
Psi 999 – 2025/2026 DS 5 – corrigé

Ce corrigé est écrit par Philippe Ducrot – et retouché à la marge par mes soins.

1 Problème 1 : E3A 2023 (exercice 4)
Questions de cours

1. Que dire ?

Le module de eiθ vaut 1, et un argument est θ.

2. Par disjonction de cas sur la parité de n, ou bien via sin(x+ π) = − sin(x) suivie d’une récurrence
(exceptionnellement) immédiate, ou encore en passant par ei(nπ+t) =

(
eiπ
)n eit...

3. 3.1 La série
∑
n≥0

(−1)nan est une série alternée qui vérifie les hypothèses du critère spécial de

convergence des séries alternées : la valeur absolue du terme général tend vers 0 en décroissant.
3.2 Les sommes partielles de cette série diffèrent des sommes partielles de la précédente d’une

constante additive. Puisque la précédente converge :

La série
∑
n≥p

(−1)nan converge.

3.3 Tp+1 est le reste d’indice p de la série convergente
∑
n≥0

(−1)nan, donc :

La suite (Tp)p∈N est convergente de limite 0.

3.4 Conséquence du CSCSA (dont les trois hypothèses sont bien vérifiées !) :

Tp est du signe de son premier terme, soit du signe de (−1)p.

4. Notons g une primitive de f sur R : g est une fonction dérivable, dont la dérivée est f . C’est donc

une fonction de classe C1 sur R, et pour tout réel x > 0,
∫ √

x

0

f(t)dt = g(
√
x)− g(0). La fonction

x 7→
∫ √

x

0

f(t)dt est donc à constante additive près la composée de g et de la fonction racine carrée,

elle-même de classe C1 sur R∗
+. Elle est donc de classe C1 sur R∗

+, et :

pour tout x > 0, sa dérivée en x vaut
1

2
√
x
g′(

√
x) =

1

2
√
x
f(
√
x).

5. 5.1 On applique ici le théorème de dérivation des fonctions définies par une intégrale.

— Pour tout réel x, la fonction t 7→ eix(1+t2)

1 + t2
est continue (par morceaux) sur [0, 1].

— Pour tout t ∈ [0, 1], la fonction x 7→ eix(1+t2)

1 + t2
est C1 sur R, de dérivée x 7→ ieix(1+t2).

— Pour tout réel x, la fonction t 7→ ieix(1+t2) est continue (par morceaux) sur [0, 1].

— Pour tout couple (t, x) ∈ [0, 1]×R,
∣∣∣ieix(1+t2)

∣∣∣ = 1, et la fonction t 7→ 1, indépendante de
x, est intégrable sur le segment [0, 1].

F est de classe C1 sur R et, pour tout réel x, F ′(x) =

∫ 1

0

ieix(1+t2)dt.
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5.2 Pour tout réel x > 0, F ′(x) = ieix
∫ 1

0

eixt
2

dt. On effectue le changement de variable linéaire

u =
√
x t dans l’intégrale (sur un segment, donc pas de commentaires !), et on obtient :

F ′(x) =
ieix√
x

∫ √
x

0

eiu
2

du.

6. Convergence d’intégrales

6.1 Les fonctions φ1 : u 7→ sin(u)√
u

et φ2 : u 7→ cos(u)√
u

sont définies et continues sur ]0, π].

— La première se prolonge en une fonction continue en 0 donc l’intégrale
∫ π

0

sin(u)√
u

du
converge.

— La seconde est équivalente en 0 à
1√
u

qui est intégrable (au voisinage de 0 bien entendu),

donc φ2 est intégrable au voisinage de 0, donc l’intégrale
∫ π

0

cos(u)√
u

du converge.

6.2 Puisque
−ieiu√

u
admet une limite finie en +∞, le théorème d’intégration par parties permet

d’affirmer que les intégrales
∫ +∞

π

eiu√
u

du et
∫ +∞

π

ieiu

2u
3
2

du sont de même nature. Or
∣∣∣∣ ieiu2u

3
2

∣∣∣∣ =
1

2u
3
2

qui est intégrable au voisinage de +∞, et ainsi :

∫ +∞

π

ieiu

2u
3
2

du converge, donc
∫ +∞

π

eiu√
u

du également.

NDSG : pour l’IPP, on peut passer par le segment [π,X]. Sinon, je conseillerais quand même
de parler de u, u′, v et v′, et dire que uv possède une limite en +∞.

6.3 Enfin, l’intégrale
∫ +∞

0

eiu√
u

du converge, car
∫ π

0

eiu√
u

du converge comme combinaison linéaire

des deux intégrales étudiées à la question 6.1, et donc avec la question 6.2 :∫ +∞

0

eiu√
u

du converge.

6.4 L’application v 7→ v2 est une bijection C1 de ]0,+∞[ dans ]0,+∞[, donc les intégrales avant

et après changement de variable u = v2 sont de même nature ; à savoir :
∫ +∞

0

eiv
2

dv et∫ +∞

0

eiu
du
2
√
u
· Cette dernière étant convergente, la première l’est aussi.

NDSG : pour un changement de variable dans une intégrale sur autre chose qu’un segment,
vous êtes priés de faire le minimum syndical, en signalant que « le changement de variable »,
c’est-à-dire ici v 7→ v2 ou bien u 7→

√
u constitue une bijection C1 entre tel et tel intervalle.

7. 7.1 w0 a été étudiée en 6.1, les autres sont des intégrales d’une fonction continue sur des segments.

Pour tout n ∈ N, wn existe.

7.2 Par le changement de variable indiqué, wn =

∫ π

0

sin(t+ nπ)√
t+ nπ

dt = (−1)n
∫ π

0

sin(t)√
t+ nπ

dt, et

l’application t 7→ sin(t)√
t+ nπ

est continue, positive sur [0, π], et non nulle (en π/4) donc :

αn =

∫ π

0

sin(t)√
t+ nπ

dt est un réel strictement positif.
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7.3 Pour tout entier naturel n, et tout réel t ∈ [0, π],
sin(t)√

t+ (n+ 1)π
⩽

sin(t)√
t+ nπ

. Par croissance

de l’intégrale, αn+1 ⩽ αn.

Ainsi la suite (αn)n est décroissante.

7.4 D’après ce qui précède, la série
∑
n

wn est une série alternée et, pour appliquer le critère

spécial, il suffit de vérifier que (αn) converge vers 0 en décroissant. Le deuxième point est

acquis d’après la question précédente. Par ailleurs 0 ⩽ αn ⩽
∫ π

0

sin(t)

nπ
dt =

2

nπ
−→

n→+∞
0.

Gagné !

∑
n≥0

wn converge, et le signe de sa somme est celui du premier terme de la série, à savoir positif.

7.5 L’intégrale
∫ +∞

0

sin(u)√
u

du converge, comme partie imaginaire de l’intégrale convergente
∫ +∞

0

eiu√
u

du.

Pour tout entier naturel N , par la relation de Chasles,
N∑

n=0

wn =

∫ (N+1)π

0

sin(u)√
u

du, ce qui

donne par passage à la limite quand N → ∞ :

+∞∑
n=0

wn =

∫ +∞

0

sin(u)√
u

du.

8. Pour tout réel x > 0, notons G(x) = i

(∫ √
x

0

eiu
2

du

)2

. D’après la question 4, G est C1 sur R∗
+ et,

pour tout x > 0, G′(x) = 2i
eix

2
√
x

∫ √
x

0

eiu
2

du = F ′(x), donc il existe un réel K tel que pour tout

x > 0, F (x) = G(x) +K. On a alors K = F (0)−G(0) =

∫ 1

0

dt
1 + t2

=
π

4
· Finalement :

pour tout x ⩾ 0, F (x) =
π

4
+ i

(∫ √
x

0

eiu
2

du

)2

.

9. Puisque l’intégrale
∫ +∞

0

eiu
2

du converge, d’après la question 6, par passage à la limite dans la

formule précédente, et en admettant que lim
x→+∞

F (x) = 0, il vient : 0 =
π

4
+i

(∫ +∞

0

eiu
2

du
)2

, donc(∫ +∞

0

eiu
2

du
)2

= i
π

4
=
π

4
eiπ/2 =

(√
π

2
eiπ/4

)2

, puis
∫ +∞

0

eiu
2

du = ±
√
π

2
eiπ/4 = ±

√
π

2
× 1 + i√

2
·

Ensuite, les intégrales
∫ +∞

0

cos(x2)dx et
∫ +∞

0

sin(x2)dx convergent comme partie réelle et partie

imaginaire de l’intégrale convergente
∫ +∞

0

eiu
2

du donc il existe ε ∈ {−1, 1} tel que
∫ +∞

0

cos(x2)dx =∫ +∞

0

sin(x2)dx = ε

√
π

2
√
2
·

Enfin,
∫ +∞

0

sin(x2)dx =

∫ +∞

0

sin(u)√
u

du est un réel positif d’après la question 7, donc

∫ +∞

0

cos(x2)dx =

∫ +∞

0

sin(x2)dx =

√
π

2
√
2
·

Il s’agit des intégrales de Fresnel.

3



2 Problème 2 : E3A 2024 (exercice 2)
Questions préliminaires

1. On discute selon le signe de α :
— Si α > 0 : on peut écrire α = −ω2, où ω ∈ R∗

+ ; la solution générale s’écrit alors

y : t ∈ R 7→ A cos(ωt) +B sin(ωt), où A et B sont deux réels arbitraires.

— α = 0 : la solution générale s’écrit alors

y : t ∈ R 7→ At+B, où A et B sont deux réels arbitraires.

— Si α > 0 : on peut écrire α = ω2, où ω ∈ R∗
+ ; la solution générale s’écrit alors

y : t ∈ R 7→ cosh(ωt) +B sinh(ωt), où A et B sont deux réels arbitraires.

2. D’après le théorème fondamental du calcul intégral, H est la primitive nulle en a de la fonction
continue h. À ce titre :

Hest de classe C1 sur [0, 1], et sa dérivée est la fonction h.

3. Cas particuliers

3.1 La fonction est aussi définie par t ∈ [0, 1] 7→


t si t ∈

[
0,

1

3

]
1

3
sinon

. D’où le graphe :

O

1
3

y

x11
3

3.2 On utilise la relation de Chasles :∫ 1

0

Min
(
1

3
, t

)
dt =

∫ 1
3

0

Min
(
1

3
, t

)
dt+

∫ 1

1
3

Min
(
1

3
, t

)
dt =

∫ 1
3

0

tdt+
∫ 1

1
3

1

3
dt

=

[
t2

2

] 1
3

0

+
1

3
.

(
1− 1

3

)
=

1

18
+

2

9

.

∫ 1

0

Min
(
1

3
, t

)
dt =

5

18

3.3 Plus généralement, toujours avec la relation de Chasles :∫ 1

0

Min (x, t) dt =

∫ x

0

Min (x, t) dt+
∫ 1

x

Min (x, t) dt =
∫ x

0

tdt+
∫ 1

x

xdt

=

[
t2

2

]x
0

+ x. (1− x) =
x2

2
+ x− x2

.

∫ 1

0

Min (x, t) dt =
x(2− x)

2

4. 4.1 Tout d’abord, pour tout x ∈ [0, 1], la fonction t 7→ Min (x, t) est définie et continue sur [0, 1],
donc il en est de même de t 7→ Min (x, t) f(t), et l’intégrale Min (x, t) f(t) existe :

La fonction F est bien définie sur [0, 1].

Ensuite, par la relation de Chasles, pour tout x ∈ [0, 1],
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F (x) =

∫ x

0

Min (x, t) f(t)dt+
∫ 1

x

Min (x, t) f(t)dt

=

∫ x

0

tf(t)dt+ x

∫ 1

x

f(t)dt
.

— La fonction x 7→
∫ x

0

tf(t)dt étant la primitive nulle en 0 de t 7→ tf(t), elle est de classe

C1 et a pour dérivée x 7→ xf(x).

— La fonction x 7→
∫ 1

x

f(t)dt =
∫ x

1

−f(t)dt est la primitive nulle en 1 de t 7→ −f(t) ; elle

est de classe C1 et a pour dérivée −f .

Ainsi :

F est de classe C1 et, pour tout x ∈ [0, 1], F ′(x) = xf(x) +

∫ 1

x

f(t)dt− xf(x) =

∫ 1

x

f(t)dt.

4.2 D’après la définition de F et ce qui précède :

F (0) = F ′(1) = 0

4.3 D’après l’expression de F ′ obtenue à la question 4.1 (et à nouveau avec le théorème fonda-
mental de l’analyse) :

F est de classe C2 sur [0, 1] et F ′′ = −f .

5. T est linéaire, essentiellement par linéarité de l’intégrale, et, pour tout f ∈ E, T (f) est la fonction
F étudiée à la question 4, qui est en particulier continue sur [0, 1]. Donc :

T est bien un endomorphisme de E.

NDSG : pour rappel, endomorphisme = endo (va de E dans E) + morphisme (linéarité).
6. Si f ∈ E vérifie T (f) = 0 alors T (f)′′ est aussi la fonction nulle. Or, d’après la question 4.3,
T (f)′′ = −f , donc f est la fonction nulle, et ainsi Ker (T ) = {0E} et donc :

T est un endomorphisme injectif de E.

7. 7.1 C’est le résultat des questions 4.3 et 4.2.
7.2 D’après la question 4.1, pour tout x ∈ [0, 1] (en intégrant par parties le premier terme) :

T (G′′)(x) =

∫ x

0

tG′′(t)dt+ x

∫ 1

x

G′′(t)dt

= [tG′(t)]
x
0 −

∫ x

0

G′(t)dt+ x [G′(t)]
1
x

= xG′(x)− (G(x)−G(0)) + x(G′(1)−G′(x))
= −G(x)

.

Ceci étant vrai pour tout x ∈ R :

T (G′′) = −G

7.3 Soit G ∈ A. D’après la question précédente, G = T (−G′′) ∈ Im(T ). On a donc A ⊂ Im(T ) et
ainsi :

Im(T ) = A
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8. Recherche des éléments propres de T

8.1 D’abord, la question 6 permet d’affirmer que, si λ est une valeur propre de T , alors λ est non
nulle.
Supposons ensuite par l’absurde que T admette une valeur propre λ strictement négative, et
notons f ∈ E un vecteur propre associé. Puisque T (f)′′ = −f , et T (f) = λf , alors f est

solution de l’équation différentielle y′′ − ω2y = 0, où ω2 = − 1

λ
·

Il existe donc deux réels A et B tels que, pour tout t ∈ [0, 1], f(t) = A cosh(ωt) +B sinh(ωt).

Or f =
1

λ
T (f), donc f(0) = f ′(1) = 0, ce qui s’écrit (après division par ω qu’on sait non nul

dans la deuxième équation) : {
A = 0

−A sinh(ω) +B cosh(ω) = 0

or cosh(w) ̸= 0 donc A = B = 0, donc f = 0, ce qui n’est bien sûr pas possible. On a donc
prouvé :

Si λ est une valeur propre de T , alors λ est un réel strictement positif.

8.2 — Analyse : Soit λ est une valeur propre de T . D’après la question précédente, il existe un

réel ω > 0 tel que λ =
1

ω2
· Prenons alors f un vecteur propre de T associé à cette valeur

propre λ.
Comme dans la question précédente, puisque T (f)′′ = −f et T (f) = λf , alors f est
solution de l’équation différentielle y′′+ω2y = 0, et il existe donc deux réels A et B tel que,

pour tout t ∈ [0, 1], f(t) = A cos(ωt)+B sin(ωt). Mais f =
1

λ
T (f), donc f(0) = f ′(1) = 0,

ce qui donne ici : {
A = 0

−A sin(ω) +B cos(ω) = 0

ou encore A = B cos(ω) = 0.
Si cos(ω) ̸= 0 alors B = 0 puis f = 0, ce qui n’est bien sûr pas possible (f est vecteur
propre). Arrivé ici, on sait qu’une éventuelle valeur propre est nécessairement de la forme
1

ω2
avec cos(ω) = 0, et les vecteurs propres associés sont de la forme t 7→ B sin(ωt).

— Synthèse : Supposons que cos(ω) = 0 et prenons f : t 7→ sin(ωt). On a alors pour tout
x ∈ [0, 1] :

T (f)(x) =

∫ x

0

t sin(ωt)dt+ x

∫ 1

x

sin(ωt)dt

=

[
−tcos(ωt)

ω

]x
0

+
1

ω

∫ x

0

cos(ωt)dt+ x

[
−cos(ωt)

ω

]1
x

=
1

ω2
sin(ωx)− x

cos(ω)

ω
=

1

ω2
sin(ωx) car cos(ω) = 0

=
1

ω2
f(x)

,

et f est bien vecteur propre de T associé à la valeur propre
1

ω2
·

Finalement :

Les valeurs propres de T sont les réels de la forme
1(

π
2 + kπ

)2 , où k décrit Z.

8.3 Pour chacune de ses valeurs propres λ =
1(

π
2 + kπ

)2 , le sous-espace propre est la droite de E

engendrée par la fonction t 7→ sin
((

π
2 + kπ

)
t
)
, de dimension 1.

Pour k ∈ Z et ω =
π

2
+ kπ, Ker

(
T − 1

ω2
Id
)

est dimension 1 et dirigé par t 7→ sin(ωt)
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3 Problème 3 : E3A 2024 (exercice 4)
1.

1.1
1.1.1 C’est du cours de première année :

(1 + h)α = 1 + αh+
α(α− 1)

2
h2 + oh→0(h

2).

Le deuxième ordre est un piège pour la question suivante !
1.1.2 On pose t = 1−h (puisque t tend vers 1 par valeurs inférieures, on préfère écrire t = 1−h

avec h positif...). Alors (inutile de répéter que h tend vers 0+) :
1− tα = 1− (1− h)α = 1− (1− αh+ o(h))

= αh+ o(h) ∼ αh

Finalement :
1− tα ∼ α(1− t) quand t→ 1−.

1.2 L’application φ : t 7→ 1

(1− t)β
est continue sur [0, 1[, et φ(1 − u) =

1

uβ
qui est intégrable au

voisinage (en u) de 0 (donc φ l’est au voisinage de 1) si et seulement si β < 1.∫ 1

0

1

(1− t)β
dt converge si et seulement si β < 1.

NDSG : La fonction en jeu est positive : la convergence de l’intégrale est donc équivalente à
l’intégrabilité.

1.3 La fonction ψ : t 7→ 1− t
1
n

(1− t)1+
1
n

est définie, positive et continue sur [0, 1[ et ψ(t) ∼ 1

n
· 1

(1− t)
1
n

au voisinage de 1.

Puisque n ≥ 2, 1
n < 1 donc l’intégrale

∫ 1

0

1

(1− t)
1
n

dt converge puis par comparaison :

L’intégrale
∫ 1

0

1− t
1
n

(1− t)1+
1
n

dt converge.

NDSG : ne rédigez pas comme ça ! Si vous prenez le point de vue (bof) des intégrales conver-
gentes, alors les théorèmes de comparaison nécessitent à chaque fois de rappeler que la (les)
fonction(s) en jeu est (sont) positive(s). Préférez comme moi le point de vue « intégrabilité »
(dont on déduit à la fin la convergence de l’intégrale).

2. Démonstration d’un encadrement
2.1 Par étude de la fonction t 7→ et−1− t (calcul de la dérivée, du signe de cette dernière, tableau

de variations, décroissance puis croissance), on montre que pour tout réel t : 1 + t ⩽ et.

On étudie ensuite la fonction t 7→ 1 + t+
t2

2
− et, qui est dérivable sur R− et dont la dérivée

est t 7→ 1 + t − et. D’après la première inégalité, cette dérivée est négative, donc la fonction
est décroissante, de +∞ en −∞ à 0 en 0. Elle est donc à valeurs positives sur R−.
NDSG : vous trouvez ça pénible à lire ? En effet. C’est pour ça que vous allez faire un tableau
de variation avant de conclure par quelque chose comme « la décroissance de la fonction sur
]−∞, 0] nous assure qu’elle est minorée par f(0) = 0 sur ]−∞, 0]. »

2.2

2.2.1 Là encore, on étudie sur l’intervalle ]−∞, 0] la fonction gp : u ⩽ 0 7→ eu −
2p+1∑
k=0

uk

k!
·

C’est une fonction de classe C∞, dont la dérivée vaut :
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∀u ⩽ 0, g′p(u) = eu −
2p+1∑
k=1

kuk−1

k!
= eu −

2p∑
k=0

uk

(k)!
·

D’après l’hypothèse, eu ⩽ U2p pour tout u ⩽ 0, ce qui prouve que gp est une fonction
décroissante. Valant 0 en 0, on en déduit que gp est à valeurs positives, ce qui fournit
l’inégalité attendue.

2.2.2 Ici, on étudie la fonction gp : u ⩽ 0 7→
2p+2∑
k=0

uk

k!
− eu, qui est dérivable, de dérivée

u ⩽ 0 7→
2p+1∑
k=0

uk

k!
− eu, négative d’après la question précédente. Étant encore nulle en 0,

décroissante, on en déduit qu’elle est à valeurs positives.
2.3 On démontre alors par récurrence sur l’entier p que :

Pour tout p ∈ N∗, U2p+1 ⩽ eu ⩽ U2p.

La question 2.1 est l’initialisation, la 2.2 l’hérédité.

3. C’est une conséquence de l’inégalité précédente, en prenant u =
1

n
ln(t), en retranchant 1 puis en

multipliant tout par −1, ce qui a pour effet de renverser les inégalités.

1−
2p∑
k=0

1

k!

(
1

n
ln(t)

)k

⩽ 1− exp

(
1

n
ln(t)

)
⩽ 1−

2p−1∑
k=0

1

k!

(
1

n
ln(t)

)k

.

4. La fonction φ : t 7→ lnp(t)

(1− t)1+
1
n

est définie et continue sur ]0, 1[.

— Quand t → 0,
√
t| ln(t)|p → 0 par croissances comparées, donc | ln(t)|p = o

(
1√
t

)
donc φ est

intégrable au voisinage de 0.

— Au voisinage de 1 : φ(1− u) ∼ 1

u1−p+ 1
n

quand u tend vers 0+, or p ≥ 1 donc 1− p+ 1
n < 1,

donc u 7→ 1

u1−p+ 1
n

est intégrable au voisinage de 0 donc φ est intégrable au voisinage de 1.

φ est intégrable sur ]0, 1[ donc
∫ 1

0

| ln(t)|p

(1− t)1+
1
n

dt converge.

NDSG : vous savez maintenant que sans la phrase introductive, tout part à la benne !
5. On applique l’inégalité obtenue à la question 3 avec p = 1. Il vient :

− 1

n
ln(t)− 1

2n2
(ln(t))2 ⩽ 1− t

1
n ⩽ − 1

n
ln(t).

On multiplie par
1

(1− t)1+
1
n

, puis on intègre entre 0 et 1, toutes les intégrales étant conver-

gentes, pour obtenir :

1

n

∫ 1

0

− ln(t)

(1− t)1+
1
n

dt− 1

2n2

∫ 1

0

ln2(t)

(1− t)1+
1
n

dt ⩽ γn ⩽
1

n

∫ 1

0

− ln(t)

(1− t)1+
1
n

dt.

6. On utilise ici le théorème de convergence dominée, appliquée à la suite de fonctions (fn)n⩾2, avec

pour tout n ⩾ 2 et t ∈]0, 1[ : fn(t) =
lnp(t)

(1− t)1+
1
n

·

— Pour tout n ≥ 2, fn est définie et continue sur ]0, 1[.
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— La suite de fonctions (fn)n converge simplement sur ]0, 1[ vers la fonction t 7→ lnp(t)

1− t
sur

l’intervalle ]0, 1[.
— La limite simple de la suite de fonctions (fn)n est continue sur ]0, 1[.
— Pour tout n ≥ 2 et tout t ∈]0, 1[,

|fn(t)| =
| ln(t)|p

(1− t)1+
1
n

⩽
| ln(t)|p

1− t
× 1

(1− t)
1
n

⩽
| ln(t)|p

(1− t)
3
2

,

car
1

(1− t)
1
n

= exp
(
1
n (− ln(1− t))

)
⩽ exp

(
1
2 (− ln(1− t))

)
quand n ≥ 2. La fonction do-

minante t 7→ | ln(t)|p

(1− t)
3
2

est alors intégrable sur ]0, 1[ (question précédente, la convergence de

l’intégrale étant ici équivalente à l’intégrabilité).

Ainsi d’après le théorème de convergence dominée :

lim
n→∞

(∫ 1

0

lnp(t)

(1− t)1+
1
n

dt
)

=

∫ 1

0

lnp(t)

1− t
dt.

7. On multiplie par n l’inégalité obtenue à la question 5, et on fait tendre n vers +∞.

Le membre de gauche, à savoir
∫ 1

0

− ln(t)

(1− t)1+
1
n

dt − 1

2n

∫ 1

0

ln2(t)

(1− t)1+
1
n

dt tend vers
∫ 1

0

− ln(t)

1− t
dt,

comme le membre de droite.
Par encadrement (théorème des gendarmes, surtout pas de passage d’inégalités à la limite !), on en
déduit :

lim
n
(nγn) =

∫ 1

0

− ln(t)

1− t
dt.

8. La fonction t 7→ − ln(t)tp est définie continue sur ]0, 1], prolongeable par continuité en 0 si p ≥ 1.
Comme t 7→ − ln(t) est intégrable sur ]0, 1] d’après le cours (par exemple parce que ln(t) = o(1/

√
t)

au voisinage de 0), on en déduit :

Pour tout entier naturel p, l’intégrale
∫ 1

0

− ln(t)tpdt existe.

9. Tout d’abord : ∫ 1

0

− ln(t)dt = [t− t ln(t)]
1
0 = 1.

NDSG : à ce niveau de l’épreuve, on peut ne pas passer par
∫ 1

ε

...

Si p ∈ N,
∫ 1

0

− ln(t)tpdt =
[
− ln(t)

tp+1

p+ 1

]1
0

+
1

p+ 1

∫ 1

0

tpdt, soit encore :

Si p ∈ N∗ alors
∫ 1

0

− ln(t)tpdt =
1

(p+ 1)2
·

NDSG : même remarque !
10. On applique le théorème d’intégration terme à terme des séries de fonctions intégrables à la série

de fonctions
∑
p

gp, où gp : t 7→ − ln(t)tp.

— Chaque fonction gp est intégrable sur ]0, 1].
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— La série de fonctions
∑
p≥0

gp converge simplement sur ]0, 1] et a pour somme la fonction t 7→

− ln(t)

1− t
qui continue sur ]0, 1[.

— La série
∑
p≥0

∫ 1

0

|gp(t)|dt est la série
∑
p≥0

1

(p+ 1)2
, convergente.

On en déduit que l’on peut effectivement sommer terme à terme :

∫ 1

0

− ln(t)

1− t
dt =

+∞∑
p=0

∫ 1

0

gp(t)dt =
+∞∑
p=0

1

(p+ 1)2
·

11. On a montré que nγn =

+∞∑
p=1

1

p2
+ o(1), ou encore :

γn =
π2

6n
+ o

(
1

n

)
·

FIN
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