
Psi 999 – 2025/2026 Exercices

Probabilités

Familles sommables
Exercice 1 – [6/10]

En justifiant p2 + q2 ⩽ (p + q)2 ⩽ 2(p2 + q2), montrer que
(

1

p2 + q2

)
p,q∈N∗

n’est pas sommable. Pour

quels α ∈ R
(

1

(p2 + q2)α

)
p,q∈N∗

est-elle sommable ?

Exercice 2 – Un beau dévelopement asymptotique [9/10]

On définit, pour n ⩾ 1 : In =

∫ 1

0

tn

1 + tn
dt.

1. Montrer : In =
+∞∑
p=1

(−1)p+1

pn+ 1
·

2. Montrer que pour n ⩾ 2 on a In =
+∞∑
k=1

(−1)k+1F (k)

nk
, où F est la fonction Zeta alternée : pour

x > 0, F (x) =
+∞∑
p=1

(−1)p+1

px
·

3. En déduire : In =
ln 2

n
− π2

12

1

n2
+ o(1/n2).

1 Sans les variables aléatoires
On commence par un exercice posé aux mines. On notera le réel effort de l’examinateur pour évaluer la
capacité du candidat à faire des probabilités...

Exercice 3 – Mines 2015 (PC) [3/10]
Soit P une probabilité sur (N,P(N)). Montrer :

P({n}) −→
n→+∞

0

1.1 Dénombrement, probabilités finies
Exercice 4 – Surjections [2/10]
Déterminer le nombre de surjections de [[1, 4]] dans [[1, 3]].

Exercice 5 – Surjections-bis, Mines 2022 [4/10]
Soit n ∈ N∗. Déterminer la probabilité pour qu’une fonction aléatoire (suivant la loi uniforme) de [[1, n+1]]
dans [[1, n]] soit surjective.

Exercice 6 – Deux sur deux [3/10]
Dans une famille avec 2 enfants :

1. Quelle est la probabilité pour que les deux enfants soient des garçons ?
2. Quelle est la probabilité pour que les deux enfants soient des garçons sachant que l’aîné est un

garçon ?
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3. Quelle est la probabilité pour que les deux enfants soient des garçons sachant qu’il y a au moins
un garçon ?

1.2 Dés, urnes et pièces
Exercice 7 – Paires bicolores [5/10]
Une urne contient n boules rouges et n boules noires. On les retire par poignées de deux, sans remise.
Quelle est la probabilité pour que les n paires soient bicolores ?

Exercice 8 – α boules noires [6/10]
Soient n ⩾ 1 et α ∈ [[1, n]]. On considère n+ 1 urnes numérotées de 0 à n, la k-ième contenant k boules
noires et n− k boules blanches.
On choisit une urne au hasard (de façon uniforme) puis on tire avec remise α boules dans cette urne.
Quelle est la probabilité pour que ces α boules soient noires ? Déterminer la limite de cette valeur quand
n tend vers l’infini.

Exercice 9 – Cinq faces [3/10]
On lance un dé non biaisé à 5 faces. On note pn la probabilité que la somme des résultats obtenus lors
des n premiers lancers soit paire.

1. Calculer p1 et p2.
2. Donner une relation de récurrence vérifiée par (pn)n∈N, et en déduire la valeur de pn, pour n ⩾ 1.

Exercice 10 – Des dés [4/10]
On jette 6n dés équilibrés. Quelle est la probabilité pn que chaque entier entre 1 et 6 apparaisse n fois ?
Donner un équivalent de pn quand n tend vers +∞.

Exercice 11 – Deux urnes [4/10]
On dispose de deux urnes U1 et U2. La première contient deux boules blanches et trois boules noires. La
seconde contient quatre boules blanches et trois boules noires.
On effectue des tirages successifs dans les conditions suivantes : on choisit initialement une urne au hasard
et on tire une boule dans l’urne choisie. On note la couleur et on la remet dans l’urne. Si la boule tirée
était blanche (respectivement noire), le tirage suivant s’effectue dans l’urne U1 (respectivement U2).
Pour n ∈ N∗, on note Bn l’événement « la boule tirée au n-ème tirage est blanche », et pn = P(Bn).

1. Calculer p1.
2. Montrer :

∀n ∈ N∗, pn+1 = − 6

35
pn +

4

7
·

3. En déduire la valeur de pn pour tout n ∈ N∗.

Exercice 12 – Une infinité de tirages [4/10]
On lance une pièce une infinité de fois. Pour i ⩾ 1, on note Ai l’événement « le i-ème lancer tombe sur
PILE ».

1. Décrire en français les événements
∞⋂
i=1

Ai et
∞⋃

i=42

Ai.

2. Soit n ∈ N. Exprimer de façon ensembliste l’événement Dn : « on obtient au moins un pile au
delà du n-ème lancer ».

3. Décrire en français l’événement
∞⋂

n=1

Dn. Le comparer à
∞⋂

n=945

Dn.
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1.3 Diverses modélisations
Exercice 13 – IMT 2016 [3/10]
On dispose de N coffres. Avec probabilité p, on place un trésor dans l’un des coffres (avec probabilité
uniforme).
On a ouvert N − 1 coffres sans trouver de trésor. Quelle est la probabilité pour qu’on en trouve un dans
le dernier ?

Exercice 14 – Pénaux [6/10]
Le petit Olivier et le petit Franz s’affrontent lors d’une compétition de penalty. À chaque essai, Olivier
marque avec probabilité 5/6, et Franz avec probabilité 4/5. C’est Franz qui tire en premier. Ensuite, les
tirs sont alternés, et le premier qui marque a gagné la compétition.

Figure 1 – Platoche, avec 50 kg de moins !

1. Quelle est la probabilité pour que Franz gagne ?
2. Qu’en est-il si on change la règle en celle de la « mort subite » : « À chaque tour, les deux joueurs

tirent. Si l’un marque et pas l’autre alors il a gagné ; sinon on continue. » ?

Exercice 15 – Transmission moyennement fiable ; TPE 2017 [5/10]
Une information binaire (0/1) est transmise de proche en proche (aka « téléphone arabe »). La personne
numéro 1 possède l’information 1. Au temps n ⩾ 1, la personne numéro n transmet son information à la
personne numéro n+ 1 :

— avec une probabilité p ∈]0, 1[ elle transmet l’information dont elle dispose ;
— avec une probabilité 1− p elle transmet l’information inverse.

(La personne numéro 2 aura donc l’information initiale « 1 » avec probabilité p).
1. Avec quelle probabilité la personne numéro 3 va-t-elle recevoir l’information initiale ?
2. Si on note pn la probabilité que la personne n possède la bonne information 1, déterminer une

relation de récurrence simple vérifiée par les pn, puis la valeur des pn.
3. Quel est le comportement de (pn)n∈N∗ lorsque n tend vers +∞ ?

Exercice 16 – Puce ivrognesse [5/10]
Une puce saute entre trois points P , Q et R. À chaque étape, elle saute vers l’un des deux autres points

avec probabilité 1/2. On note, pour n ∈ N, Xn =

pn
qn
rn

, avec pn, qn et rn les probabilités pour qu’au

temps n la puce se trouve respectivement aux points P , Q et R.
1. Établir une relation entre pn+1 et (pn, qn, rn).
2. En déduire une relation matricielle de la forme Xn+1 = AXn, avec A à préciser.
3. Vérifier : A2 = 1

2A + 1
2I3, puis déterminer le reste dans la division euclidienne du polynôme Xn

par (X + 1/2)(X − 1). En déduire la valeur de la matrice An.

1. Arrivés ici, vous connaissez p1, p2 et p3.
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4. Montrer que Xn possède une limite qui ne dépend pas de X0.

Exercice 17 – Veaux, vaches, cochons, couvée ; attention : il y a un piège ! [3/10]
Dans une ferme post-apocalyptique, certains animaux possèdent trois pattes.

— Les veaux constituent 20% du cheptel ; 10% possèdent 3 pattes.
— Les vaches constituent 50% du cheptel ; 1% possèdent 3 pattes.
— Les cochons constituent 10% du cheptel ; 2% possèdent 3 pattes.
— Les volailles, qui constituent le reste du cheptel, possèdent 3 pattes avec une probabilité 5%.

On tire au hasard un animal à trois pattes. Quelle est la probabilité pour qu’il fasse MEUHHH ?

Figure 2 – Gruik

Exercice 18 – La taupe [5/10]
Une taupe rentre dans son terrier par un des deux trous. À chaque croisement, elle tourne à droite ou à
gauche avec probabilité 1/2.

Figure 3 – L’univers épanouissant de la taupe

Quelle est la probabilité qu’elle ressorte par le même trou ?

1.4 Résultats un peu plus théoriques
Exercice 19 – Indépendance [1/10]
Montrer que si A et B sont deux événements indépendants, alors A et B le sont aussi.

Exercice 20 – Exercice interminable ! [10/10]
Les joueurs A et B jouent au tennis, et chaque point est remporté par A avec probabilité p ∈]0, 1[.
Quelle est la probabilité que A remporte un jeu donné ?
Et un set ? Et le match ?
Cet exercice ne serait pas posé sans des indications/étapes. Essayez tout de même d’en faire quelque
chose !

Exercice 21 – CCP 2016 [6/10] – joli et classique
Soit s un réel strictement plus grand que 1. On travaille sur E = N∗, qu’on va probabiliser sur la tribu
complète T = P(N∗).
On note (pn)n⩾1 la suite strictement croissante des nombres premiers (avec donc p1 = 2, p2 = 3, ...).
Enfin, pour p premier, on note Ap = {kp | k ∈ N∗} l’ensemble de ses multiples.
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1. Montrer qu’on peut définir une probabilité en imposant pour tout k ∈ N∗ :

P({k}) = 1

ζ(s)ks
·

2. Pour p premier, calculer P(Ap).

3. Déterminer
+∞⋂
k=1

Apk
ainsi que la probabilité de cet événement.

4. Montrer que la suite de terme général
n∏

k=1

P
(
Apk

)
est convergente.

On note sa limite comme vous l’imaginez...
5. Montrer finalement :

N∏
k=1

1

1− 1/psk
−→

N→+∞

1

ζ(s)
·

Exercice 22 – Centrale 2016 [8/10]
Soit (Ω, T ,P) un espace probabilisé et (An)n∈N une suite d’événements. On considère l’événement :
A =

⋂
k∈N

⋃
n⩾k

An.

1. Montrer : P (A) = lim
k→∞

P

⋃
n⩾k

Ab

.

2. On suppose que
∑

P(An) converge.
(a) Déterminer P(A).
(b) Soit B l’ensemble des ω ∈ Ω appartenant à une infinité de An. Déterminer P(B).

3. On suppose maintenant que les An sont mutuellement indépendants et que
∑

P(An) diverge.
Déterminer P(A).

2 Études de lois
Exercice 23 – Mines 2022 [5/10] - Daphnée P.
Soient n ∈ N∗ et Z est une variable aléatoire à valeurs dans Un (les complexes z tels que zn = 1) suivant
une loi uniforme.

1. Calculer l’espérance de l’argument de Z (pris dans [0, 2π[), de Re(Z), de Im (Z).
2. Calculer Cov(Re(Z), Im (Z)).
3. Re(Z) et Im (Z) sont-elles indépendantes ?

Exercice 24 – Mines 2017 [7/10]
On effectue des expériences aléatoires et indépendantes : (Xi)i∈N, avec chaque Xi suivant une loi de
Bernoulli de paramètre p. On note (quand elle existe...) Tn l’étape à laquelle on a eu le n-ième succès.

1. Donner la loi de T1.
2. Déterminer la loi de T2... puis de Tn pour tout entier n ∈ N∗.

3. Donner le développement en série entière de
1

(1− t)n
·

4. Calculer la fonction génératrice de Tn et en déduire l’espérance de Tn.
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Exercice 25 – TPE 2016 [4/10]
Soit p ∈]0, 1[. Les variables aléatoires (Xn)n∈N∗ sont indépendantes et de même loi :

∀n ∈ N∗, P(Xn = 1) = 1− p et P(Xn = −1) = p

On définit par ailleurs, pour n ∈ N∗ : Zn =

n∏
k=1

Xk.

1. Calculer E(Zn) puis la limite de cette espérance lorsque n tend vers +∞.
2. Donner la loi de Zn.
3. À quelle conditions Z1 et Z2 sont-elles indépendantes ?

3 Loi de Poisson et loi géométrique
Exercice 26 – Deux géométriques comparées [5/10]

1. Soient T1 et T2 deux variables aléatoires indépendantes suivant des lois géométriques de paramètres
respectifs p1 et p2 dans ]0, 1[. Déterminer P(T1 ⩽ T2).

2. Application numérique : Alice et Bob lancent alternativement deux dés non pipés. Si à un moment
Alice obtient une somme égale à 6 alors elle gagne (et le jeu s’arrête) ; si Bob obtient la somme
de 7 alors il gagne (et le le jeu s’arrête). C’est Alice qui commence.
Quelle est la probabilité qu’Alice gagne ?

Exercice 27 – CCP 2017 [4/10]
On suppose que X et Y sont deux variables aléatoires indépendantes suivant la même loi. On définit
Z = X + Y + 1, et on suppose que Z suit une loi géométrique de paramètre p ∈]0, 1[.

1. Montrer l’existence de la variance et l’espérance de X, et les calculer.
2. Calculer la fonction génératrice de X.
3. En déduire la loi de X.

Exercice 28 – Centrale 2017 [7/10]
Soient X et Y indépendantes suivant l’une et l’autre une loi géométrique de paramètre p ∈]0, 1[.

1. Rappeler X(Ω) et, pour k ∈ X(Ω), la valeur de P(X = k).
2. Calculer P(X ⩾ m).
3. On définit Z = Min(X,Y ). Déterminer la loi de Z.
4. Déterminer la loi de W = X − Y , et prouver que W et Z sont indépendantes.

Exercice 29 – CCP 2016 [4/10]
Le nombre N d’enfants d’une famille suit une loi de Poisson P(λ). Lors d’une naissance, la probabilité
pour que l’enfant (il n’y a jamais de jumeaux, merci...) soit une fille est de p. Les sexes des différents
bébés sont indépendants. On note respectivement X et Y les nombres de filles et de garçons.

1. Déterminer la loi conjointe de (N,X).
2. Déterminer les lois de X et de Y .
3. (Extension probable :) Montrer que X et Y sont indépendantes.

Exercice 30 – CCP 2016 [3/10]
On suppose : X ↪→ P(λ) avec λ ∈]4, 5[.

1. Calculer un =
P(X = n+ 1)

P(X = n)
et en déduire la convergence de la série

∑
un.

2. Pour quel n aura-t-on P(X = n) maximale ?
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Exercice 31 – Centrale 2016 (deux fois) [3/10]
Soit X une variable aléatoire à valeurs dans N.

1. Rappeler la définition de la fonction génératrice d’une telle variable aléatoire.
Dans la suite, on suppose : X ↪→ P(λ).
Donner la valeur de GX(t).

2. Montrer :
∀t ⩾ 1 ∀a ∈ R, P(X ⩾ a) ⩽

GX(t)

ta
·

3. En déduire : P(X ⩾ 2λ) ⩽
( e
4

)λ
4. Comparer avec une majoration obtenue via l’inégalité de Bienaymé-Tchebychev.

4 Diverses modélisations
Exercice 32 – CCINP 2022 [6/10] - Perla E.-K.
On dispose d’une urne contenant trois jetons numérotés de 1 à 3, et on réalise des tirages avec remise.
On note respectivement Y et Z le nombre de tirages nécessaires pour obtenir deux (respectivement trois)
tirages différents.

1. Déterminer la loi de Y puis celle de Y − 1. En déduire l’espérance de Y .
2. Déterminer la loi du couple (Y, Z).
3. En déduire la loi de Z et son espérance.

Exercice 33 – Mines 2017 (deux fois) [8/10]
Dans une urne, il y a N boules, dont r ∈ [[1, N ]] blanches ; les N − r autres étant noires. On tire des
boules sans remise, et X désigne le numéro du tirage permettant de tirer la dernière boule blanche.

1. Pour r = 1 et r = N , reconnaître la loi de X ; donner son espérance.
2. On suppose maintenant : 1 < r < N .

Montrer que pour k ∈ X(Ω) (à déterminer), P(X = k) =

(
k−1
r−1

)(
N
r

) ·

3. Trouver une relation entre
(
p
q

)
et
(
p−1
q−1

)
. En déduire l’espérance de X.

Exercice 34 – CCP 2016 [3/10]

Dans un casino, un joueur tire un nombre N ∈ N∗, avec P(N = n) =
1

2n
· Si N est pair alors il gagne N

jetons et sinon il perd N jetons.
1. Quelle est la probabilité de gagner ?
2. Quelle est l’espérance de gain ?

Exercice 35 – Mines 2016 [8/10]
Un institut de sondage appelle n personnes par vagues successives : à chaque vague, il rappelle tous ceux
n’ayant pas déjà répondu. On note Xk le nombre de personnes répondant au k-ème appel ; on a donc
0 ⩽ Xk ⩽ n− (X1 + · · ·+Xk−1).
À chaque appel, une personne répond avec probabilité p ∈]0, 1[ constante.

1. X1 et X2 sont-elles indépendantes ?
2. Déterminer les lois de X1 et X2.
3. Donner la loi de Xk.
4. De façon indépendante de ce qui précède, déterminer la loi de Yk = X1 + · · ·+Xk.
5. Vérifier la cohérence à l’aide des espérances.
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Exercice 36 – Politique nataliste [4/10]
Dans un village/une région/une ville/un pays, les couples font des enfants tant qu’ils n’ont pas eu de
garçon 2. À chaque naissance, la probabilité d’avoir une fille (resp. un garçon) est de 1/2 (on exclut les
naissances de jumeaux, qui compliquent la vie !).

1. Déterminer les lois du nombre d’enfants (E), de filles (F ) et de garçons (G) par couple.
2. Déterminer les espérances des trois variables aléatoires E, F et G.
3. Déterminer l’espérance de la proportion (par couple) du nombre de garçons dans l’ensemble des

enfants.

Exercice 37 – Problème d’ascenseur [4/10]
On se donne m et n dans N∗. On munit l’ensemble E des applications de [[1,m]] dans [[1, n]] de la
« probabilité uniforme ». Pour f ∈ E, on définit X(f) le cardinal de f([[1,m]]).
Calculer E(X).
C’est l’espérance du nombre d’arrêts d’un ascenseur amenant m personnes à leur étage, dans un immeuble
à n étages.

5 Divers
Exercice 38 – Centrale 2022 [5/10] - Daphnée P.

1. Soit U une variable aléatoire à valeurs dans N. Montrer :

E(U) =

+∞∑
j=1

P(U ⩾ j)

2. Soient X1, ..., Xn des variables aléatoires à valeurs dans N, indépendantes, toutes de même loi.

On note Fk =
k∑

i=0

P(X1 = i) pour tout entier k ∈ N, ainsi que Mn = Max(X1, ..., Xn). Calculer

P(Mn ⩽ k) en fonction de n et Fk.
3. On lance n fois un dés à 6 faces non pipé. Calculer la probabilité pour que le maximum soit 3.

Exercice 39 – Centrale 2022 [2/10] - John D.
Énoncé très partiel (seulement la première question...) :
On suppose que X suit une loi de Rademacher : P(X = 1) = P(X = −1) = 1/2. Montrer :

∀u ∈ R, E(euX) ⩽ eu
2/2

Exercice 40 – TPE 2017 [7/10]
Soit (Xn)n∈N∗ une suite de variables aléatoires indépendantes deux à deux, avec pour tout n ∈ N∗ :
Xn ↪→ B(p), avec p ∈]0, 1[ fixé. On note pour tout k ∈ N∗ : Yk = Xk +Xk+1.

1. (a) Calculer l’espérance et la variance de Yk, pour tout k ∈ N∗.
(b) Soient k, ℓ tels que k < ℓ. Calculer Cov(Yk, Yℓ).

2. Montrer :
∀ε > 0, P

(∣∣∣∣Y1 + Y2 + · · ·+ Yn

n
− 2p

∣∣∣∣ ⩾ ε

)
−→

n→+∞
0

Exercice 41 – Mines 2017 [5/10]
Soit (Xn)n∈N∗ une suite de variables aléatoires mutuellement indépendantes suivant toutes une loi de
Bernoulli de paramètre p ∈]0, 1[. On dit qu’on a un « doublet au rang n » lorsque Xn = Xn+1 = 1, et
on note pn la probabilité d’avoir le premier doublet au rang n.

2. Après quoi ils n’ont plus de temps, d’énergie, de volonté pour faire d’autres enfants !
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1. On note qn la probabilité d’avoir au moins un doublet à un rang ⩽ n. Montrer :

qn = p1 + p2 + · · ·+ pn.

En déduire :

pn+3 = p2q

(
1−

n∑
k=1

pk

)
2. Donner une relation de récurrence vérifiée par la suite (pn)n⩾1.
3. En déduire une expression de pn, pour n ⩾ 1.

Exercice 42 – ENSAM 2017 [8/10]
(Xn)n∈N est une suite de variables aléatoires mutuellement indépendantes suivant toutes une loi de
Bernoulli de paramètre p ∈]0, 1[.

1. Déterminer la loi et la fonction génératrice de Sn =
X1 +X2 + · · ·+Xn

n
·

2. Calculer l’espérance et la variance de Tn =
Sn − np
√
npq

·

3. Déterminer, pour x > 0, la limite lorsque n tend vers +∞ de E(xTn).
4. Même chose avec E(eixTn).

Exercice 43 – ENSAM 2016 [4/10]
Soient X1, .., Xn des variables de Bernoulli (de même paramètre p ∈]0, 1[) mutuellement indépendantes.

On fixe P ∈ GLn(R), on définit D =

X1 (0)
. . .

(0) Xn

 et M = PDP−1.

1. Déterminer la loi et l’espérance de tr(M) puis det(M) et enfin rg(M).
2. Déterminer la probabilité pour que les sous-espaces propres de M soient de même dimension.

3. Soit N ∈ Mn(R) telle que Ni,j =

{
1 si j = i+ 1

0 sinon

Quelle est la probabilité pour que N +D soit diagonalisable ?

Exercice 44 – TPE 2016 [2/10]
Soit (Xn)n∈N une suite de variables aléatoires possédant chacune une espérance. On suppose : E(Xn) −→

n→+∞
0.

Prouver :
P(Xn = 0) −→

n→+∞
1

Exercice 45 – Cachan 2016 [2/10]
Soient A et B deux variables aléatoires indépendantes qui suivent une loi géométrique. Déterminer la
probabilité pour que toutes les solutions de l’équation y′′ + (A− 1)y′ +By = 0 tendent vers 0 en +∞.

Exercice 46 – Cachan 2016 [3/10]
On suppose : X1 ↪→ P(λ1), X2 ↪→ P(λ2) et Y prend ses valeurs dans {−1, 1}. On suppose de plus que

X1, X2 et Y sont mutuellement indépendantes. On pose p = P(Y = −1) et on pose : M =

(
X2

1 X2
2

Y X2
2 X2

1

)
.

1. Déterminer la probabilité pour que M soit diagonalisable dans M2(R).
2. Déterminer la probabilité pour que les valeurs propres de M soient réelles.
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Exercice 47 – Points fixes d’une permutation [6/10]
On munit Ω = Sn de la probabilité uniforme (P(A) = |A| /n!) et on s’intéresse au nombre moyen E(X)
de points fixes d’une permutation σ :

∀σ ∈ Sn, X(σ) = Card ({i ∈ [[1, n]] ; σ(i) = i}) .

On définit par ailleurs, pour i ∈ [[1, n]], Xi la fonction caractéristique de l’événement « σ(i) = i » :

∀σ ∈ Sn, Xi(σ) =

{
1 si σ(i) = i

0 sinon

1. Montrer : E(X1) = P(σ(1) = 1) =
1

n
·

2. Exprimer X à l’aide des Xi et en déduire l’espérance de X.
3. Calculer la variance de X.

Exercice 48 – Un minimum [5/10]
Soit X une variable aléatoire admettant un moment d’ordre 2 (bref : une variance). Montrer que pour
tout réel m, on a :

Var(X) ⩽ E
(
(X −m)2

)
.

6 Indications

Exercice 1 – Sommons en diagonale :
∑

p+q=d

1

p2 + q2
⩾

1

2d2
×d (il y a d termes) donc

∑
d

∑
p+q=d

1

p2 + q2
di-

verge donc la famille
(

1

p2 + q2

)
p,q∈N∗

n’est pas sommable, et il en est alors de même de
(

1

(p2 + q2)α

)
p,q∈N∗

pour α ⩽ 1 par minoration. Par contre pour α > 1 on peut majorer les sommes Sd sur chaque diagonale

d par
d

d2α
=

1

d2α−1
or 2α− 1 > 1, donc

∑
d

Sd converge et la famille
(

1

(p2 + q2)α

)
p,q∈N∗

est sommable.

Exercice 2 – Les deux théorèmes usuels d’interversion ne passent pas (quoique...), mais il s’agit ici d’une
suite géométrique, donc on peut contrôler le reste par TCD, ce qui nous donne la première formule. Pour

la seconde question, attention :
(

1

(np)k

)
p,k⩾1

n’est pas sommable mais
(

1

(np)k

)
(p,k)∈N∗×(N\{0,1})

l’est !

Exercice 3 – Pffffff.... Ω = N =
⋃
n∈N

{n}, et puisque cette réunion est disjointe, la série
∑

P({n}) est

convergente (cf axiomatique des espaces probabilisés) !

Exercice 4 – En commençant par choisir les deux éléments de même image, puis cette image, puis en
attribuant les deux dernières images, je trouve

(
4
2

)
× 3× 2.

Pour les joueurs : évaluer le nombre de surjections de [[1, 5]] dans [[1, 3]].

Exercice 5 – Même principe que plus haut ! La probbilité est finalement :
n
(
n+1
2

)
(n− 1)!

nn+1
·

Exercice 6 –
(
1
2

)2 ; 1
2 ; 1

3 ·

Exercice 7 – La première paire est bicolore avec probabilité
n2(
2n
2

) =
n

2n− 1
· Ensuite, probabilités com-

posées pour trouver finalement
2nn!2

(2n)!
·

Exercice 8 –
1

n+ 1

n∑
k=0

(
k

n

)α

−→
n→+∞

∫ 1

0

tαdt =
1

α+ 1
, ce qui est raisonnable pour α = 1.
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Exercice 9 – p1 = 2
5 ; p2 =

(
2
5

)2
+
(
3
5

)2 (deux pairs, ou deux impairs), et sur le même principe : pn+1 =
2
5pn + 3

5 (1− pn). Et paf la suite arithmético-géométrique...

Exercice 10 – Je choisis la position des n « 1 ». Puis celle des n « 2 » parmi les 5n positions restantes...
À la fin beaucoup de factorielles se simplifient, et je divise par 6n. On finit avec Stirling.

Exercice 11 – p1 = 1
2
2
5 + 1

2
4
7 puis pn+1 = 2

5pn + 4
7 (1− pn), et on cherche ℓ tel que ℓ = − 6

35ℓ+
4
7 ·

Exercice 12 – « Tous » vs. « au moins un ». Le dernier ensemble peut se décrire, au choix, par « il existe
des Ai qui sont vérifiés pour i arbitrairement grand » ou encore « il existe une infinité de Ai qui sont
vérifiés ».

Exercice 13 – Bayeserie sur les événements « le trésor a été placé » et « il n’est pas dans les N − 1
premiers coffres ».

Exercice 14 – Calculer la probabilité pk pour qu’après son k-ème tir, Franz soit déclaré vainqueur.

Exercice 15 – pn+1 = (2p − 1)pn + 1 − p : encore une suite arithmético géométrique ; pn −→
n→+∞

1
2 (sans

surprise).

Exercice 16 – A =
1

2

0 1 1
1 0 1
1 1 0

 et bien entendu (comme à l’exercice précédent) : Xn −→
n→+∞

1/3
1/3
1/3


Exercice 17 – Attention, les veaux font également MEUHHH. Mes statistiques sont formelles : ce fait
semble assez peu connu.

Exercice 18 – Notons p la probabilité pour que la taupe sorte à la première sortie rencontrée : p =
1
2 + 1

2 (1− p)... On peut aussi s’intéresser aux suites de mouvements conduisant à la bonne sortie :

{DGD,DG3D,DG5D, ...} ∪ {GDG,GD3G, ...}

Exercice 19 – A ∩B = A \ (A ∩B) donc P(A ∩B) = P(A)− P(A ∩B) = · · · = P(A)P(B).

Exercice 20 – Observer le graphe suivant, prendre un air surpris puis pensif puis intelligent.

0/0

15/0p

0/15

1-p

30/0p

15/15

1-p

p

15/30

1-p

40/0
p

30/15

1-p

p

15/30
1-p

p

0/40

1-p

A

p

40/15
1-p

p

30/30

1-p

p

15/40

1-p

B

1-p

p

p

40/30

1-p

p

30/40

1-p

1-p

p

p

Ég

1-p

1-p

p

Av. Ap

Av. B

1-p

p

1-p

1-p

p

Plus précisément, on évalue d’abord facilement les probabilités pour que le score passe par les « scores
simples » (ceux par lesquels on ne passe au plus qu’une fois). Ensuite, on peut évaluer la probabilité
pour qu’on passe au moins une fois par une égalité. Sous cette hypothèse, on évalue les probabilités de
passage aux différents scores après n coups supplémentaires grâce au graphe suivant :
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et au calcul de


0 p 1− p 0 0

1− p 0 0 p 0
p 0 0 0 1− p
0 0 0 1 0
0 0 0 0 1


n

1
0
0
0
0


Exercice 21 – Attention, l’intersection n’est pas vide : elle est réduite au singleton {1}. Ensuite, il y a
vaguement de la continuité décroissante, puis la convergence s’obtient via le logarithme, bien entendu.
Pour terminer, le point clé est que les Ap sont mutuellement indépendants, donc leur complémentaires
aussi ! On obtient finalement une formule due à Euler :

ζ(s) =

∞∏
k=1

1

1− 1
ps
k

·

Signalons enfin que le théorème des nombres premiers (non trivial !) dit : pn ∼ n lnn.

Exercice 22 – Intersection décroissante... et B = A est de probabilité nulle (on majore la probabilité de
l’union par la somme des probabilités, et on est face à un reste de série convergente). La deuxième partie
est plus délicate : on évalue la probabilité du complémentaire de l’union (qui est une union croissante),

et on est ramené à des probabilités du type
N∏

n=k

(1 − P(An)) qui tend vers 0 lorsque N tend vers +∞...

on va revoir ça à l’exercice suivant !

Exercice 23 – Z (donc ses parties réelle et imaginaire aussi) est d’espérance nulle, et pour l’argument je

trouve une espérance de
n− 1

n
π qui me semble intuitivement raisonnable. La covariance est nulle... mais

P (Re(X) = 1 et Im (Z) > 0) me semble nulle (enfin, dès que n ⩾ 3) alors que...

Exercice 24 – T1 ↪→ G(p) et plus généralement, Tn(Ω) = [[n,+∞[[, avec pour tout k ⩾ n :

P(Tn = k) =

(
k − 1

n− 1

)
pnqk−n

J’ai obtenu ça en conditionnant par Tn−1, et à la tête du résultat, j’ai trouvé une preuve « bien meilleure »
(ça arrive souvent...).

En dérivant dans ] − 1, 1[ le DSE de
1

1− t
j’obtiens (sans m’énerver et du premier coup...)

1

(1− t)n
=

+∞∑
k=n

(
k − 1

n− 1

)
tk−n puis GTn(t) =

(
pt

1− qt

)n

et enfin : E(Tn) = G′
Tn

(1) =
n

p
, ce qui est raisonnablement

intuitif (chaque attente du suivant étant indépendante de ce qui s’est passé avant...).
Ici, on doit pouvoir montrer que T1, T2 − T1,..., Tn − Tn−1 sont indépendantes et suivent chacune une
loi géométrique de paramètre p, vous ne pensez pas ? Ça expliquerait tout...

Exercice 25 – Évidemment, E(Zn) = (1 − 2p)n −→
n→+∞

0. Il s’agit ensuite d’évaluer la probabilité pour

qu’il y ait un nombre pair de k tels que Xk = −1 (CNS pour avoir Zn = 1). Enfin, je trouve P(Z1 =
1 et Z2 = 1) = P(Z1 = 1)P(Z2 = 1) si et seulement si (1− p)((1− p)2 + p2) = (1− p)2, ce qui donne la
condition nécessaire d’indépendance : p = 1/2 ; etc.

Exercice 26 – (T1 ⩽ T2) =
∞⊔
k=1

(T1 = k et T2 ⩾ k) puis (en retrouvant rapidement P(T2 ⩾ k) = qk−1
2 ) :

P(T1 ⩽ T2) =
p1

1− q1q2
· En application numérique on trouvera

31

60
·

Exercice 27 – 0 ⩽ X ⩽ Z. Ensuite, GZ(t) = tGX(t)2 =
pt

1− qt
donc GX(t) =

√
p(1− qt)−1/2 ; etc.

Exercice 28 – Z ↪→ G(1− q2). Pour k ⩾ 0 je trouve P(W = k) =
p2qk

1− q2
(et par parité...). Toujours dans

le cas i ⩾ 0, je trouve :

P(Z = k et W = i) = p2q2k+i−2 = P(Z = k)P(W = i)
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Exercice 29 – On écrira bien entendu (X = x) =

∞⊔
n=x

(X = x et N = n) avant de passer aux probabili-

tés... C’est surprenant, mais oui : X et Y sont bien indépendantes ! Ce ne serait évidemment pas le cas
si X + Y était une constante...

Exercice 30 – P(X = n + 1) < P(X = n) quand λ < n + 1 (i.e. n ⩾ 4) et P(X = n + 1) > P(X = n)
quand n ⩽ 3, donc le maximum est pris en 4.

Exercice 31 – Pour la première inégalité, et puisque t ⩾ 1 implique tn ⩾ ta pour n ⩾ a, on a :

GX(t) =

∞∑
n=0

P(X = n)tn ⩾
∑
n⩾a

P(X = n)ta = ta
∑
n⩾a

P(X = n) = taP(X ⩾ a).

Pour la deuxième, le minimum de t 7→ t− 1− 2 ln(t) est pris en 2...

Exercice 32 – Y − 1 suit une loi géométrique (on attend un premier succès dans des expériences de
Benoulli indépendantes de probabilité de succès (obtenir autre chose que le premier numéro) est de 2/3.
On a donc E(Y ) = 1+ 3/2. Ensuite, à Y = y fixé, Z − Y suit à nouveau une loi géométrique : on attend
un succès dans une expérience de Bernoulli de probabilité de succès 1/3.

Exercice 33 – Les cas limites nous donnent respectivement une loi uniforme (espérance
N + 1

2
) et une

loi constante (espérance N). Si on regarde seulement les couleurs des N tirages (on les poursuit jusqu’à
la fin), le résultat peut être vu comme une partie à r éléments parmi N (les positions des blanches).

J’obtiens finalement : E(X) = r

(
N+1
r+1

)(
N
r

) , qui est cohérent avec les cas limites.

Note : il m’a fallu quelques instants... puis un mini-calcul pour me convaincre que les
(
N
r

)
« colorisations »

étaient équiprobables

Exercice 34 – Je trouve respectivement 1/3 et −2/9.

Exercice 35 – Xk ↪→ B(n, qk−1p) (conditionner selon Xk−1 ; l’essentiel est compris quand on a traité
X2...). On peut évaluer Yk en pensant à la probabilité, pour une personne donnée de n’avoir jamais
répondu au téléphone ; on trouve ainsi : Yk ↪→ B(n, 1− qk)

Exercice 36 – Bien entendu, G est constante égale à 1. Pour k ∈ N, P(F = k) =
1

2k
1

2
=

1

2k+1
(F + 1 ↪→

G(1/2)) et pour k ⩾ 1, P(E = k) = P(F = k − 1) =
1

2k
(E ↪→ G(1/2)). On en déduit : E(G) = 1,

E(F ) = 1/(1/2) − 1 = 1 : il y a en moyenne une fille et un garçon par foyer ; et donc deux enfants en
moyenne : E(E) = 2. La dernière espérance demandée vaut :

E(1/E) =

+∞∑
k=1

1

k

(
1

2

)k

= − ln(1− 1/2) = ln 2.

Après avoir été un peu surpris, il n’y a rien de choquant à ce que la moyenne des inverses ne soit pas
égale à l’inverse de la moyenne !

Exercice 37 – Relier X(f) aux Xi(f) =

{
1 si i ∈ f([[1,m]])

0 sinon

Exercice 38 – On montre plus précisément que U possède une espérance si et seulement si la série du
membre de droite est convergente. Pour cela, les familles sommables sont bien utiles, puisque dans [0,+∞]

on peut écrire en notant xi,j =

{
P(X = i) si j ⩽ i

0 sinon
:

E(U) =

+∞∑
i=1

iP(X = i) =

+∞∑
i=1

+∞∑
j=1

xi,j =

+∞∑
j=1

+∞∑
i=1

xi,j =

+∞∑
j=1

+∞∑
i=j

xi,j =

+∞∑
j=1

P(X ⩾ j)

Mn est ⩽ k si et seulement si X1, ..., Xn sont tous ⩽ k (événements indépendants). Enfin, je suis égal à
3 si et seulement si je suis ⩽ 3 sans être ⩽ 2...
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Exercice 39 – En décomposant en série entière les deux termes, il suffit ensuite de montrer que pour tout
n ∈ N, (2n)! ⩾ 2nn!.

Exercice 40 – Je trouve (à vérifier...) : Cov(Yk, Yk+1) = pq(q − p) (la covariance est nulle si ℓ ⩾ k + 1)
sans réussir à me convaincre de la validité du signe dans les cas limites où p est proche de 0 ou 1, hélas.
Je terminerais bien avec Bienaymé-Tchebychev.

Exercice 41 – Je trouve pn+3−pn+2 = −p2qpn. Ensuite, X3−X2+p2q = (X−p)(X2+ · · · ). Le candidat
a été cuisiné sur les récurrences linéaires d’ordre 2, et la généralisation raisonnable à l’ordre 3.

Exercice 42 – Tn est de moyenne nulle et d’écart type 1. Les limites sont celle attendues (par ceux qui
savent !), à savoir e(ln

2 x)/2 et e−x2/2, mais pour la deuxième limite je serais curieux de savoir comment
l’auteur du sujet procède...

Exercice 43 – rg(M) = tr(M) ↪→ B(n, p), det(M) ↪→ B(pn). Les sous-espaces propres ont même dimen-
sion si et seulement si on a tiré autant de 0 que de 1, ce qui est impossible si n est impair, et arrive avec
probabilité

(
n

n/2

)
(p(1 − p))n/2 si n est pair. Enfin, le spectre de D + N est celui de N , donc est inclus

dans {0, 1}, donc N +D est diagonalisable si et seulement si (N +D)2 = N +D... ce qui est impossible
(poser le début du calcul, plutôt que de faire ces yeux ronds en lisant ce corrigé !).

Exercice 44 – Pfff... E(Xn) ⩾
+∞∑
k=1

P(Xn = k) = 1− P(Xn = 0) !

Exercice 45 – Les deux solutions de l’équation caractéristique ont leur partie réelle strictement négative
si et seulement si c’est la cas de leur somme, c’est-à-dire : 1−A < 0. Ici, P(A > 1) = 1− p.

Exercice 46 – Déjà, M est symétrique réelle avec probabilité 1−p. Il reste ensuite à estimer la probabilité

pour que
(

X2
1 X2

2

−X2
2 X2

1

)
soit diagonalisable (resp. : à spectre dans R) ; il me semble que c’est la même

condition, à savoir : X2 = 0 (sinon, le polynôme caractéristique n’a pas de racine réelle).

Exercice 47 – Chaque Xi suit une loi de Bernoulli de paramètre p = P(σ(i) = i) =
1

n
(dénombrement),

or X =
n∑

i=1

Xi, donc, même si ces variables ne sont pas indépendantes, on a : E(X) =
n∑

k=1

E(Xi) =
n

n
= 1.

Exercice 48 – C’est fondamentalement du Pythagore ! Partir de X − m = (X − E(X)) + (E(X) − m),
mettre au carré et « espérer »...

14


