Psi 999 — 2025/2026 DS 5 — corrigé

Ce corrigé est écrit par Philippe Ducrot — et retouché a la marge par mes soins.

1 Probléme 1 : E3A 2023 (exercice 4)

Questions de cours

1. Que dire?

‘Le module de e?? vaut 1, et un argument est 6. ‘

2. Par disjonction de cas sur la parité de n, ou bien via sin(z + 7) = — sin(x) suivie d’une récurrence
. . PR ; 5 n ;
(exceptionnellement) immédiate, ou encore en passant par e("" 1) = (e'™)" eit...

3. 3.1 La série Z(—l)”an est une série alternée qui vérifie les hypothéses du critére spécial de
n>0
convergence des séries alternées : la valeur absolue du terme général tend vers 0 en décroissant.
3.2 Les sommes partielles de cette série différent des sommes partielles de la précédente d’une
constante additive. Puisque la précédente converge :

La série g (—1)"a,, converge.
nzp

3.3 Tp41 est le reste d’indice p de la série convergente Z(—l)”am donc :
n>0

‘La suite (T},)pen est convergente de limite 0. ‘

3.4 Conséquence du CSCSA (dont les trois hypothéses sont bien vérifiées!) :

’Tp est du signe de son premier terme, soit du signe de (—1)P. ‘

4. Notons g une primitive de f sur R : g est une fonction dérivable, dont la dérivée est f. C’est donc

Jz
une fonction de classe C' sur R, et pour tout réel z > 0, / ft)dt = g(v/x) — g(0). La fonction
0

VT
T / f(t)dt est donc a constante additive prés la composée de g et de la fonction racine carrée,
0

elle-méme de classe C! sur R’ . Elle est donc de classe C! sur R%, et :

(V).

1
tout z > 0, sa dérivé t ——g =
pour tout x sa derivee en & vaut ;—=g (V) 2\/sz
5. 5.1 On applique ici le théoréme de dérivation des fonctions définies par une intégrale.
eix(1+t2)
1+4¢2
eim(1+t2)
141¢2
— Pour tout réel z, la fonction ¢ — ie®(+*) est continue (par morceaux) sur [0, 1].
— Pour tout couple (¢,z) € [0,1] x R, ‘ieim(l+t2)

x, est intégrable sur le segment [0, 1].

— Pour tout réel z, la fonction ¢ — est continue (par morceaux) sur [0, 1].

— Pour tout t € [0, 1], la fonction z est C! sur R, de dérivée x — jeie(1t7)

=1, et la fonction ¢t — 1, indépendante de

1
F est de classe C! sur R et, pour tout réel z, F'(x) = / jeie 1+ g,
0




5.2

1
Pour tout réel z > 0, F/(z) = ie'® / ™ dt. On effectue le changement de variable linéaire
0

u = y/x t dans l'intégrale (sur un segment, donc pas de commentaires!), et on obtient :

jeir [V

VT o

2

F'(x) ™ du.

6. Convergence d’intégrales

6.1

6.2

6.3

6.4

7.2

sin(u)

os(u
Les fonctions @1 : u— ——== et po : u (w)

Vu Vi

. . . e ™ sin(w)
— La premiére se prolonge en une fonction continue en 0 donc l'intégrale

o Vu

sont définies et continues sur |0, 7).

du

converge.

1
— La seconde est équivalente en 0 & — qui est intégrable (au voisinage de 0 bien entendu),

Vu
os(u)

s
c
donc ¢, est intégrable au voisinage de 0, donc l'intégrale / Ta
0 u

admet une limite finie en +00, le théoréme d’intégration par parties permet

du converge.
_iatu

Ja

+oo
d’affirmer que les intégrales /
s

Puisque
eiu +oo s liu
du et ——du sont de méme nature. Or
w2

vt

qui est intégrable au voisinage de 400, et ainsi :

3
2uz2

+o00 iu “+o0 elu
du converge, donc ——du également.
NDSG : pour UIPP, on peut passer par le segment [w, X|. Sinon, je conseillerais quand méme
de parler de u, u’, v et V', et dire que uv posséde une limite en +oo.

400 eiu i

o Yu Vu

des deux intégrales étudiées a la question 6.1, et donc avec la question 6.2 :

™
Enfin, I'intégrale du converge, car / du converge comme combinaison linéaire
0

+oo eiu
0o Vu

L’application v ~ v? est une bijection C* de 0, +oo[ dans |0, +oo[, donc les intégrales avant

du converge.

+o0o

. ~ N . in2

et aprés changement de variable v = v? sont de méme nature; & savoir : / e dv et
0

too . du o . .

e'"——- Cette derniére étant convergente, la premiére l’est aussi.
0 2y/u

NDSG : pour un changement de variable dans une intégrale sur autre chose qu’un segment,

vous étes priés de faire le minimum syndical, en signalant que « le changement de variable »,

¢’est-a-dire ici v+ v? ou bien u — \/u constitue une bijection C1 entre tel et tel intervalle.

wy a été étudiée en 6.1, les autres sont des intégrales d’une fonction continue sur des segments.

‘Pour tout n € N, w,, existe. ‘

T sin(t + nw) _ (1) T sin(t)
0 \/t+TL7T - 0 vt—i—mr

est continue, positive sur [0, 7], et non nulle (en 7/4) donc :

Par le changement de variable indiqué, w,, = dt, et

sin(t)
Vt+nm

I’application t —

T sin(t) , . o
an = ————~—dt est un réel strictement positif.
0 t+nm




sin(t) o sin(t)
Vit n+Dr  Vitnr

. Par croissance

7.3 Pour tout entier naturel n, et tout réel t € [0, 7],

de l'intégrale, ap1 < .

‘Ainsi la suite (o), est décroissante. ‘

7.4 D’aprés ce qui précéde, la série an est une série alternée et, pour appliquer le critére

n
spécial, il suffit de vérifier que (ay,) converge vers 0 en décroissant. Le deuxiéme point est
T sin(t 2
acquis d’aprés la question précédente. Par ailleurs 0 < a,, < / Adt = — — 0.
0 N7 NI n—+00

Gagné!

E w, converge, et le signe de sa somme est celui du premier terme de la série, & savoir positif.
n>0

iU

Ja

sin(u)
Vu
N

Pour tout entier naturel IV, par la relation de Chasles, Z Wy, =

n=0

du.

—+o00 “+o0
7.5 L’intégrale / du converge, comme partie imaginaire de I'intégrale convergente /
0 0

/(NH)Tr sin(u)
0 Vu

du, ce qui

donne par passage a la limite quand NV — oo :

+o0 +o0 s
Z w, — / sin(u) du.
= 0 Vu

2
Ve
8. Pour tout réel x > 0, notons G(x) =i (/ e“‘Qdu> . D’aprés la question 4, G est C! sur R e,
0

eiac VT .
pour tout z > 0, G'(z) = 227/ e’ dy = F'(z), donc il existe un réel K tel que pour tout
T Jo

boat
x>0, F(z) = G(z) + K. On a alors K = F(0) — G(0) =/ T 2= % Finalement :
0

E 2
™ . 2
pour tout > 0, F(x) = — +14 </ e du) .
0

“+oo
9. Puisque l'intégrale / e dy converge, d’aprés la question 6, par passage a la limite dans la
0
™ oo .2 2
formule précédente, et en admettant que lim F(x) =0, il vient : 0 = —+1 ( / e du) , donc
Tr—+00 4 0
2

“+o0 2 +o0o .

. . . . . 1
(/ ewzdu> = iz = ze”/Q — (ﬁelﬂ/‘l) , puis / e’ qu = iﬁem/‘l — j:ﬁ > T
0 4 4 2 0 2 2 V2

+oo +oo
Ensuite, les intégrales / cos(z?)dz et / sin(z?)dz convergent comme partie réelle et partie
0 0

—+oo —+o0
imaginaire de l'intégrale convergente / ™ du donc il existe ¢ € {=1,1} tel que / cos(z?)dx =
0 0
“+o0
/ sin(2?)dz = Eﬁ-
0 2V2

Feo +° sin(u)
Enfin, / sin(z?)dx = / du est un réel positif d’aprés la question 7, donc
0 0

NG

/0+°° cos(z2)dz = /0+°° sin(a?)de = 2\{/7;

1l s’agit des intégrales de Fresnel.



Probléme 2 : E3A 2024 (exercice 2)

Questions préliminaires

1. On discute selon le signe de « :

— Sia>0:on peut écrire o = —w?

, ot w € RY ; la solution générale s’écrit alors
y : t € R Acos(wt) + Bsin(wt), ou A et B sont deux réels arbitraires.
— a =0 : la solution générale s’écrit alors
y : teR— At + B, ou A et B sont deux réels arbitraires.

— Si a >0 : on peut écrire a = w?

, o w € R* ; la solution générale s’écrit alors
y : t € R~ cosh(wt) + Bsinh(wt), ot A et B sont deux réels arbitraires.

2. D’aprés le théoréme fondamental du calcul intégral, H est la primitive nulle en a de la fonction
continue h. A ce titre :

Hest de classe C! sur [0,1], et sa dérivée est la fonction h. ‘

3. Cas particuliers

1
t si te [O, }
3.1 La fonction est aussi définie par t € [0, 1] — 1 3] . Doule graphe :
3 sinon
Y

1

3

0 ‘ 1 @

W=

3.2 On utilise la relation de Chasles :
L1 s (1 Lo/ g 11
Min ( =,¢ |dt = Min | =, ¢ | dt + Min | =,¢ | dt = tdt + —dt
0 3 0 3 1 3 0 1 3
1 3 3 .
T AT
12, 3 3 18 9
1
1 5
Min | =,t |dt = —
o ()5
3.3 Plus généralement, toujours avec la relation de Chasles :

1 1
/ Min (z,t)d / Min (z, ¢ dt+/ Min (z,t)d / tdt+/ xdt
0 T

[2}0+x (1-2)= 7+9c—x2

2

/1Min(x,t)dt: 2(2-2)
0

4. 4.1 Tout d’abord, pour tout = € [0, 1], la fonction ¢ — Min (x,t) est définie et continue sur [0, 1],
donc il en est de méme de t — Min (z, ) f(¢), et U'intégrale Min (x, t) f(t) existe :

‘ La fonction F est bien définie sur [0, 1]. ‘

Ensuite, par la relation de Chasles, pour tout = € [0, 1],



/ Min (z,t) dtJr/ Min (z,t) f(¢)dt

:/Otf dt—i—x/f

— La fonction z / tf(t)dt étant la primitive nulle en 0 de ¢ — tf(t), elle est de classe
0
C! et a pour dérivée x — xf(z).
— La fonction z — / ft)ydt = / —f(t)dt est la primitive nulle en 1 de t — —f(¢); elle
est de classe C! et a pour dérivée —f.

Ainsi :

F est de classe C! et, pour tout z € [0,1], F'(z) / f)ydt —af(x / ft)

4.2 D’apres la définition de F' et ce qui précede :

| F(0) = F'(1) = 0]

4.3 D’aprés Pexpression de F’ obtenue a la question 4.1 (et & nouveau avec le théoréme fonda-
mental de analyse) :

‘F est de classe C? sur [0,1] et F” = —f. ‘

5. T est linéaire, essentiellement par linéarité de l'intégrale, et, pour tout f € E, T'(f) est la fonction
F étudiée a la question 4, qui est en particulier continue sur [0, 1]. Donc :

‘ T est bien un endomorphisme de F. ‘

NDSG : pour rappel, endomorphisme = endo (va de E dans E) + morphisme (linéarité).

6. Si f € E veérifie T(f) = 0 alors T(f)” est aussi la fonction nulle. Or, d’aprés la question 4.3,
T(f)" = —f, donc f est la fonction nulle, et ainsi Ker (T') = {0g} et donc :

‘ T est un endomorphisme injectif de E. ‘

7. 7.1 C’est le résultat des questions 4.3 et 4.2.
7.2 D’aprés la question 4.1, pour tout « € [0, 1] (en intégrant par parties le premier terme) :
T 1
T(G")(z) = / tG" (t)dt + ;z:/ G"(t)dt

0 z T

— G0l - [ G0+ al6 )]

26 (x) — (Glx) — G(0) +2(G"(1) ~ C'(x)
= —G(a)

Ceci étant vrai pour tout z € R :

T(G") = -G

7.3 Soit G € A. D’apres la question précédente, G = T(—G") € Im(T'). On a donc A C Im(T) et
ainsi :

Im(T)=A



8. Recherche des éléments propres de T'

8.1 D’abord, la question 6 permet d’affirmer que, si A est une valeur propre de T, alors A est non
nulle.

Supposons ensuite par ’absurde que T" admette une valeur propre A strictement négative, et
notons f € E un vecteur propre associé. Puisque T'(f)" = —f, et T(f) = Af, alors f est

solution de I’équation différentielle v — w?y = 0, ot w? =

11 existe donc deux réels A et B tels que, pour tout ¢ € [0,1], f(t) = Acosh(wt) + Bsinh(wt).
1
Or f = XT(f)’ donc f(0) = f'(1) = 0, ce qui s’écrit (aprés division par w qu’on sait non nul

dans la deuxiéme équation) :

A =0
—Asinh(w) + Bceosh(w) =0

or cosh(w) # 0 donc A = B =0, donc f = 0, ce qui n’est bien sir pas possible. On a donc
prouveé :

‘ Si A est une valeur propre de T, alors A est un réel strictement positif.

8.2 — Analyse : Soit A est une valeur propre de T'. D’aprés la question précédente, il existe un
réel w > 0 tel que A = — - Prenons alors f un vecteur propre de T" associé a cette valeur
w

propre .
Comme dans la question précédente, puisque T'(f)” = —f et T(f) = Af, alors f est
solution de I’équation différentielle 3 +w?y = 0, et il existe donc deux réels A et B tel que,

pour tout ¢ € [0,1], f(t) = Acos(wt)+ Bsin(wt). Mais f = %T(f), done f(0) = f/(1) =0,

ce qui donne ici :

A =0
—Asin(w) + Beos(w) =0
ou encore A = Bcos(w) = 0.
Si cos(w) # 0 alors B = 0 puis f = 0, ce qui n’est bien str pas possible (f est vecteur
propre). Arrivé ici, on sait qu'une éventuelle valeur propre est nécessairement de la forme

— avec cos(w) = 0, et les vecteurs propres associés sont de la forme ¢ — B sin(wt).
w

— Synthése : Supposons que cos(w) = 0 et prenons f : t — sin(wt). On a alors pour tout
xz €10,1] :

T(1)(0) = [ tsin(enyae+a [ (ot

0

1

T )

1
= — sin(wz) — xcos(w) = — sin(wz) car cos(w) =0
W w w

- i)

w2

1
et f est bien vecteur propre de T" associé a la valeur propre — -
w

Finalement :
1
Les valeurs propres de T' sont les réels de la forme ———, ou k décrit Z.
(3 + k)
1 .
8.3 Pour chacune de ses valeurs propres A = —————, le sous-espace propre est la droite de E

s

5+ k)
engendrée par la fonction ¢ — sin ((% + k7r) t), de dimension 1.

1
Pour ke Zet w= g + k7, Ker (T - 2Id) est dimension 1 et dirigé par ¢ — sin(wt)
w




3 Probléme 3 : E3A 2024 (exercice 4)

1.

1.1

1.1.1 C’est du cours de premiére année :

—1
(1+h)“=1+ah+7a<a2 )

Le deuzxiéme ordre est un piége pour la question suivante !

h? + Ohﬁo(hQ).

1.1.2 On pose t = 1 —h (puisque ¢ tend vers 1 par valeurs inférieures, on préfére écrire t = 1—h
avec h positif...). Alors (inutile de répéter que h tend vers 07) :

1-t* =1-(1-h)*=1—-(1—ah+o(h))
=ah+o(h) ~ ah

Finalement :

‘1—t“~a(1—t) quandt—>1_.‘

1 1
1.2 L’application ¢ : t = ———— est continue sur [0, 1], et (1 — u) = — qui est intégrable au
u

(1—1¢)f
voisinage (en u) de 0 (donc ¢ 'est au voisinage de 1) si et seulement si § < 1.

1
1
———dt converge si et seulement si 8 < 1.
|| gt comere 0

NDSG : La fonction en jeu est positive : la convergence de l’intégrale est donc équivalente a
lintégrabilité.

1

—tn 1 1
1.3 La fonction ¢ : t — ————— est définie, positive et continue sur [0, 1] et ¥ (t) ~ — ———
1=ttt no(L—t)s
au voisinage de 1.
1
Puisque n > 2, % < 1 donc l'intégrale / ﬁdt converge puis par comparaison :
0 —_— n
o Loy —tw
L’intégrale ———dt converge.
o (I—t)t*w

NDSG : ne rédigez pas comme ¢a! Si vous prenez le point de vue (bof) des intégrales conver-
gentes, alors les théorémes de comparaison nécessitent & chaque fois de rappeler que la (les)
fonction(s) en jeu est (sont) positive(s). Préférez comme moi le point de vue « intégrabilité »
(dont on déduit o la fin la convergence de l'intégrale).

2. Démonstration d’un encadrement

2.1 Par étude de la fonction t — et — 1 —¢ (calcul de la dérivée, du signe de cette derniére, tableau

de variations, décroissance puis croissance), on montre que pour tout réel ¢ : 1 +¢ < el.
2
On étudie ensuite la fonction ¢t — 1+ ¢ + 5 e?, qui est dérivable sur R_ et dont la dérivée

est t — 1+t — e!. D’aprés la premiére inégalité, cette dérivée est négative, donc la fonction
est décroissante, de +00 en —oo & 0 en 0. Elle est donc & valeurs positives sur R_.
NDSG : vous trouvez ¢a pénible a lire ? En effet. C’est pour ¢a que vous allez faire un tableau

de variation avant de conclure par quelque chose comme « la décroissance de la fonction sur
] — 00, 0] nous assure qu’elle est minorée par f(0) =0 sur ] — oco,0]. »

2.2

2.2.1 La encore, on étudie sur U'intervalle | — 00, 0] la fonction g, : u <0 +— e — Z .

C’est une fonction de classe C'*°, dont la dérivée vaut :



2p+1 _ 2
P Lkuk—1 P k

w u

k=1 ’ k=0
D’aprés I'hypothése, e* < Uy, pour tout u < 0, ce qui prouve que g, est une fonction
décroissante. Valant 0 en 0, on en déduit que g, est a valeurs positives, ce qui fournit
I'inégalité attendue.

u
2.2.2 Ici, on étudie la fonction g, : u < 0 — Z — — %, qui est dérivable, de dérivée

2p+1 k
u . N . - -
u<0— Z o e, négative d’aprés la question précédente. Etant encore nulle en 0,
k=0
décroissante, on en déduit qu’elle est & valeurs positives.

2.3 On démontre alors par récurrence sur ’entier p que :

‘Pour tout p € N*, Uppi1 < e < Uy ‘

La question 2.1 est Uinitialisation, la 2.2 Uhérédité.

1
3. C’est une conséquence de l'inégalité précédente, en prenant w = — In(¢), en retranchant 1 puis en

n
multipliant tout par —1, ce qui a pour effet de renverser les inégalités.

150 (i) <1-ow (2uo) <1 5 4 (Ru).

k=0

In”(t)

4. La fonction ¢ : t — —————
(1—t)tt=

est définie et continue sur |0, 1].

1
— Quand t — 0, V| In(t)|P — 0 par croissances comparées, donc |In(t)|P = o (ﬂ) donc ¢ est

intégrable au voisinage de 0.

1
— Au voisinage de 1 : (1 —u) ~ g quand u tend vers 07, or p>1donc 1 —p+1 <1,

1
donc u ——— st intégrable au voisinage de 0 donc ¢ est intégrable au voisinage de 1.

urPTR

b ()l
¢ est intégrable sur ]0, 1] donc / ———~=—dt converge.
o (1—t)t*w

NDSG : vous savez maintenant que sans la phrase introductive, tout part a la benne !

5. On applique I'inégalité obtenue & la question 3 avec p = 1. Il vient :

1 1 9 1 1
On multiplie par T)H—i’ puis on intégre entre 0 et 1, toutes les intégrales étant conver-

gentes, pour obtenir :

1 [ —In(t I o (7 1 1 —In(
7/ —Ji%m——3/4—£Q7w<%<7/44397@
nJo (1—t)tn 2n% Jy (1—-t)'*= nJo (1-t)t+s

6. On utilise ici le théoréme de convergence dominée, appliquée a la suite de fonctions (fy,)n>2, avec
In?(t)
(1—t)t*=

— Pour tout n > 2, f,, est définie et continue sur ]0, 1].

pour tout n > 2 et ¢ €]0,1[ : f,(t) =



10.

InP (¢

— La suite de fonctions (f,), converge simplement sur ]0,1[ vers la fonction t — f—(t) sur

Iintervalle ]0, 1[.
— La limite simple de la suite de fonctions (fy,), est continue sur |0, 1[.
— Pour tout n > 2 et tout ¢ €0, 1],

In(¢)|P In(¢)|P 1 In(¢)[P
(1)) = | ()1|;<| @F ig| ()|§’
(1—¢t)lt= 1t (1-t)n (1—1t)2
1
car W = exp (1(—=In(1—1t))) < exp(3(—In(1 —1¢))) quand n > 2. La fonction do-
[ In@)|P

minante ¢t — est alors intégrable sur |0, 1[ (question précédente, la convergence de

1—1t)2
Pintégrale étant ici équivalente a I'intégrabilité).

Ainsi d’aprés le théoréme de convergence dominée :

1 p 14.p
lim (/ hl(t)ldt> :/ In”(t) dt.
n—00 0 (1,t)1+; 0 1—1t¢

. On multiplie par n 'inégalité obtenue a la question 5, et on fait tendre n vers +oo.

1 1 2 1
—In(¢ 1 In“(¢ —In(¢
Le membre de gauche, & savoir / 7n( ) —dt — 7/ = ) —dt tend vers / n( )dt,
o (-t 2y —pih 0o 1t

comme le membre de droite.

Par encadrement (théoréme des gendarmes, surtout pas de passage d’inégalités a la limite!), on en
déduit :

b In(t)
lim(nyy,) :/ dt.
B o 1-t

La fonction ¢ — —In(¢)tP est définie continue sur ]0, 1], prolongeable par continuité en 0 si p > 1.
Comme ¢ — — In(t) est intégrable sur |0, 1] d’aprés le cours (par exemple parce que In(t) = o(1//t)
au voisinage de 0), on en déduit :

1
Pour tout entier naturel p, Uintégrale / — In(¢)tPdt existe.
0

Tout d’abord :

/1 —In(t)dt = [t — tIn(t)]) = 1.
0

1
NDSG : a ce niveau de l’épreuve, on peut ne pas passer par/
[

! S T
SipeN, / —In(¢)tPdt = [— In(t) ] + —— [ tPdt, soit encore :
0 P +1 0 P +1 0
! 1
Si p € N* alors / —In(t)tPdt = ——-
0 0 (p+1)2

NDSG : méme remarque !
On applique le théoréme d’intégration terme & terme des séries de fonctions intégrables a la série
de fonctions ng, ol g, : t —In(t)eP.
P
— Chagque fonction g, est intégrable sur |0, 1].



— La série de fonctions Z gp converge simplement sur |0, 1] et a pour somme la fonction ¢

20
—In(¢
1 n(t) qui continue sur ]0, 1[.
! 1
— La série Z/ |gp(t)|dt est la série Z PFSIER convergente.
p=20"" >0

On en déduit que 'on peut effectivement sommer terme a terme :

+oo 1

1*1I1(t) 7"!‘00 1 -
/O — dt_pz_:o/o gp(t)dt_pg)i(p_'_l)?
“+oo

1
11. On a montré que nvy, = Z — +0(1), ou encore :

p
—12-&-0 1
Pyn_Gn n

FIN

p=1

10



