[ on a

∣

∣

∣1 + teiθ
∣

∣

∣

2
=

(

1 + teiθ
) (

1 + te−iθ
)

= 1 + 2t cos(θ) + t2

= (t+ cos(θ))2 + (sin(θ))2

la fonction cos est pair et décroissante sur [0, β] , donc cos(θ) ≥ cos(β) pour tout θ ∈ [−β, β] , par suite

∣

∣

∣1 + teiθ
∣

∣

∣

2
≥ 1 + 2t cos(β) + t2 =

∣

∣

∣1 + teiβ
∣

∣

∣

2

ainsi
∣

∣

∣1 + teiθ
∣

∣

∣

2
≥
∣

∣

∣1 + teiβ
∣

∣

∣

2
= (t+ cos(β))2 + (sin(β))2 (1) .

• La fonction u est de classe C1 sur ]−π, π[ × [0,+∞[ et
∂u

∂θ
(θ, t) =

−ieiθtx

(1 + teiθ)
2

1https://tinyurl.com/2qyzzrbd
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Soit β ∈ ]0, π[, en utilisant l’inégalité (1) on trouve, pour tout θ ∈ [−β, β] et t ∈ [0,+∞[

∣

∣

∣

∣

∂u

∂θ
(θ, t)

∣

∣

∣

∣

≤
tx

|1 + teiβ|
2

la fonction ϕ : t 7→
tx

|1 + teiβ|
2 =

tx

(t+ cos(β))2 + (sin(β))2
est définie continue sur [0,+∞[ et ϕ(t) ∼

t→+∞

1

t2−x

avec 2 − x > 1, donc ϕ est intégrable sur [0,+∞[ .

On obtient ainsi une relation de domination de
∂u

∂θ
, le théorème de dérivation des intégrale dépendant d’un

paramètre sur un intervalle quelconque assure que r est de classe C1 sur [−β, β] pour tout β ∈ ]0, π[ , par

suite r est de classe C1 sur ]−π, π[ et

∀θ ∈ ]−π, π[ , r′(θ) =

∫ +∞

0

∂u

∂θ
(θ, t)dt = −ieiθ.

∫ +∞

0

tx

(1 + teiθ)
2 dt

Soit g la fonction définie par

g :











]−π, π[ −→ C

θ 7−→ eixθ.

∫ +∞

0

tx−1

1 + teiθ
dt

3 ⊲

• On a ∀θ ∈ ]−π, π[ , g(θ) = eixθr(θ) , donc g est de classe C1 sur ]−π, π[ et pour tout θ ∈ ]−π, π[

g′(θ) = eixθr′(θ) + ixeixθr(θ)

= ieixθ
∫ +∞

0

(

−eiθtx

(1 + teiθ)
2 +

xtx−1

1 + teiθ

)

dt

= ieixθ
∫ +∞

0

(

tx

1 + teiθ

)′

dt

ainsi g′(θ) = ieixθ

∫ +∞

0
h′(t)dt avec h : t 7−→

tx

1 + teiθ
.

• On a h(0) = 0 et h(t) ∼
t→+∞

eiθ

t1−x
, comme 1 − x > 0 donc lim

t→+∞
h(t) = 0 .

• L’expression de g′ s’écrit

g′(θ) = ieixθ lim
A→+∞

∫ A

0
h′(t)dt = ieixθ

(

lim
A→+∞

h(A) − h(0)

)

d’où g′(θ) = 0 pour tout θ ∈ ]−π, π[ , on en déduit que g est constante sur ]−π, π[.

4 ⊲ D’après la question (3) g est constante sur ]−π, π[ donc pour tout θ ∈ ]−π, π[ on a

g(θ) = g(−θ) = g(0) ∈ R .

On sait que g(θ) =

∫ +∞

0

(

eixθtx−1

1 + teiθ

)

dt ce qui donne g(θ) =

∫ +∞

0

e−ixθtx−1

1 + te−iθ
dt = g(−θ) , par suite on a

Im
(

g(θ)e−ixθ
)

= g(θ) Im
(

e−ixθ
)

= − sin(xθ)g(θ)
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écrivons

Im
(

g(θ)e−ixθ
)

=
1

2i

(

g(θ)e−ixθ − g(−θ)eixθ
)

=
1

2i

∫ +∞

0

(

tx−1

1 + teiθ
−

tx−1

1 + te−iθ

)

dt

=
1

2i

∫ +∞

0

tx(e−iθ − eiθ)

(1 + teiθ)(1 + te−iθ)
dt

= − sin(θ)

∫ +∞

0

tx

t2 + 2t cos(θ) + 1
dt

Ainsi pour tout θ ∈ ]0, π[

g(θ) sin(xθ) =
1

2i

(

g(−θ)eixθ − g(θ)e−ixθ
)

= sin(θ)

∫ +∞

0

tx

t2 + 2t cos(θ) + 1
dt

5 ⊲ Soit θ ∈ ]0, π[ , on a

g(θ) sin(xθ) = sin(θ)

∫ +∞

0

tx

(t+ cos(θ))2 + (sin(θ))2
dt =

1

sin(θ)

∫ +∞

0

tx
(

t+cos(θ)
sin(θ)

)2
+ 1

dt

posons u = t+cos(θ)
sin(θ) alors t = u sin(θ) − cos(θ) et dt = sin(θ) du ce qui donne

g(θ) sin(θx) =

∫ +∞

cotan(θ)

(u sin(θ) − cos(θ))x

1 + u2
du

6 ⊲ En s’inspirant de la question précédente, on écrit

g(θ) sin(θx) =

∫ +∞

−∞
ψ(θ, u) du

avec ψ la fonction définie de ]0, π[ × R vers C par :

ψ(θ, u) =











(u sin(θ) − cos(θ))x

1 + u2
si u ∈ [cotan(θ) ,+∞[

0 si u ∈ ]−∞ , cotan(θ)[

on applique en suite le théorème de la convergence dominée à l’intégrale de cette fonction :

• Convergence :

Soit u ∈ R, on a cotan(θ) →
θ→π−

−∞, il existence donc un α ∈ ]0, π[ tel que ∀ θ ∈ ]α, π[, cotan(θ) ≤ u, ce qui

donne

ψ(θ, u) =
(u sin(θ) − cos(θ))x

1 + u2
, ∀θ ∈ ]α, π[

on en déduit ψ(θ, u) →
θ→π−

1

1 + u2
.

• Domination :

Pour tout u ∈ [cotan(θ) ,+∞[ , on a

0 ≤ u sin(θ) − cos(θ) = |u sin(θ) − cos(θ)| ≤ 1 + |u|

donc (u sin(θ) − cos(θ))x ≤ (1 + |u|)x , par suite

|ψ(θ, u)| ≤
(1 + |u|)x

1 + u2
, ∀θ ∈ ]0, π[

3



De plus
(1 + |u|)x

1 + u2
∼

u→+∞

1

u2−x
et 2 − x > 1 donc la fonction u 7→

(1 + |u|)x

1 + u2
est intégrable au voisinage de

+∞ , par parité elle est intégrable sur R .

On obtient ainsi une relation de domination de la fonction ψ sur ]0, π[ × R par une fonction intégrable.

Le théorème de convergence dominée permet d’écrire

lim
θ→π−

∫ +∞

−∞
ψ(θ, u)du =

∫ +∞

−∞
lim

θ→π−

ψ(θ, u)du

c’est-à dire

lim
θ→π−

∫ +∞

cotan(θ)

(u sin(θ) − cos(θ))x

1 + u2
du =

∫ +∞

−∞

du

1 + u2

ainsi

lim
θ→π−

g(θ) sin(xθ) =

∫ +∞

−∞

du

1 + u2
= π

7 ⊲ D’après la question (3) la fonction g est constante sur ]−π, π[ , donc g(0) = lim
θ→π−

g(θ) .

On a g(0) =

∫ +∞

0

tx−1

1 + t
dt et la question précédente donne lim

θ→π−

g(θ) =
π

sin(πx)
d’où

∫ +∞

0

tx−1

1 + t
dt =

π

sin(πx)

Partie II : Une expression (utile) de la fonction sinus

On rappelle que x est un élément de ]0, 1[ fixé.

8 ⊲ On a

∫ +∞

0

tx−1

1 + t
dt =

∫ 1

0

tx−1

1 + t
dt+

∫ +∞

1

tx−1

1 + t
dt

dans la deuxième intégrale on pose u =
1

t
, ce qui donne

∫ +∞

1

tx−1

1 + t
dt =

∫ 1

0

u−x

1 + u
du , d’où la relation

∫ +∞

0

tx−1

1 + t
dt =

∫ 1

0

(

tx−1

1 + t
+

t−x

1 + t

)

dt

9 ⊲ Pour tout t ∈ ]0, 1[ et N ∈ N , on a
N
∑

n=0

(−t)n =
1 − (−t)N+1

1 + t
, donc

∫ 1

0

tx−1

1 + t
dt =

∫ 1

0

(

N
∑

n=0

(−1)ntn+x−1

)

dt+ (−1)N+1
∫ 1

0

tN+x

1 + t
dt

=
N
∑

n=0

(−1)n

n+ x
+ (−1)N+1

∫ 1

0

tN+x

1 + t
dt

la dernière intégrale se majore par

∣

∣

∣

∣

∣

∫ 1

0

tN+x

1 + t
dt

∣

∣

∣

∣

∣

≤
1

2

∫ 1

0
tN+xdt =

1

2(N + x+ 1)
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donc elle tend vers 0 quand N tend vers l’infini , par passage à la limite on obtient

∫ 1

0

tx−1

1 + t
dt =

+∞
∑

n=0

(−1)n

n+ x

10 ⊲ On utilise la relation de la question (8)

∫ +∞

0

tx−1

1 + t
dt =

∫ 1

0

(

tx−1

1 + t
+

t−x

1 + t

)

dt et on montre de la

même façon que

∫ 1

0

t−x

1 + t
dt =

+∞
∑

n=0

(−1)n

n+ 1 − x
, ainsi on a

∫ +∞

0

tx−1

1 + t
dt =

+∞
∑

n=0

(−1)n

n+ x
+

+∞
∑

n=0

(−1)n

n+ 1 − x

11 ⊲ D’après la question (7) on a

∫ +∞

0

tx−1

1 + t
dt =

π

sin(πx)
donc

π

sin(πx)
=

+∞
∑

n=0

(−1)n

n+ x
+

+∞
∑

n=0

(−1)n

n+ 1 − x

=
+∞
∑

n=0

(−1)n

n+ x
+

+∞
∑

n=1

(−1)n−1

n− x

=
1

x
+

+∞
∑

n=1

(−1)n
(

1

n+ x
−

1

n− x

)

d’où la relation
π

sin(πx)
=

1

x
−

+∞
∑

n=1

2(−1)nx

n2 − x2

12 ⊲ Soit y ∈ ]0;π[ , on écrit la relation précédente avec x =
y

π
:

π

sin(y)
=
π

y
−

+∞
∑

n=1

2(−1)nπy

n2π2 − y2

on en déduit
+∞
∑

n=1

2(−1)ny sin(y)

y2 − n2π2
= 1 −

sin(y)

y
.

Partie III : Calcul d’une intégrale de Dirichlet généralisée

13 ⊲ Soit f : t 7→
1 − (cos(t))2p+1

t2
• En 0 on a :

f(t) =
1 − (1 − t2

2 + o(t2))2p+1

t2

=
1 − (1 − (2p+ 1) t2

2 + o(t2))

t2

=
2p+ 1

2
+ o(1)

ainsi f(t) →
t→0

2p+ 1

2
, la fonction f est prolongeable par continuité en 0 donc elle est intégrable sur ]0, 1] .
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• En +∞ on a :

|f(t)| ≤
2

t2

donc f est intégrable sur [1,+∞[ .

Par conséquent f est intégrable sur ]0,+∞[ et l’intégrale

∫ +∞

0

1 − (cos(t))2p+1

t2
dt converge .

• Soit [a, b] ⊂ ]0,+∞[ . Une intégration par partie donne :

∫ b

a

1 − (cos(t))2p+1

t2
dt =

[

−
1 − (cos(t))2p+1

t

]b

a

+ (2p+ 1)

∫ b

a

sin(t)(cos(t))2p

t
dt

et on a 1−(cos(t))2p+1

t = tf(t) donc lim
a→0

b→+∞

[

−1−(cos(t))2p+1

t

]b

a
= 0 , par passage à la limite on obtient :

∫ +∞

0

1 − (cos(t))2p+1

t2
dt = (2p+ 1)

∫ +∞

0
(cos(t))2p sin(t)

t
dt

14 ⊲ Soit n ∈ N∗ , on a par changement de variable t = u+ nπ

∫ π
2

+nπ

π
2

+(n−1)π
(cos(t))2p sin(t)

t
dt = (−1)n

∫ π
2

− π
2

(cos(u))2p sin(u)

u− nπ
dt

La relation de Chasles et un changement de variable t = −u donnent

∫ π
2

+nπ

π
2

+(n−1)π
(cos(t))2p sin(t)

t
dt = (−1)n

∫ π
2

0
(cos(u))2p sin(u)

u− nπ
dt+ (−1)n

∫ π
2

0
(cos(t))2p sin(t)

t+ nπ
dt

= (−1)n
∫ π

2

0
(cos(t))2p sin(t)

(

1

t− nπ
+

1

t− nπ

)

dt

ainsi
∫ π

2
+nπ

π
2

+(n−1)π
(cos(t))2p sin(t)

t
dt =

∫ π
2

0
(cos(t))2p 2(−1)nt sin(t)

t2 − n2π2
dt

15 ⊲ Par application de la relation de Chasles on obtient

∫ +∞

π
2

(cos(t))2p sin(t)

t
dt =

+∞
∑

n=1

∫ π
2

+nπ

π
2

+(n−1)π
(cos(t))2p sin(t)

t
dt

=
+∞
∑

n=1

∫ π
2

0
(cos(t))2p 2(−1)nt sin(t)

t2 − n2π2
dt

pour tout t ∈

[

0,
π

2

]

on a n2π2 −
π2

4
≤ n2π2 − t2 donc

∣

∣

∣(cos(t))2p 2(−1)nt sin(t)
t2−n2π2

∣

∣

∣ ≤ 1
π

1
n2−1/4

.

La série
∑ 1

n2−1/4
converge donc la série de fonctions

∑

(cos(t))2p 2(−1)nt sin(t)

t2 − n2π2
converge normalement et

uniformément sur

[

0,
π

2

]

.

On peut donc intervertir les symboles
∑

et
∫

ce qui donne

∫ +∞

π
2

(cos(t))2p sin(t)

t
dt =

∫ π
2

0
(cos(t))2p

(

+∞
∑

n=1

2(−1)nt sin(t)

t2 − n2π2

)

dt

16 ⊲ D’après la question (12) la dernière formule devient :

∫ +∞

π
2

(cos(t))2p sin(t)

t
dt =

∫ π
2

0
(cos(t))2p

(

1 −
sin(t)

t

)

dt

6



ce qui donne

∫ +∞

0
(cos(t))2p sin(t)

t
dt =

∫ π
2

0
(cos(t))2p dt

17 ⊲ Linéarisation de (cos(t))2p :

(cos(t))2p =

(

eit + e−it

2

)2p

=
1

22p

2p
∑

k=0

(

2p

k

)

eikte−i(2p−k)t

=
1

22p

2p
∑

k=0

(

2p

k

)

ei2(k−p)t

=
1

22p





(

2p

p

)

+
p−1
∑

k=0

(

2p

k

)

ei2(k−p)t +
2p
∑

k=p+1

(

2p

k

)

ei2(k−p)t





dans la deuxième somme on fait le changement h = 2p− k , ce qui donne

(cos(t))2p =
1

22p





(

2p

p

)

+
p−1
∑

k=0

(

2p

k

)

ei2(k−p)t +
p−1
∑

h=0

(

2p

h

)

ei2(p−h)t





en regroupant les termes on obtient

(cos(t))2p =
1

22p





(

2p

p

)

+ 2
p−1
∑

k=0

(

2p

k

)

cos(2(p− k)t)





18 ⊲ D’après la question (16) on a

∫ +∞

0
(cos(t))2p sin(t)

t
dt =

∫ π
2

0
(cos(t))2p dt

la formule de la question (17) donne

∫ π
2

0
(cos(t))2p dt =

1

22p





π

2

(

2p

p

)

+ 2
p−1
∑

k=0

(

2p

k

)

∫ π
2

0
cos(2(p− k)t)dt





or pour tout n ∈ N∗ on a

∫ π
2

0
cos(2nt)dt = 0 , donc

∫ +∞

0
(cos(t))2p sin(t)

t
dt =

π

2

1

22p

(

2p

p

)

=
π(2p)!

22p+1.(p!)2

De la question (13) on a

∫ +∞

0

1 − (cos(t))2p+1

t2
dt = (2p+ 1)

∫ +∞

0
(cos(t))2p sin(t)

t
dt , on en déduit alors

∫ +∞

0

1 − (cos(t))2p+1

t2
dt =

π(2p+ 1)!

22p+1.(p!)2

7



Partie IV : Calcul de E (|Sn|)

Toutes les variables aléatoires sont définies sur un même espace probabilisé .

Soient (Xk)k∈N∗ des variables aléatoires indépendantes, sur (Ω,A,P) , de même loi donnée par :

P (X1 = −1) = P (X1 = 1) =
1

2

Donc pour tout k ∈ N∗, Xk (Ω) = {−1, 1} et P (Xk = −1) = P (Xk = 1) = 1
2

Pour tout n ∈ N∗, on note Sn =
n
∑

k=1

Xk , donc Sn(Ω) = J−n, nK .

19 ⊲ Soit n ∈ N∗.

• Pour tout k ∈ N∗ on a

E (Xk) =
∑

x∈Xk(Ω)

xP (Xk = x) = −P (X1 = −1) + P (X1 = 1) = 0

ce qui donne E (Sn) =
n
∑

k=1

E (Xk) = 0 .

• Pour tout k ∈ N∗ on a V (Xk) = E
(

X2
k

)

− (E (Xk))2 = E
(

X2
k

)

et

E

(

X2
k

)

=
∑

x∈Xk(Ω)

x2
P (Xk = x) = P (X1 = −1) + P (X1 = 1) = 1

donc et V (Xk) = 1 .

Les variables aléatoires (Xk)k∈N∗ sont indépendantes donc V (Sn) =
n
∑

k=1

V (Xk) = n .

Soient S et T deux variables aléatoires réelles indépendantes telles que S(Ω) et T (Ω) sont égaux et finis,

donc S et T admettent des espérances .

T et −T suivent la même loi, ce qui revient à dire que si t ∈ T (Ω) alors −t ∈ T (Ω) et P (T = t) = P (T = −t).

20 ⊲ On a

E(cos(S + T )) = E(cos(S) cos(T )) − E(sin(S) sin(T ))

comme S et T sont indépendantes alors cos(S) et cos(T ) sont indépendantes, de même que sin(S) et sin(T )

sont indépendantes, donc

E(cos(S + T )) = E(cos(S)) E(cos(T )) − E(sin(S)) E(sin(T ))

par le théorème de transfert on a

E(sin(T )) =
∑

t∈T (Ω)

sin(t)P (T = t)

changeons la variable t par −t en tenant compte que P (T = t) = P (T = −t) ,

E(sin(T )) =
∑

t∈T (Ω)

sin(−t)P (T = −t) = −
∑

t∈T (Ω)

sin(t)P (T = t) = −E(sin(T ))

donc E(sin(T )) = 0 et E(cos(S + T )) = E(cos(S)) E(cos(T )) .
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21 ⊲ Soit t ∈ R . Montrons par récurrence sur n ∈ N∗ que E (cos (tSn)) = (cos(t))n .

• Initialisation :

Soit t ∈ R , on a S1 = X1 , le théorème de transfert donne

E (cos (tX1)) =
∑

x∈X1(Ω)

cos (tx) P (X1 = x) = cos (−t) P (X1 = −1) + cos (t) P (X1 = 1) = cos(t)

ainsi E (cos (tS1)) = cos(t) . Le résultat est donc vrai pour n = 1.

• Hérédité :

Supposons le résultat vrai pour n ≥ 1 .

On a Sn+1 = Sn +Xn+1 , d’après le théorème des coalitions les variables Sn et Xn+1 sont indépendantes, de

plusXn+1 et −Xn+1 suivent la même loi, la question (20) donne alors E (cos (tSn+1)) = E (cos (tSn)) E (cos (tXn+1)).

Les variables X1 et Xn+1 suivent la même loi donc E (cos (tXn+1)) = E (cos (tX1)) = cos(t) , par hypothèse

de récurrence on a E (cos (tSn)) = (cos(t))n , par suite E (cos (tSn+1)) = (cos(t))n+1 , d’où le résultat est vrai

pour n+ 1 .

Ainsi on a pour tout n ∈ N∗ et tout t ∈ R , E (cos (tSn)) = (cos(t))n .

22 ⊲

• Soient a, b ∈ R tels que a 6= 0 et |b| ≤ |a|. On a

|a+ b| = | |a| signe(a) + b | = | |a| + signe(a)b |

comme |a| + signe(a)b ≥ |b| + signe(a)b ≥ 0 alors |a+ b| = |a| + signe(a)b .

• Soit n ∈ N∗ on a |S2n| = |S2n−1 +X2n| et S2n−1 est la somme d’un nombre impair de variables qui

prennent les valeurs 1 ou −1 , donc 0 /∈ S2n−1 (Ω) et |S2n−1| ≥ 1 , ainsi |X2n| = 1 ≤ |S2n−1| .

Le résultat précédent donne |S2n| = |S2n−1 +X2n| = |S2n−1| + signe(S2n−1)X2n , donc

E (|S2n|) = E (|S2n−1|) + E (signe(S2n−1)X2n)

= E (|S2n−1|) + signe(S2n−1)E (X2n)

= E (|S2n−1|) ( car E (X2n) = 0)

Finalement ∀n ∈ N∗, E (|S2n|) = E (|S2n−1|) .

23 ⊲ Soit s ∈ R∗ et A ≥ 0 on a

∫ A

0

1 − cos(st)

t2
dt =

∫ A

0

1 − cos(|s| t)

t2
dt

u=|s|t
= |s|

∫ |s|A

0

1 − cos(u)

u2
du

d’après la partie III l’intégrale

∫ +∞

0

1 − cos(st)

t2
dt converge et vaut

π

2
, par passage à la limite on obtient

∫ +∞

0

1 − cos(st)

t2
dt =

π

2
|s|

Le cas s = 0 est trivial .

24 ⊲ Soit n ∈ N∗.

• Pour tout ω ∈ Ω on a

∫ +∞

0

1 − cos(tSn(ω))

t2
dt =

π

2
|Sn(ω)| qu’on écrit

∫ +∞

0

1 − cos(tSn)

t2
dt =

π

2
|Sn| .

• Montrons que E (|Sn|) =
2

π

∫ +∞

0

1 − E (cos(tSn))

t2
dt .
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Comme Sn(Ω) = J−n, nK , alors on peut écrire

E (|Sn|) =
∑

k∈J−n,nK

|k| P (Sn = k)

=
2

π

∑

k∈J−n,nK

( ∫ +∞

0

1 − cos(tk)

t2
dt

)

P (Sn = k)

=
2

π





∫ +∞

0

∑

k∈J−n,nK

1 − cos(tk)

t2
P (Sn = k)



 dt

=
2

π

∫ +∞

0

E (1) − E (cos(tSn))

t2
dt

ce qui donne alors E (|Sn|) =
2

π

∫ +∞

0

1 − E (cos(tSn))

t2
dt .

• D’après la question (21) on a E (cos (tSn)) = (cos(t))n donc

E (|Sn|) =
2

π

∫ +∞

0

1 − (cos(t))n

t2
dt

25 ⊲ D’après la question (18) on a

∫ +∞

0

1 − (cos(t))2p+1

t2
dt =

π(2p+ 1)!

22p+1.(p!)2
et la question (22) permet de

conclure que :

∀n ∈ N∗, E (|S2n|) = E (|S2n−1|) =
(2n− 1)!

22n−2((n− 1)!)2
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Rapport des écrits - CCMP

1.2 Mathématiques 1 - filières MP et MPI

1.2.1 Généralités et présentation du sujet

Le problème portait sur une intégrale de Dirichlet généralisée :

Z
+∞

0

1 − (cos(t))2p+1

t2
dt

qui était utilisée dans la dernière partie pour calculer l’espérance d’une variable aléatoire.

Le sujet comprenait quatre parties qui ne sont pas indépendantes, mais il y avait beaucoup de
questions fermées, ce qui permettait d’avancer en admettant les résultats non démontrés. Une proportion
significative de candidats qui a traité la dernière partie quasiment in extenso, en ayant plus ou moins
sauté des questions antérieures.

La longueur et la difficulté étaient raisonnables, les points étaient répartis régulièrement dans tout
le sujet. Nous avons obtenu une moyenne brute très convenable, un écart-type satisfaisant et un bon
étalement des notes, qui ont permis de classer correctement les candidats. Quelques candidats ont
obtenu la note maximale et il y a eu une proportion non négligeable de notes supérieures à 15.

Les correcteurs ont observé une dégradation de la présentation des copies par rapport aux années
précédentes. L’interdiction des effaceurs et autres ne justifie pas les torchons.

Une analyse détaillée des questions est présentée dans l’annexe A.

1.2.2 Conclusion

Dans les recommandations aux futurs candidats, on peut commencer par la précision de la rédaction.
Quand le sujet est, comme celui-ci, relativement abordable, il ne faut pas oublier des hypothèses en
appliquant un théorème et il faut être très précis dans leur vérification.

Rappelons qu’appliquer un théorème en mathématiques ne se réduit pas à citer le nom d’un
mathématicien ou d’un théorème, mais à vérifier certaines hypothèses et à en déduire des conclusions.

Ensuite, quand il y a des calculs, comme c’était le cas ici, la copie ne doit pas servir de brouillon. Les
correcteurs sont conscients que l’interdiction des effaceurs et autres dispositifs crée une difficulté, mais
il faut que les candidats comprennent qu’il n’y a pas de bénéfice du doute à leur profit : la consigne
est très claire, si on ne peut pas lire ou s’il faut chercher les résultats au milieu de gribouillages, les
points destinés à la question ne sont pas attribués au candidat.

1.3 Mathématiques 2 - filière MP et MPI

1.3.1 Présentation du sujet

Le sujet de cette épreuve de quatre heures concernait les graphes.

Les définitions de base sur les graphes (sommets, arêtes, matrice d’incidence) étaient rappelées au
début du sujet. Les notions utilisées sont connues par tous les élèves de 1ère année ; elles sont d’un
niveau élémentaire. Les élèves ayant suivi l’option informatique, ou les élèves de MPI, n’étaient pas
avantagés. Ainsi, une comparaison minutieuse des notes obtenues aux questions théoriques concernant
les graphes ne fait apparaître aucune différence entre les deux filières.
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