
Psi 999 – 2025/2026 DS 5 – 4 heures

Samedi 10 janvier 2026 – calculatrices interdites

Ce sujet est constitué de 3 problèmes indépendants. Il est probablement un peu (très !) long, mais ne
vous inquiétez pas : essayez de faire des choses substantielles sur au moins deux des trois problèmes.

1 Problème 1 : E3A 2023 (exercice 4)
Dans tout cet exercice, i désigne le nombre complexe usuel vérifiant i2 = −1.

Questions de cours

1. Pour tout réel θ, donner le module et un argument du nombre complexe eiθ.
2. Pour tout entier naturel n et tout réel t, démontrer que sin(nπ + t) = (−1)n sin(t).
3. Soit (an)n∈N une suite de réels, décroissante et de limite nulle.

3.1 Justifier que la série
∑
n≥0

(−1)nan converge.

3.2 Pour tout entier naturel p, justifier que la série
∑
n≥p

(−1)nan converge.

Sa somme sera notée Tp.
3.3 Justifier que la suite (Tp)p∈N converge et donner sa limite.
3.4 Rappeler le signe de Tp suivant les valeurs de p.

4. Soit f une fonction continue sur R à valeurs dans R. Justifier que la fonction x 7→
∫ √

x

0

f(t)dt est

de classe C1 sur R∗
+ et que sa dérivée est la fonction x 7→ f(

√
x)

2
√
x

·

On admet que le résultat reste valable pour une fonction f continue sur R à valeurs dans C.

*****

5. Soit F la fonction définie sur R et à valeurs dans C par F (x) =

∫ 1

0

eix(1+t2)

1 + t2
dt.

On rappelle que si ϕ est une fonction dérivable sur R à valeurs réelles, alors la dérivée de la fonction
complexe x 7→ eiϕ(x) est la fonction x 7→ iϕ′(x)eiϕ(x).
5.1 Démontrer que F est de classe C1 sur R.

On vérifiera les hypothèses du théorème utilisé.
5.2 Démontrer que pour tout réel x > 0,

F ′(x) =
ieix√
x

∫ √
x

0

eiu
2

du.

6. Convergence d’intégrales

6.1 Montrer que les intégrales
∫ π

0

sin(u)√
u

du et
∫ π

0

cos(u)√
u

du convergent.

6.2 En effectuant une intégration par parties, montrer que
∫ +∞

π

eiu√
u

du converge.

6.3 En déduire que l’intégrale
∫ +∞

0

eiu√
u

du converge.
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6.4 Prouver enfin que l’intégrale
∫ +∞

0

eiv
2

dv converge.

On pourra effectuer un changement de variable.

7. Pour tout entier naturel n, on pose wn =

∫ (n+1)π

nπ

sin(u)√
u

du.

7.1 Montrer que, pour tout entier naturel n, wn existe.
7.2 On pose, pour tout entier naturel n : αn = (−1)nwn.

Prouver que αn est un réel strictement positif.
On pourra effectuer sur wn le changement de variables affine t = u− nπ.

7.3 Prouver que la suite (αn)n est décroissante.

7.4 Prouver que la série
∑
n≥0

wn converge et préciser le signe de sa somme.

On pourra utiliser les questions de cours.

7.5 Démontrer que
+∞∑
n=0

wn =

∫ +∞

0

sin(u)√
u

du.

8. Montrer que, pour tout réel x positif :

F (x) =
π

4
+ i

(∫ √
x

0

eiu
2

du

)2

.

9. On admet que lim
x→+∞

F (x) = 0.

En déduire que
∫ +∞

0

cos(x2)dx =

∫ +∞

0

sin(x2)dx =

√
π

2
√
2
·

On pourra utiliser la question 6.

2 Problème 2 : E3A 2024 (exercice 2)

On note E = C0 ([0, 1],R). On note pour tout (x, t) ∈ R2 : Min(x, t) =
{

x si x ⩽ t
t sinon .

Questions préliminaires

1. Soit α ∈ R. Résoudre dans R, suivant les valeurs de α, l’équation différentielle y′′ + αy = 0.

2. Soient h ∈ E et a ∈ [0, 1]. Justifier que la fonction H : x 7→
∫ x

a

h(t)dt est de classe C1 sur [0, 1],

et déterminer sa dérivée.

*****

3. Cas particuliers

3.1 Tracer la courbe représentative de la fonction t 7→ Min
(
1

3
, t

)
sur l’intervalle [0, 1].

3.2 Calculer
∫ 1

0

Min
(
1

3
, t

)
dt.

3.3 Soit x un réel de [0, 1]. Exprimer
∫ 1

0

Min (x, t) dt en fonction de x.

4. Soit f ∈ E.

4.1 Justifier que F : x 7→
∫ 1

0

Min (x, t) f(t)dt est une fonction de classe C1 sur [0, 1] et, pour

tout x ∈ [0, 1], calculer F ′(x).
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4.2 Calculer F (0) et F ′(1).
4.3 Démontrer alors que F est de classe C2 sur [0, 1] et que F ′′ = −f .

À toute fonction f de E, on associe la fonction T (f) définie par :

∀x ∈ [0, 1], T (f)(x) =

∫ 1

0

Min (x, t) f(t)dt.

5. Montrer que T est un endomorphisme de E.
6. L’application T est-elle injective ?
7. On pose A = {G ∈ C2([0, 1],R) | G(0) = G′(1) = 0}.

7.1 Montrer que Im(T ) ⊂ A.
7.2 Soit G ∈ A. Calculer T (G′′).
7.3 Déterminer Im(T ).

8. Recherche des éléments propres de T

8.1 Démontrer par l’absurde que, si λ est une valeur propre de T , alors λ est strictement positive.
On pourra utiliser la question 4.

8.2 Déterminer les valeurs propres de T . On pourra aussi utiliser la question 4.
8.3 Pour chaque valeur propre de T , déterminer la dimension et une base du sous-espace propre

associé.

3 Problème 3 : E3A 2024 (exercice 4)
1. Soit n un entier supérieur à 2.

On pose, lorsque cette intégrale existe, γn =

∫ 1

0

1− t
1
n

(1− t)1+
1
n

dt.

1.1 Soit α un réel strictement positif.
1.1.1 Rappeler le développement limité à l’ordre 2 en 0 de h 7→ (1 + h)α.
1.1.2 En déduire un équivalent, au voisinage gauche de 1, de t 7→ 1− tα.

1.2 Soit β ∈ R.

Énoncer une condition nécessaire et suffisante pour que
∫ 1

0

1

(1− t)β
dt converge.

1.3 Justifier l’existence de γn pour tout n ≥ 2.
2. Démonstration d’un encadrement

2.1 Démontrer que l’on a :
— pour tout réel t : 1 + t ⩽ et ;

— pour tout réel t négatif : et ⩽ 1 + t+
t2

2
·

2.2 On pose pour tout entier naturel m et pour tout réel u : Um =

m∑
k=0

uk

k!
·

Soit p un entier naturel non nul. On suppose que pour tout u ⩽ 0, U2p−1 ⩽ eu ⩽ U2p.
2.2.1 Démontrer que pour tout u ⩽ 0, U2p+1 ⩽ eu.
2.2.2 Démontrer également que pour tout u ⩽ 0, eu ⩽ U2p+2.

2.3 En déduire, pour tout p ∈ N∗, un encadrement de eu lorsque u est un réel négatif ou nul.
3. Démontrer que l’on a, pour tout t ∈]0, 1[, pour tout n ≥ 2 et pour tout p ≥ 1 :

1−
2p∑
k=0

1

k!

(
1

n
ln(t)

)k

⩽ 1− exp

(
1

n
ln(t)

)
⩽ 1−

2p−1∑
k=0

1

k!

(
1

n
ln(t)

)k

.
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4. Prouver que, pour tout entier naturel p non nul et tout entier naturel n supérieur ou égal à 2,

l’intégrale
∫ 1

0

lnp(t)

(1− t)1+
1
n

dt existe.

5. Démontrer que l’on a pour tout n ≥ 2 :

1

n

∫ 1

0

− ln(t)

(1− t)1+
1
n

dt− 1

2n2

∫ 1

0

ln2(t)

(1− t)1+
1
n

dt ⩽ γn ⩽
1

n

∫ 1

0

− ln(t)

(1− t)1+
1
n

dt.

6. Soit p un entier naturel non nul. Déterminer lim
n→∞

(∫ 1

0

lnp(t)

(1− t)1+
1
n

dt
)

.

Les théorèmes utilisés seront cités avec précision et on s’assurera que leurs hypothèses sont bien
vérifiées.

7. Prouver alors que lim
n→∞

(nγn) =

∫ 1

0

− ln(t)

1− t
dt.

8. Prouver que, pour tout entier naturel p, l’intégrale
∫ 1

0

− ln(t)tpdt existe.

9. Démontrer que l’on a pour tout entier naturel p :
∫ 1

0

− ln(t)tpdt =
1

(p+ 1)2
·

10. Démontrer que :
∫ 1

0

− ln(t)

1− t
dt =

+∞∑
p=0

1

(p+ 1)2
·

11. Prouver enfin que : γn =
n→∞

π2

6n
+ o

(
1

n

)
·

On admettra que
+∞∑
p=1

1

p2
=

π2

6
·

FIN
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