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CCP 2012 PC (maths 2)
Corrigé écrit par Denis Jourdan, et retouché à la marge par moi.

Partie I : le polylogarithme

I - 1.1. Soit r > 0 .

▷ Si r < 1, alors par croissances comparées, rn = o(nα) donc

(
rn

nα

)

est bornée.

▷ Si r > 1, alors par croissances comparées, nα = o(rn) donc

(
rn

nα

)

tend vers +∞ donc n’est

pas bornée.

Le rayon de convergence R de
∑ xn

nα
est R = Sup

{

r ⩾ 0 |
(
rn

nα

)

est bornée

}

, donc R = 1.

I - 1.2. Lα est la somme d’une série entière de rayon de convergence R = 1. À ce titre, elle est de
classe C∞ sur son intervalle ouvert de convergence ]−1, 1[ (et ses dérivées successives s’obtiennent
par dérivation terme à terme).

I - 1.3. Soit x ∈]− 1, 1[.

Lα(x) + Lα(−x) =
+∞∑

n=1

1 + (−1)n

nα
xn =

+∞∑

k=1

2

(2k)α
x2k

(en effet, tous les termes d’indice impair dans la somme sont nuls).

∀x ∈]− 1, 1[, Lα(x) + Lα(−x) = 21−αLα(x
2)

I - 2.1. On a vu en I - 1.2 que pour tout x ∈]− 1, 1[, L′

α+1(x) =
+∞∑

n=1

nxn−1

nα+1
=

∞∑

n=1

xn−1

nα
, donc :

∀x ∈]− 1, 1[, xL′

α+1(x) = Lα(x)

Lα+1 est de classe C1 sur ]− 1, 1[ et Lα+1(0) = 0 donc :

∀x ∈]− 1, 1[, Lα+1(x) = Lα+1(0)
︸ ︷︷ ︸

=0

+

∫ x

0

L′

α+1(t) dt

Or la fonction t 7→ Lα(t)

t
se prolonge par continuité en 0 (elle tend vers 1 lorsque t tend vers 0)

donc

∫ x

0

Lα(t)

t
dt converge et vaut

∫ x

0

L′

α+1(t) dt.

∀x ∈]− 1, 1[, Lα+1(x) =

∫ x

0

Lα(t)

t
dt

I - 2.2. Soit x ∈]− 1, 1[.

▷ L0(x) =
+∞∑

n=1
xn =

x

1− x
(somme des termes d’une série géométrique).

▷ D’après la première relation de I - 2.1, L−1(x) = xL′

0(x) = x

(
x

1− x

)
′

=
x

(1− x)2
·

▷ D’après la deuxième relation de I - 2.1, L1(x) =

∫ x

0

L0(t)

t
dt =

∫ x

0

dt

1− t
= − ln(1− x).
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∀x ∈]− 1, 1[, L0(x) =
x

1− x
, L−1(x) =

x

(1− x)2
et L1(x) = − ln(1− x)

I - 3. On suppose α ⩽ 1. Soit x ∈]0, 1[.
Pour tout n ⩾ 1,

1

nα
⩾

1

n
et xn ⩾ 0 donc

xn

nα
⩾
xn

n
· Ainsi :

Lα(x) =

+∞∑

n=1

xn

nα
⩾

+∞∑

n=1

xn

n
= L1(x) = − ln(1− x).

Or ln(1− x) →
x→1−

−∞, donc :

Si α ⩽ 1, alors Lα(x) →
x→1−

+∞

Partie II : prolongement pour α > 1

II - 1.1. Pour x ∈ [−1, 1], notons un(x) =
xn

nα
·

▷ Pour tout n ∈ N
∗, un est continue sur [−1, 1].

▷ ∥un∥∞ =
1

nα
et α > 1 donc

∑ ∥un∥∞ converge, c’est-à-dire que la série
∑
un converge

normalement donc uniformément sur [−1, 1].

Si α > 1, alors Lα est continue sur [−1, 1].

II - 1.2. Avec I - 2.1, il vient, pour x ∈]0, 1[ :

L′

2(x) =
L1(x)

x
=

− ln(1− x)

x
→

x→1−
+∞

Appliquons le théorème de la limite de la dérivée :
▷ L2 est continue sur [0, 1] (d’après II - 1.1) ;
▷ L2 est de classe C1 sur [0, 1[ (d’après I - 1.2) ;
▷ L′

2(x) = →
x→1−

+∞

Donc
L2(x)− L2(1)

x− 1
→

x→1−
+∞, et en particulier :

L2 n’est pas dérivable en 1

Ce théorème de la limite de la dérivée 1 est souvent plus facile à prouver qu’à retenir : pour x < 1,
le théorème des accroissements finis sur [x, 1] (continuité sur le fermé, dérivabilité sur l’ouvert)

nous donne l’existence de y(x) ∈]x, 1[ tel que L2(x)− L2(1)

x− 1
= L′

2(y(x)). Puisque x < y(x) < 1,

on a y(x) −→
x→1−

1, et il suffit alors de composer les limites.

II - 2.1. On commence bien entendu par le commencement (sinon, poubelle...) :

▷ Pour tout u > 0, eu − 1 > 0 donc φ : u 7→ uα−1

eu − 1
est continue sur ]0,+∞[.

▷ |φ(u)| ∼
u→0

uα−2 =
1

u2−α
· Or α > 1 donc 2−α < 1 donc u 7→ 1

u2−α
est intégrable au voisinage

de 0, donc φ aussi.

▷ En +∞, u2φ(u) ∼ uα−1e−u donc φ(u) = o

(
1

u2

)

. Or u 7→ 1

u2
est intégrable au voisinage de

+∞, donc φ aussi.

Si α > 1, alors φ : u 7→ uα−1

eu − 1
est intégrable sur ]0,+∞[.

1. Et surtout pas du ≪ prolongement de la dérivée ≫...
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II - 2.2. Soit x ⩽ 1. L’application u 7→ uα−1

eu − x
est continue sur ]0,+∞[ car pour tout u > 0, eu > 1

donc eu − x > 0. De plus,

∀u > 0, 0 ⩽
uα−1

eu − x
⩽ φ(u)

donc par comparaison, u 7→ uα−1

eu − x
est intégrable sur ]0,+∞[.

Kα(x) =

∫ +∞

0

uα−1

eu − x
du est définie si x ∈]−∞, 1].

II - 2.3. On vient de voir que Kα : x 7→
∫ +∞

0

uα−1

eu − x
du est définie sur ]−∞, 1].

Vérifions les hypothèses du théorème de continuité des intégrales à paramètre :

Pour x ⩽ 1 et u > 0, posons g(x, u) =
uα−1

eu − 1
·

▷ Pour tout x ⩽ 1, u 7→ g(x, u) est continue (par morceaux) et intégrable sur ]0,+∞[.
▷ Pour tout u > 0, x 7→ g(x, u) est continue sur ]−∞, 1] (car si u > 0 et x ⩽ 1, eu > 1 ⩾ x).
▷ Pour tout u ∈ R

∗

+ et tout x ∈]−∞, 1], |g(x, u)| ⩽ φ(u) et φ est intégrable sur R∗

+ d’après II
- 2.1

Kα : x 7→
∫ +∞

0

uα−1

eu − x
du est (définie et) continue sur ]−∞, 1].

Notons qu’avec le théorème dont on dispose en PSI, la définition de l’intégrale est donnée dans
la conclusion, et l’intégrabilité n’est donc pas à établir/signaler dans les hypothèses. En fait, la
régularité (continuité par morceaux) et la domination fournissent cette intégrabilité.

II - 2.4. On suppose que α > 2. Reprenons les notations précédentes et vérifions les hypothèses du
théorème de dérivation des intégrales à paramètre :
▷ Pour tout x ⩽ 1, u 7→ g(x, u) est continue (par morceaux) et intégrable sur ]0,+∞[.

▷ Pour tout u > 0, x 7→ g(x, u) est de classe C1 sur ]−∞, 1] et
∂g

∂x
(x, u) =

uα−1

(eu − x)2
·

▷ Pour tout x ⩽ 1, u 7→ ∂g

∂x
(x, u) =

uα−1

(eu − x)2
est continue (par morceaux ) sur ]0,+∞[.

▷ Hypothèse de domination :

∀u ∈ R
∗

+ ∀x ∈]−∞, 1],

∣
∣
∣
∣

∂g

∂x
(x, u)

∣
∣
∣
∣
=

uα−1

(eu − x)2
⩽

uα−1

(eu − 1)2
=: ψ(u)

(en effet, si x ⩽ 1 et u > 0 alors 0 < eu − x ⩽ eu − 1 donc (eu − x)2 ⩽ (eu − 1)2 > 0)
De plus, ψ est intégrable sur ]0,+∞[ car
• ψ est continue sur ]0,+∞[ ;
• en 0+, ψ(u) ∼ uα−3 et α− 3 < 1 donc ψ est intégrable au voisinage de 0 ;

• en +∞, ψ(u) = o

(
1

u2

)

donc ψ est intégrable au voisinage de +∞.

L’hypothèse de domination est donc vérifiée et on peut conclure :

Si α > 2, alors Kα : x 7→
∫ +∞

0

uα−1

eu − x
du est de classe C1 sur ]−∞, 1]

II - 2.5. Supposons α ∈]1, 2]. Soient a, b deux réels tels que a < b < 1 .

On procède comme dans la question précédente pour vérifier les premières hypothèses du théorème
de dérivation des intégrales à paramètre. Pour l’hypothèse de domination : pour tout x ∈ [a, b],
eu − x ⩾ eu − b > eu − 1 > 0, donc 0 < (eu − x)2 ⩽ (eu − b)2. Ainsi :

∀x ∈ [a, b] ∀u > 0,

∣
∣
∣
∣

∂g

∂x
(x, u)

∣
∣
∣
∣
=

uα−1

(eu − x)2
⩽

uα−1

(eu − b)2
=: Ψ(u)

Or Ψ est intégrable sur R∗

+ car
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• Ψ est continue sur R∗

+ ;

• au voisinage de 0+, Ψ(u) ∼ uα−1

(eu − b)2
donc Ψ(u) → 0 donc Ψ est intégrable au voisinage de 0 ;

• au voisinage de +∞, Ψ(u) = o

(
1

u2

)

donc Ψ est intégrable au voisinage de +∞.

Ainsi l’hypothèse de domination est vérifiée.
On a donc prouvé que Kα est de classe C1 sur [a, b] et ce pour tout segment [a, b] inclus dans
]−∞, 1[, donc :

Si α > 1, alors Kα : x 7→
∫ +∞

0

uα−1

eu − x
du est de classe C1 sur ]−∞, 1[.

II - 3.1. D’après II - 2.2. :

Gα = Kα(0) existe.

D’autre part, la fonction t 7→ tα−1e−t est continue, positive et non identiquement nulle, donc :

Gα > 0

II - 3.2. Soient x ∈ [−1, 1] et u > 0. On a : |xe−u| ⩽ e−u < 1, donc :

1

eu − x
=

e−u

1− xe−u
= e−u

+∞∑

n=0

(xe−u)n =

+∞∑

n=0

xne−(n+1)u.

II - 3.3. Fixons x0 ∈ [−1, 1].

x0Kα(x0) =

∫ +∞

0

x0u
α−1

eu − x0
du =

∫ +∞

0

+∞∑

k=0

xk+1
0 e−(k+1)uuα−1 du =

∫ +∞

0

+∞∑

n=1

fn(u) du,

après avoir posé fn(u) = uα−1xn0 e
−nu.

Vérifions les hypothèses du théorème d’intégration terme à terme :
▷ Pour tout n ⩾ 1, fn est continue (par morceaux) intégrable sur R

∗

+ (en effet, fn se prolonge
par continuité en 0 (α > 1) et est négligeable devant 1/u2 au voisinage de +∞).

▷
∑

n⩾1

fn converge simplement sur R
∗

+ et sa somme u 7→ x0u
α−1

eu − x0
est continue (par morceaux)

sur R∗

+.

▷ Montrons que la série
∑

n⩾1

∫ +∞

0

|fn(u)| du converge :

∫ +∞

0

|fn(u)| du = |x0|n
∫ +∞

0

uα−1e−nu du

La fonction u 7→ nu est une bijection C1 strictement croissante de R∗

+ sur R∗

+, donc dans cette
intégrale convergente le changement de variable t = nu est licite et fournit :

∫ +∞

0

|fn(u)| du =
|x0|n
nα

∫ +∞

0

tα−1e−nt dt =
|x0|n
nα

Gα ⩽
Gα

nα
·

Or α > 1 donc
∑

n⩾1

Gα

nα
converge, et le théorème de comparaison des séries à termes positifs

permet de conclure.
On peut donc intégrer terme à terme :

x0Kα(x0) =

+∞∑

n=1

∫ +∞

0

fn(u) du =

+∞∑

n=1

xn0
nα
Gα = GαLα(x0)

∀x ∈ [−1, 1] ∀α > 1, xKα(x) = GαLα(x)
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II - 4.1. Par définition, pour tout x ⩽ 1, Lα(x) =
x

Gα
Kα(x), donc les questions II - 2.3 et II - 2.5

assurent que :

Lα est définie et continue sur ]−∞, 1], de classe C1 sur ]−∞, 1[

II - 4.2. Soit x ⩽ 1 . L’application t 7→ − ln(t) est une bijection C1 strictement décroissante de ]0, 1[
sur R∗

+, donc le changement de variable u = − ln(t) fournit d’una part la convergence de l’intégrale
∫ 1

0

(− ln(t))α−1

1− xt
dt et d’autre part l’égalité :

Kα(x) =

∫ 1

0

(− ln(t))α−1

1
t − x

dt

t
=

∫ 1

0

(− ln(t))α−1

1− xt
dt

Pour tout x ⩽ 1, Lα(x) =
x

Gα

∫ 1

0

(− ln(t))α−1

1− xt
dt

II - 4.3. Soit z ∈ C \ R. L’application u 7→ uα−1

eu − z
est continue sur ]0,+∞[ (le dénominateur ne

s’annule jamais), et son module tend vers 0 en 0 et est négligeable devant 1/u2 au voisinage de

+∞, donc u 7→ uα−1

eu − z
est intégrable sur ]0,+∞[, d’où l’existence l’intégrale

∫ +∞

0

uα−1

eu − z
du.

D’autre part, on a vu que si z ∈ R\]1,+∞[,

∫ +∞

0

uα−1

eu − z
du existe (cf II - 2.2).

En définitive :

z 7→ z

Gα

∫ +∞

0

uα−1

eu − z
du est bien définie sur C\]1,+∞[, et prolonge bien la fonction Lα.

Soit z ∈ C tel que z2 /∈]1,+∞[ . Alors z /∈]1,+∞[ et −z /∈]1,+∞[ (en effet, si z ou −z ∈]1,+∞[
alors z2 ∈]1,+∞[). On a alors :

Lα(z) + L−α(z) =
z

Gα

∫ +∞

0

uα−1

(
1

eu − z
− 1

eu + z

)

du =
z

Gα

∫ +∞

0

2zuα−1

e2u − z2
du

L’application u 7→ 2u est une bijection C1 de R
∗

+ sur R∗

+, donc le changement de variable t = 2u
est licite et fournit :

Lα(z) + L−α(z) =
z

Gα

∫ +∞

0

ztα−1

2α−1(et − z2)
dt =

1

2α−1
Lα(z

2)

Pour tout z ∈ C tel que z2 /∈]1,+∞[, on a Lα(z) + L−α(z) =
1

2α−1
Lα(z

2)

Partie III : le cas α = 2.

Les deux premières questions étaient ≪ évidemment ≫ hors programme ; désolé...

III - 1. Des techniques standard sur les séries de Fourier permettaient d’établir la valeur de ζ(2) :

L2(1) =

+∞∑

k=1

1

k2
(= ζ(2)) =

π2

6
·

Ensuite :

L2(1) + L2(−1) =

+∞∑

n=1

1 + (−1)n

n2
=

+∞∑

k=1

2

(2k)2
=

1

2
L2(1)

(en effet, tous les termes d’indice impair dans la somme sont nuls).

L2(−1) =
−1

2
L2(1) = −π

2

12
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Remarques :
▷ on pouvait aussi utiliser le fait que L2 est continue en 1 et en -1 (II - 1.1) et passer à la limite

quand x→ 1 dans l’égalité de I - 1.3. pour obtenir L2(1) + L2(−1) = 1
2L2(1).

▷ le signe de L2(−1) est bien en accord avec le théorème des séries alternées.

III - 2.1. L2 est de classe C1 sur ] − 1, 1[ et lorsque x décrit ]0, 1[, 1 − x reste dans ]0, 1[ donc
x 7→ L2(1− x) est de classe C1 par composition :

Φ est C1 sur ]0, 1[.

III - 2.2. On a vu en I - 2. que pour tout x ∈]0, 1[, L′

2(x) =
L1(x)

x
=

− ln(1− x)

x
donc

∀x ∈]0, 1[, Φ′(x) = L′

2(x)− L′

2(1− x) +
ln(1− x)

x
− ln(x)

1− x
= 0

Ainsi Φ est constante sur l’intervalle ]0, 1[ .
Or L2 est continue en 1 et en 0 donc L2(x) →

x→1
L2(1) et L2(1− x) →

x→1
L2(0) = 0.

De plus ln(x) ln(1− x) →
x→1−

0 (en effet, ln(1− h) ln(h) ∼
k→0+

−h ln(h) et −h ln(h) →
x→1−

0 )

Donc Φ(x) →
x→1−

L2(1) . En définitive :

Φ est constante sur l’intervalle ]0, 1[, égale à L2(1).

III - 2.3. En prenant x =
1

2
, il vient L2(1) = Φ

(
1

2

)

= 2L2

(
1

2

)

+ ln2(2). On en tire :

L2

(
1

2

)

=

+∞∑

n=1

1

n22n
=
π2

12
− ln2(2)

2

III - 2.4. La fonction x 7→ x

x− 1
est strictement décroissante sur

[

−1,
1

2

]

, à valeurs dans

[

−1,
1

2

]

.

Donc f : x 7→ L2(x) + L2

(
x

1− x

)

+
1

2
ln2(1− x) est définie sur

[

−1,
1

2

]

.

De plus elle est dérivable sur

]

−1,
1

2

[

et en utilisant à nouveau le fait que

∀x ∈]− 1, 1[, L′

2(x) =
L1(x)

x
=

− ln(1− x)

x
,

il vient :

∀x ∈
]

−1,
1

2

[

, f ′(x) = L′

2(x)−
1

(x− 1)2
L′

2

(
x

1− x

)

− ln(1− x)

1− x

=
− ln(1− x)

x
+

1

x(x− 1)
ln

(
1

1− x

)

− ln(1− x)

1− x
= 0

Donc f est constante sur

]

−1,
1

2

[

, égale à f(0) = 0.

De plus, vu que L2 est continue sur

[

−1,
1

2

]

, f est continue sur

[

−1,
1

2

]

et donc pour tout

x ∈
[

−1,
1

2

]

, f(x) = 0.

∀x ∈
[

−1,
1

2

]

, L2(x) + L2

(
x

1− x

)

= −1

2
ln2(1− x)

III - 3. D’après II-3., K2(1) = G2L2(1) où G2 =

∫ +∞

0

te−t dt

Or une intégration par parties fournit :

∫ A

0

te−t dt =
[
−te−t

]A

0
+

∫ A

0

e−t dt →
A→+∞

1, donc G2 = 1

et finalement :
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K2(1) =

∫ +∞

0

u

eu − 1
du = L2(1) =

π2

6

III - 4.1. Soit x0 < 0. La fonction t 7→ t

x0
est une bijection C1 strictement décroissante de [x0, 0[

sur ]0, 1] donc le changement de variable s =
t

x0
est licite et fournit :

L2(x0) =
−1

G2

∫ 1

0

ln(s)

1− x0s
x0ds =

−1

G2

∫ x0

0

ln(t/x0)

1− t
dt

D’où, vu que G2 = 1,

∀x < 0, L2(x) = −
∫ 0

x

ln(t/x)

1− t
dt

NB : / il y avait une erreur de signe dans l’énoncé !

Fixons ε ∈]0,−x0[ . Les fonctions u : t 7→ − ln(1 − t) et v : t 7→ ln(t/x0) sont de classe C1 sur le
segment [x,−ε], donc en intégrant par parties :

∫ 0

x0

ln(t/x0)

1− t
dt = [− ln(1− t) ln(t/x0)]

−ε
x0

+

∫
−ε

x

ln(1− t)

t
dt

Or − ln(1 − ε) ln(ε/x0) ∼
ε→0+

ε ln(ε) donc le crochet tend vers 0 lorsque ε → 0+. D’où le résultat

en passant à la limite quand ε→ 0+ :

∀x < 0, L2(x) =

∫ 0

x

ln(1− t)

t
dt

III - 4.2. Soit x < 0 . Remarquons que
ln(1− t)

t− 1
=

1

2

d

dt

(
ln2(1− t)

)
, d’où :

∀x < 0, g(x) =
1

2

[
ln2(1− t)

]0

x
=

−1

2
ln2(1− x)

III - 4.3. t 7→ −t étant une bijection de classe C1 de ]−∞, 0[ sur ]0,+∞, le changement de variable

u = −t indique que A existe si et seulement si l’intégrale

∫ +∞

0

ln(1 + u)

u(1 + u)
du existe.

Posons h : u 7→ ln(1 + u)

u(u+ 1)
.

▷ h est continue sur ]0,+∞[
▷ h(t) →

u→0+
1 donc h se prolonge par continuité en 0, donc h est intégrable sur ]0, 1]

▷ u3/2h(u) ∼
u→+∞

ln(u)√
u

donc h(u) = ou→+∞

(
1

u3/2

)

donc h est intégrable au voisinage de +∞
Finalement, h est intégrable sur R∗

+, en particulier,
∫ +∞

0

ln(1 + u)

u(1 + u)
du existe donc A aussi.

III - 4.4 D’après III-4.2. g(x) =
−1

2
ln2(1−x) →

x→−∞

−∞ . D’autre part, L2(x)−g(x) = −
∫ 0

x

ln(1− t)

t(t− 1)
dt →

x→−∞

−A
Donc L2(x) = g(x)−A+ ox→−∞(1) ∼

x→−∞

g(x)

Mais g(x) =
−1

2

(

ln(−x) + ln

(

1− 1

x

))2

∼
x→−∞

−1

2
ln2(−x) donc finalement :

L2(x) =
−x
G2

∫ 1

0

ln(s)

1− xs
ds ∼

x→−∞

−1

2
ln2(−x)
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FILIERE PC SESSION 2012 
 
 

ÉPREUVE ÉCRITE DE MATHEMATIQUES 2 
 
 

Le sujet proposait l’étude de la fonction polylogarithme en tant que série entière, puis à un 

prolongement grâce à une intégrale. Cela était prétexte à utiliser bon nombre de notions et résultats 

du programme d’analyse. A plusieurs endroits, il convenait de citer les résultats du cours et vérifier 

avec précision les hypothèses. Cela révèle souvent les différentes qualités des candidats et on 

mesure alors leur compréhension ou au contraire leur incapacité à manipuler les dites notions. Il en 

va ainsi des propriétés des séries entières, de la notion de convergence normale, de l’intégrabilité, 
de l’étude des intégrales à paramètre, du théorème d’intégration terme à terme et des résultats sur 

les séries de Fourier. On voit aussi des étudiants qui connaissent le cours mais les méthodes ne sont 

pas assimilées. Signalons aux futurs candidats que la rigueur est la clé de la réussite et que d’écrire 
n’importe quoi ne rapporte pas de points.  
 

Rappelons que l’on attend des candidats des réponses argumentées et le barème prévoit toujours des 

points pour ces vérifications et pénalise les imprécisions caractérisées. Les techniques d’intégration par 
parties ou de changement de variables sont bien utilisées mais encore faut-il un minimum de précision. 
 

Le sujet comportait de nombreuses questions abordables et certains candidats ont pu aller très loin. 

Un certain nombre de questions pouvaient être considérées comme faciles ou des applications 

directes du cours. Dans le fil du problème, on note un nombre significatif d’erreurs (et de points 
perdus) chez des candidats qui omettent de mettre des valeurs absolues dans leurs raisonnements. 

On retrouve des notations mélangeant équivalents et développements limités notamment pour les 

existences d’intégrales. 
 

Enfin, la quasi-totalité des copies sont bien présentées, rendant d’autant plus inacceptable certaines 
copies illisibles ou très mal présentées. La rédaction reste un axe de progrès pour les candidats, 

notamment pour bien citer les théorèmes utilisés. De manière générale, les correcteurs ont apprécié 

les copies bien présentées, où les résultats encadrés apparaissent clairement, la rédaction est précise 

et les justifications bien construites. 
 

Passons maintenant aux remarques sur chacune des questions : 
 
PARTIE I 
 

I-1.1 : la règle de D’Alembert est globalement assimilée, mais il reste quand même des 
justifications incorrectes (en particulier sur le non usage de |x|).  
 

I-1.2 : un résultat du cours sur les séries entières qu’il suffisait de rappeler et non pas de 
redémontrer. Quelquefois, on affirme aussi une convergence normale en général sur ]-R,R[. 
 

I-1.3 : cette question est presque toujours traitée correctement. Quelques erreurs néanmoins dans les 
plus mauvaises copies. 
 

I-2.1 : si la relation sur la dérivée est le plus souvent établie correctement, il n'en va pas de même 
sur l’intégrale. Il était pourtant indispensable de préciser l’étude en 0, ce qui fut rarement fait.  
 

I-2.2 : beaucoup trop d'erreurs dans cette question sur des calculs de sommes de séries entières de 

référence. 
 

I-3 : certes, l’énoncé suggérait une minoration, mais on a trop souvent vu des inégalités fausses et 
on lit souvent de curieuses contributions.  
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PARTIE II 
 
II-1.1 : la convergence en +1 et -1 est citée le plus souvent mais la continuité (convergence normale 
ou théorème radial)  se limite à un lapidaire « converge donc est continue » non suffisant.  
 
II-1.2 : le passage à la limite en 1 ne peut se faire aussi simplement que certains le pensent. Par 
ailleurs, le lien entre L′2(x) → +∞ et la non dérivabilité de L2 est affirmée sans être quasiment 
jamais démontrée. 
 
II-2.1 : la justification de l’existence d’une intégrale impropre pose problème dans la rédaction, 
même si les arguments importants sont cernés. Peu de candidats commencent par indiquer que la 
fonction est continue sur le domaine ouvert d’intégration. L'étude en 0, en majorité bien traitée, 
amène parfois à des arguments ou majorations fausses.  L'étude en +∞ est généralement plus 
satisfaisante, même si certains candidats veulent utiliser le fait que la fonction tend vers 0 en +∞. 
 
II-2.2 : il est décevant de constater que trop peu de candidats font un lien avec la question 
précédente (avec une majoration) et beaucoup recommencent un raisonnement qui d'ailleurs ne 
s'adapte pas au voisinage de 0. La continuité de la fonction  n'est quasiment jamais évoquée, son 
signe non plus, ce qui est gênant pour conclure. 
 
II-2.3 : on peut, sur cette question et les suivantes, bien évaluer les candidats ayant travaillé 
régulièrement et connaissant les théorèmes du cours. Les hypothèses, notamment de domination, 
doivent être vérifiées. Il est aussi curieux de voir des candidats rechercher, sans succès, une autre 
fonction dominante que celle donnée dans l'énoncé et qui convient. 
 
II-2.4 : beaucoup de rédactions approximatives sur cette question où les hypothèses du théorème de 
dérivation des intégrales à paramètre doivent être vérifiées.  
 
II-2.5 : trop peu de candidats comprennent la différence entre cette question et la précédente, on 
affirme souvent qu'elle se traite de la même manière. 
 
II-3.1 : là encore, l’argument de continuité de l'intégrande manque souvent, alors qu'ici, on en a 
également besoin pour Gα > 0. On pouvait également constater que Gα = Kα(0), ce que certains 
observent.  
 
II-3.2 : beaucoup de candidats oublient de préciser que la série géométrique ne converge que si la 
raison est de module strictement inférieur à 1. Le reste de la question est souvent correct.  
 
II-3.3 : cette question a été diversement réussie. Seuls les meilleurs citent le théorème utile et 
vérifient une à une les hypothèses. Plus souvent, on cite le théorème mais on ne sait pas l’appliquer. 
Très peu ont réussi à traiter entièrement la question. 
 
II-4.1 : cette question, facile étant donné les connaissances accumulées sur le sujet, n'a pas échappé 
à grand monde.  
 
II-4.2 : le caractère au moins C1 bijectif du changement de variable doit être vérifié et ne l'est pas 
souvent.  
 
II-4.3 : le début de cette question est peu souvent abordé. Si l'existence pose quelques problèmes 
aux candidats, le prolongement de la fonction sur le domaine complexe est rarement justifié. La 
seconde partie calculatoire a souvent été assez bien traitée ; la relation est souvent prouvée 
correctement par ceux qui abordent la question.  
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PARTIE III 
 
III-1.1 : le calcul des coefficients de Fourier d'une fonction paire, affine par morceaux devrait être 
un exercice simple. Force est de constater que les erreurs (de formules ou de calculs) amènent un 
résultat correct dans moins d'un cas sur deux. Beaucoup trop de résultats faux. 
 
III-1.2 : les hypothèses de la formule de Parseval devraient être au moins citées, sinon démontrées 
clairement. Le théorème est en général mal connu (coefficients divers). Pire encore, on confond 
parfois convergence simple et quadratique, en oubliant l’intégrale. L2(1) est une valeur classique 
que certains candidats connaissent et citent ce qui permet à certains de rectifier une erreur de calcul à 
la question précédente. La valeur correcte de L2(-1) est beaucoup plus rare. 
 
III-2.1 : une question facile faite très souvent, mais parfois quelques précisions manquent.  
 
III-2.2 : cette question est souvent traitée correctement par ceux qui l'abordent. Les candidats 
dérivent avec succès sur ]0,1[, mais d’autres trichent pour obtenir une dérivée nulle. Le passage à la 
valeur en 1 n’est que rarement argumenté. 
 
III-2.3 : souvent traitée avec ou sans la bonne valeur donnée par la question précédente.  
 
III-3 : question peu abordée et on conclut alors correctement en utilisant une fonction auxiliaire. 
 
III-4 : cette dernière question (composée de trois sous-questions) est peu abordée. Pour ceux qui 
s'en saisissent, les résultats sont satisfaisants. 
 
III-4.1 : il y avait une très regrettable erreur de signe devant l’une des intégrales proposées. Il a été 
tenu compte de cette erreur pour ne pas pénaliser les candidats donnant un résultat conforme à 
l’énoncé et bonifier ceux qui ont remarqué cette erreur. Pour l’intégration par parties, la limite est 
rarement vérifiée. 
 
III-4.2 : calcul souvent fait, mais quelquefois au signe près. 
 
III-4.3 : question correctement traitée dans les meilleures copies qui l’abordent.  
 
 
Conclusion 

 
La progressivité des questions a permis un bon étalement des notes.  Nous  ne pouvons que 
conseiller aux futurs candidats d’améliorer leurs préparations en mathématiques, se montrant 
capables de mettre en œuvre, sans erreurs, les notions et techniques de base. Une bonne 
connaissance du cours est indispensable et de nombreuses questions posées sont souvent très 
proches de son application directe ; l’énoncé propose souvent une démarche de résolution qu’il 
convient de comprendre et de suivre en montrant son savoir-faire, ce qui est l’objet de l’évaluation.  
 


