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Corrigé écrit par Denis Jourdan, et retouché a la marge par moi.

Partie I : le polylogarithme
I-1.1. Soitr>0.

n
. . . ; r .
> Sir < 1, alors par croissances comparées, " = o(n®) donc (a) est bornée.
n

n
. . 7 T
> Sir > 1, alors par croissances comparées, n® = o(r™) donc <a> tend vers +o0o donc n’est
n

pas bornée.

n

Le rayon de convergence R de > L st R= Sup{ r>=0] <T> est bornée }, donc R = 1.
n« ne

I-1.2. L, est la somme d’une série entiere de rayon de convergence R = 1. A ce titre, elle est de
classe C* sur son intervalle ouvert de convergence | — 1, 1] (et ses dérivées successives s’obtiennent
par dérivation terme a terme).

I-1.3. Soit z €] —1,1].

+
La(x) + La(~2) = Z H( Z

n=1 k=1

(en effet, tous les termes d’indice impair dans la somme sont nuls).

Vo] =11 Lo(2) + La(—2) = 2! La(s?)|
+oo nl,nfl oo Infl
I-21. Onavuenl- 1.2 que pour tout x €] — 1,1[, L), ,(z) = > = , donc :
n=1 N n=1 n%
’Vm €l —-1,1], xL’aH(ac):La(x)‘
Loy est de classe Ct sur | — 1,1[ et Lo11(0) = 0 donc :
Vax 6] —1, ].[7 La+1($) = La+1(0) +/ Llthl(t) de
~—— Jo
=0
: La(t) -
Or la fonction t — —5 se prolonge par continuité en 0 (elle tend vers 1 lorsque ¢ tend vers 0)
T La t T
donc / Lalt) dt converge et vaut / L, ., (t)dt.
o 1t 0
T Lot
Ve €] —1,1], Loti1(x) = / %dt
0
I-2.2. Soit e] - 1,1
> Lo(z) = Z " = % (somme des termes d’une série géométrique).

n=1

I
> D’apres la premiere relation de I - 2.1, L_4(z) = zL{(z) = = (1 x ) = ( :r
—x

8
h
o
—~
~+
~—
8
jol
=

> D’apres la deuxieme relation de I - 2.1, Li(z) =



Vee]-1,1,  Lo(z) = , Ly(2) = % et Ly(z) = — In(1 — 2)

I - 3. On suppose o < 1. Soit = €]0,1].

z" "
Pour tout n > 1, — > — et 2™ > 0 donc — > —- Ainsi :
n n n n
= " = "
L = — > — =1L = —In(1—x).
@)=Y 15 > X T = D) = —hn(1 )

OrIn(l1 —z) — —oo, donc :
Tz—1—

Sia<1,alors Lo(x) — oo

z—1—

Partie II : prolongement pour a > 1

IT - 1.1. Pour z € [—1, 1], notons u,(x) = T

—
> Pour tout n € N*, w,, est continue sur [—1,1].

1
> funll = e et @ > 1 donc ) |lunll,, converge, c’est-a-dire que la série ) wu, converge

normalement donc uniformément sur [—1,1].

’Si a > 1, alors L, est continue sur [—1, 1]. ‘

IT - 1.2. Avec I - 2.1, il vient, pour x €]0,1] :

L —In(1 —
ey =2l 2029,
T xT r—1—

Appliquons le théoréme de la limite de la dérivée :
> Lo est continue sur [0,1] (d’apreés IT - 1.1);
> Lo est de classe C! sur [0,1] (d’apreés I - 1.2);
> Lh(z) = = +o0
T— 1"

L — Lo(1
M — 400, et en particulier :
r—1 r—1—

Donc

’ Lo n’est pas dérivable en 1 ‘

Ce théoréme de la limite de la dérivée' est souvent plus facile & prouver qu’a retenir : pour x < 1,

le théoréme des accroissements finis sur [x,1] (continuité sur le fermé, dérivabilité sur l’ouvert)

Lo(x) — Ly(1)
z—1

on a y(z) x:)* 1, et il suffit alors de composer les limites.

nous donne ezistence de y(x) €|x, 1] tel que = Ly(y(x)). Puisque x < y(x) < 1,

IT - 2.1. On commence bien entendu par le commencement (sinon, poubelle...) :
a—1

> Pour tout u >0, e* —1 > 0 donc ¢ : u — est continue sur ]0, 4o00].

eU —
2

1
= 55— Ora>1ldonc2—a<1doncu+— est intégrable au voisinage

==
de 0, donc ¢ aussi.

o
> o) ~ —

1 1
> En 400, u?p(u) ~ u*te™" donc ¢(u) = o (2) Or u — — est intégrable au voisinage de
u u

400, donc ¢ aussi.

a—1
T est intégrable sur ]0, +oo].

Sia>1,alors p:u—
eu_

1. Et surtout pas du <« prolongement de la dérivée >...



II - 2.2. Soit z < 1. L’application u —

a—1

" est continue sur ]0, +o00[ car pour tout u > 0, e* > 1
et —x
donc e* — x > 0. De plus,

a—1

Yu > 0, 0<

a—1
est intégrable sur ]0, +oo].
z

donc par comparaison, u —
eu —

“+oo a—1
K,(z) = / “ du est définie si x €] — 00, 1].
0

e —x
+oo L a—1
IT - 2.3. On vient de voir que K, :  — T du est définie sur | — oo, 1].
Vérifions les hypotheses du théoréme de continuité des intégrales & paramétre :
Pour z < 1 et u > 0, posons g(z,u) = euaill.

> Pour tout « < 1, u+ g(x,u) est continue (par morceaux) et intégrable sur ]0, 4+o0l.

> Pour tout u > 0, x — g(x,u) est continue sur | — oo, 1] (carsiu >0et x <1, e* > 1> x).

> Pour tout u € RY et tout x €] — 00,1], [g(z,u)| < ¢(u) et ¢ est intégrable sur R d’apres II
-21

+o0 w1l
Ky:x— / " du est (définie et) continue sur | — oo, 1].
0 e” =

Notons qu’avec le théoréme dont on dispose en PSI, la définition de l'intégrale est donnée dans
la conclusion, et lintégrabilité n’est donc pas a établir/signaler dans les hypothéses. En fait, la
régularité (continuité par morceauz) et la domination fournissent cette intégrabilité.

II - 2.4. On suppose que « > 2. Reprenons les notations précédentes et vérifions les hypotheses du

théoréeme de dérivation des intégrales a paramétre :
> Pour tout x < 1, u +— g(x,u) est continue (par morceaux) et intégrable sur ]0, +oo.

) a—1

> Pour tout u > 0, z +— g(z,u) est de classe C! sur | — 0o, 1] et a—i(m,u) = (eﬂJu,ixV'

89 ua—l )
> Pour tout « < 1, u— —=(x,u) = ——— est continue (par morceaux ) sur |0, +oo].

Ox (ev — x)2
> Hypothese de domination :

69 ua—l ua—l
Vu € R Vz €] — 00, 1], “L(z,u)| = < —.
u + T ] 00, ] ‘833 (LC ’LL) (eu _ .73)2 (eu _ 1)2 ¢(u)

(en effet, si x <1 et u > 0alors 0 < e —x <e* — 1 donc (e* —x)? < (e* —1)%2 > 0)
De plus, 1 est intégrable sur 0, 4+o0[ car

e ¢ est continue sur ]0, 4o00[;

e en 01, o(u) ~u*3 et @ — 3 < 1 donc 1 est intégrable au voisinage de 0;

1
e en 400, ¥(u) =o — | donc 1 est intégrable au voisinage de +oc.
u

L’hypotheése de domination est donc vérifiée et on peut conclure :

a—1

li du est de classe C! sur | — oo, 1]

+o0o
Sia>2,alorsKa:x»—>/
0

e” —T

IT - 2.5. Supposons « €]1,2]. Soient a,b deux réels tels que a < b < 1.

On procede comme dans la question précédente pour vérifier les premieres hypotheses du théoreme
de dérivation des intégrales & parametre. Pour 'hypotheése de domination : pour tout = € [a, b,
e —x>ev—b>e*—1>0,donc0< (e —x)? < (e* —b)2. Ainsi :

uoc—l u(x—l

BCED

Vz € [a,b] Yu > 0, ‘(x,u) 5 = ¥(u)

Or W est intégrable sur R% car



e U est continue sur R ;
a—1

e au voisinage de 07, ¥(u) ~ 5 donc W(u) — 0 donc W est intégrable au voisinage de 0;

v

(e —b)
1

e au voisinage de +o0o, ¥(u) =0 (2> donc U est intégrable au voisinage de +oo0.
u

Ainsi I’hypothese de domination est vérifiée.
On a donc prouvé que K, est de classe C! sur [a,b] et ce pour tout segment [a,b] inclus dans
] — 00, 1], donc :

a—1

du est de classe C! sur | — oo, 1].

+oou
Sia>1,alorsKa:x»—>/ -
0

e” —

II - 3.1. D’apres IT - 2.2. :

’ G = K,(0) existe. ‘

est continue, positive et non identiquement nulle, donc :

IT - 3.2. Soient z € [-1,1] et u> 0. On a : |[re™%| < e * < 1, donc :

D’autre part, la fonction ¢ — t*le™?

1 e " = =
- _ - — = e E (Iefu)n _ E xnef(nJrl)u'
er —x — xe "0 "0

IT - 3.3. Fixons g € [-1,1].

+o0 zou®! +oo +© +o0 +0
IOK(X(IO) = / —_— du = / leg"rle*(k#*l)uuafl du = / Z fn(u) du,
0 €7 — o 0 0 =

k=0

a—1 —nu

apres avoir posé fp(u) = u* 'aje
Vérifions les hypotheses du théoréme d’intégration terme a terme :
> Pour tout n > 1, f, est continue (par morceaux) intégrable sur R (en effet, f, se prolonge
par continuité en 0 (a > 1) et est négligeable devant 1/u? au voisinage de +00).

. . zou®~! .

> Y fn converge simplement sur R 1 et sa somme u — ———— est continue (par morceaux)

n>1 €7 — To

*
sur R7 .
+oo
> Montrons que la série > | fn(w)| du converge :
n>1J0

+oo +oo
/ [fn(w)| du = |x0|n/ u*teT™ du,
0 0

La fonction u — nu est une bijection C! strictement croissante de R% sur R, donc dans cette
intégrale convergente le changement de variable t = nu est licite et fournit :

+oo n +oo n G
/ |fn(u)| du = %Ll/ to‘ile*nt dt = MG@ < o,
0 0

Ga
Or @ > 1 donc > — converge, et le théoreme de comparaison des séries a termes positifs
n>=1 n
permet de conclure.
On peut donc intégrer terme a terme :

+00 oo +oo
T
2o Ko(z0) = E /0 fr(uw)du = E n—gGa:GaLa(xo)
n=1

n=1

¥z e[-1,1]Va>1,  2Ka(2) = GaLa(a)]




IT - 4.1. Par définition, pour tout < 1, L, (x) = GiKa(:r), donc les questions IT - 2.3 et IT - 2.5
assurent que : “

’La est définie et continue sur ] — oo, 1], de classe C* sur | — oo, 1[‘

IT - 4.2. Soit # < 1. L’application ¢ — — In(t) est une bijection C! strictement décroissante de ]0, 1]
sur R% , donc le changement de variable u = — In(t) fournit d’una part la convergence de I'intégrale

1 -1
—In(¢))”
/ % dt et d’autre part I'égalité :
0

1—=x
Kot = [ O / (i)t

i t 1—xt

Pour tout < 1, Ly( dt
our tout x G/ 1fxt

a—1

IT - 4.3. Soit z € C\ R. L’application u —

est continue sur ]0,+oo[ (le dénominateur ne
s’annule jamais), et son module tend vers 0 en 0 et est négligeable devant 1/u? au voisinage de
a—1 a—1

+oo
est intégrable sur ]0, +oo[, d’ou I'existence I'intégrale / du.
— 2 0

400, donc u —
e eu —
ua—l

+oo
D’autre part, on a vu que si z € R\|1, 4+o00], / du existe (cf IT - 2.2).
0 ev —z

En définitive :

+o0 ue—1
Z — / du est bien définie sur C\|1,4o00[, et prolonge bien la fonction L.
eV — 2z

Soit z € C tel que 22 ¢]1,+oo[ . Alors z ¢]1,+o0] et —z ¢]1, +oo[ (en effet, si z ou —z €]1, +00]
alors 22 €]1,+00[). On a alors :

+00 +o0 a—1
z 1 1 z 2zu
L, L_o(2) =~ a-1 — du = — Bniad N |
(2) + (2) Ga/O Y (e“—z e“+z> b Ga/() 2u _ 2

L’application u — 2u est une bijection C' de R* sur R7, donc le changement de variable ¢ = 2u
est licite et fournit :

+oo a1 1 )
L, L_, dt = L,
(2) + T G. / ot =7 ¥ = e Lal®)
1
Pour tout z € C tel que 22 ¢]1,+00[, on a Lo(2) + L_o(2) = 20(71La(22)

Partie III : le cas a = 2.

Les deux premiéres questions étaient < évidemment > hors programme ; désolé...

ITT - 1. Des techniques standard sur les séries de Fourier permettaient d’établir la valeur de ((2) :

R | w2
L) =Y H=@) ="
k=1

Ensuite :

+oo _1\n +oo
L2(1)+L2(—1):Z%:Z :%Lzu)
k=1

n=1

2
2k)2

(en effet, tous les termes d’indice impair dans la somme sont nuls).
2

Lo(-1) = S La(1) = T




Remarques :
> on pouvait aussi utiliser le fait que Ly est continue en 1 et en -1 (IT - 1.1) et passer & la limite
quand z — 1 dans I'égalité de I - 1.3. pour obtenir La(1) + Ly(—1) = 3L(1).
> le signe de Lo(—1) est bien en accord avec le théoréme des séries alternées.

III - 2.1. Ly est de classe C! sur ] — 1,1] et lorsque x décrit ]0,1[, 1 — x reste dans ]0,1[ donc
x + La(1 — ) est de classe C! par composition :

’fb est C1 sur 0, 1[. ‘

Li(z) —In(l—-=x)

III - 2.2. On avuenI - 2. que pour tout x €]0,1[, Ly(x) = = donc
Y x
In(1 — 1
o €011, #/(x) = Lyle) — 141 - ) 4 =) )

Ainsi ® est constante sur 'intervalle ]0, 1] .
Or Ly est continue en 1 et en 0 donc La(z) — Lao(1) et La(1 — x) e Ly (0) = 0.
T—r T—r

L
1
De plus In(z) In(1 — x) = 0 (en effet, In(1 — h) In(h) s —hlIn(h) et —hIn(h)
z—1— —
Donc &(x) " Ly(1) . En définitive :
r—1-

0
2. 0)

x

’ ® est constante sur U'intervalle |0, 1], égale & Lo(1). ‘

1 1 1
IIT - 2.3. En prenant x = 3 il vient Lo(1) = ® (2> =21, (2) + ln2(2). On en tire :

+o0 2 2
1 1 T In~(2
2 n42n 12 2

n=1

IIT - 2.4. La fonction x —

x . L. 1 . 1
1 est strictement décroissante sur |—1, 3| a valeurs dans |—1, 7l
T —

1 1
Donc f: x> Lo(x) + Lo <1SE> + 5 In?(1 — z) est définie sur {1, 2}
-

1
De plus elle est dérivable sur |—1, 3 et en utilisant & nouveau le fait que
Li(z) —In(l-=x)

vz 6]7171[3 Lé(z): T = T

)

il vient :

Vme}—léﬂ flx) = L’Q(x)—(x_ll)zL/2< r )_ln(l—fv)

1—2x 1—=2x

“h(l-ax) 1 m( 1 )111(19:)

x z(x —1) 1—x 11—z

=0

1
Donc f est constante sur ] -1, 3 {, égale & f(0) = 0.

1
De plus, vu que Ly est continue sur {1, 2}, f est continue sur {1, 2} et donc pour tout

S [—1, ;] , f(z)=0.

Vi € {—1,;} , Lg(x)+L2< z ) = —~In2(1 - 2)

1—=z

+oo
ITI - 3. D’apres I1-3., Kao(1) = GoLa(1) ot Gy = / te”"dt
0

A A
Or une intégration par parties fournit : te~tdt = [—te_t] 4 + e tdt — 1,doncGy=1
0 0 0 A—+o00

et finalement :



2

T
6

et —1

+oo
Kz(l)z/O ©du=Iy(1) =

t
IIT - 4.1. Soit o < 0. La fonction ¢t — — est une bijection C' strictement décroissante de [zq, 0]

Lo
sur ]0, 1] donc le changement de variable s = — est licite et fournit :
Zo
—1 (' 1In(s) —1 [ In(t/zg)
2($0) GQ /0 1 71‘05:1;0 s G2 /0 1-—1t
D’ou, vu que Go =1,
0
In(t
Yz <0, La(z) = f/ ri(i/j)dt

NB: @ il y avait une erreur de signe dans I’énoncé!

Fixons € €]0, —x¢[ . Les fonctions u : t = —1In(1 —t) et v : t — In(t/x¢) sont de classe C! sur le
segment [z, —¢], donc en intégrant par parties :

/0 Mdt = [~In(1 —t)In(t/z0)],~ + /7E -1 dt

1—t . t

0

Or —In(1 — &) In(e/x0) >, eln(e) donc le crochet tend vers 0 lorsque e — 0F. D’ott le résultat
E—r

en passant 3 la limite quand € — 07 :

OIn(1 -
VJ:<O,L2($):/ n(ft)dt

In(1 —¢)
t—1

Ve <0, g(z) = % [In*(1 — t)]g = ;ln2(1 — )

1d
IIT - 4.2. Soit x < 0 . Remarquons que =5 (ln2(1 —t)), d’ou :

III - 4.3. t — —t étant une bijection de classe C! de ] — oo, 0[ sur |0, +00, le changement de variable
T In(1 + u)

du existe.
0 u(l 4 u)

u = —t indique que A existe si et seulement si I'intégrale

In(1+w)
w(u+1)°
> h est continue sur |0, +oo|

> h(t) - 1 donc h se prolonge par continuité en 0, donc h est intégrable sur ]0, 1]
u—0

Posons h : u —

1 1
> u3/2h(u) W Ii;g) donc h(u) = 0y 400 <u3/2) donc h est intégrable au voisinage de 400

Finalement, h est intégrable sur R, en particulier,

/+°° In(1 + u)

du existe donc A aussi.

u(l+u)
III - 4.4 D’aprés [11-4.2. g() *112(1 ) = D’autre part, Ly (z)—g(z) /Oln(lt)dt —
- 4. res [11-4.2. g(z) = — In*(1—= —o0 . D’autre par z)—g(z)=— | ———=
P g 5 g part, La{r)—g L tt—1)  aoo
—-A
Donc Ly(x) = g(x) — A+ 04— —oo(1) L g(z)
1 1\)" 1
i S — = ~  —In2(— :
Mais g(z) = 5 (ln( z) +In (1 z)) o0 D In“(—z) donc finalement :

G 1—2zs z—-o0

La(x) —x/o In(s) ds ~ glnz(—x)




FILIERE PC SESSION 2012

EPREUVE ECRITE DE MATHEMATIQUES 2

Le sujet proposait I’étude de la fonction polylogarithme en tant que série entiére, puis a un
prolongement grace a une intégrale. Cela était prétexte a utiliser bon nombre de notions et résultats
du programme d’analyse. A plusieurs endroits, il convenait de citer les résultats du cours et vérifier
avec précision les hypothéses. Cela révele souvent les différentes qualités des candidats et on
mesure alors leur compréhension ou au contraire leur incapacité a manipuler les dites notions. Il en
va ainsi des propriétés des séries entieres, de la notion de convergence normale, de 1’intégrabilité,
de I’étude des intégrales a parameétre, du théoréme d’intégration terme a terme et des résultats sur
les séries de Fourier. On voit aussi des étudiants qui connaissent le cours mais les méthodes ne sont
pas assimilées. Signalons aux futurs candidats que la rigueur est la clé de la réussite et que d’écrire
n’importe quoi ne rapporte pas de points.

Rappelons que I’on attend des candidats des réponses argumentées et le baréme prévoit toujours des
points pour ces vérifications et pénalise les imprécisions caractérisées. Les techniques d’intégration par
parties ou de changement de variables sont bien utilisées mais encore faut-il un minimum de précision.

Le sujet comportait de nombreuses questions abordables et certains candidats ont pu aller tres loin.
Un certain nombre de questions pouvaient étre considérées comme faciles ou des applications
directes du cours. Dans le fil du probleme, on note un nombre significatif d’erreurs (et de points
perdus) chez des candidats qui omettent de mettre des valeurs absolues dans leurs raisonnements.
On retrouve des notations mélangeant équivalents et développements limités notamment pour les
existences d’intégrales.

Enfin, la quasi-totalité des copies sont bien présentées, rendant d’autant plus inacceptable certaines
copies illisibles ou trés mal présentées. La rédaction reste un axe de progres pour les candidats,
notamment pour bien citer les théoréemes utilisés. De maniere générale, les correcteurs ont apprécié
les copies bien présentées, ou les résultats encadrés apparaissent clairement, la rédaction est précise
et les justifications bien construites.

Passons maintenant aux remarques sur chacune des questions :
PARTIE I

I-1.1 : la régle de D’Alembert est globalement assimilée, mais il reste quand méme des
justifications incorrectes (en particulier sur le non usage de [x|).

I-1.2 : un résultat du cours sur les séries enticres qu’il suffisait de rappeler et non pas de
redémontrer. Quelquefois, on affirme aussi une convergence normale en général sur |-R,R[.

I-1.3 : cette question est presque toujours traitée correctement. Quelques erreurs néanmoins dans les
plus mauvaises copies.

[-2.1 : si la relation sur la dérivée est le plus souvent établie correctement, il n'en va pas de méme
sur I’intégrale. Il était pourtant indispensable de préciser 1’étude en 0, ce qui fut rarement fait.

[-2.2 : beaucoup trop d'erreurs dans cette question sur des calculs de sommes de séries entieres de
référence.

I-3 : certes, I’énoncé suggérait une minoration, mais on a trop souvent vu des inégalités fausses et
on lit souvent de curieuses contributions.



PARTIE I1

II-1.1 : 1a convergence en +1 et -1 est citée le plus souvent mais la continuité (convergence normale
ou théoreme radial) se limite a un lapidaire « converge donc est continue » non suffisant.

II-1.2 : le passage a la limite en 1 ne peut se faire aussi simplement que certains le pensent. Par
ailleurs, le lien entre L'2(x) — oo et la non dérivabilité de L2 est affirmée sans étre quasiment
jamais démontrée.

II-2.1 : la justification de I’existence d’une intégrale impropre pose probléme dans la rédaction,
méme si les arguments importants sont cernés. Peu de candidats commencent par indiquer que la
fonction est continue sur le domaine ouvert d’intégration. L'étude en O, en majorité bien traitée,
amene parfois a des arguments ou majorations fausses. L'étude en +oo est généralement plus
satisfaisante, méme si certains candidats veulent utiliser le fait que la fonction tend vers 0 en +co.

II-2.2 : il est décevant de constater que trop peu de candidats font un lien avec la question
précédente (avec une majoration) et beaucoup recommencent un raisonnement qui d'ailleurs ne
s'adapte pas au voisinage de 0. La continuité de la fonction n'est quasiment jamais évoquée, son
signe non plus, ce qui est génant pour conclure.

II-2.3 : on peut, sur cette question et les suivantes, bien évaluer les candidats ayant travaillé
régulierement et connaissant les théoremes du cours. Les hypotheses, notamment de domination,
doivent étre vérifiées. Il est aussi curieux de voir des candidats rechercher, sans succes, une autre
fonction dominante que celle donnée dans 1'énoncé et qui convient.

II-2.4 : beaucoup de rédactions approximatives sur cette question ou les hypotheses du théoreme de
dérivation des intégrales a parametre doivent étre vérifiées.

II-2.5 : trop peu de candidats comprennent la différence entre cette question et la précédente, on
affirme souvent qu'elle se traite de la méme maniere.

II-3.1 : la encore, I’argument de continuité de 1'intégrande manque souvent, alors qu'ici, on en a
également besoin pour Ga > 0. On pouvait également constater que Ga = Ka(0), ce que certains
observent.

II-3.2 : beaucoup de candidats oublient de préciser que la série géométrique ne converge que si la
raison est de module strictement inférieur a 1. Le reste de la question est souvent correct.

II-3.3 : cette question a été diversement réussie. Seuls les meilleurs citent le théoreme utile et
vérifient une a une les hypotheses. Plus souvent, on cite le théoréme mais on ne sait pas I’appliquer.
Tres peu ont réussi a traiter entierement la question.

II-4.1 : cette question, facile étant donné les connaissances accumulées sur le sujet, n'a pas échappé
a grand monde.

II-4.2 : le caractere au moins C1 bijectif du changement de variable doit étre vérifié et ne l'est pas
souvent.

I1-4.3 : le début de cette question est peu souvent abordé€. Si l'existence pose quelques problémes
aux candidats, le prolongement de la fonction sur le domaine complexe est rarement justifié. La
seconde partie calculatoire a souvent été assez bien traitée ; la relation est souvent prouvée
correctement par ceux qui abordent la question.



PARTIE III

II-1.1 : le calcul des coefficients de Fourier d'une fonction paire, affine par morceaux devrait étre
un exercice simple. Force est de constater que les erreurs (de formules ou de calculs) ameénent un
résultat correct dans moins d'un cas sur deux. Beaucoup trop de résultats faux.

III-1.2 : les hypotheses de la formule de Parseval devraient étre au moins citées, sinon démontrées
clairement. Le théoréeme est en général mal connu (coefficients divers). Pire encore, on confond
parfois convergence simple et quadratique, en oubliant I’intégrale. L2(1) est une valeur classique
que certains candidats connaissent et citent ce qui permet a certains de rectifier une erreur de calcul a
la question précédente. La valeur correcte de L2(-1) est beaucoup plus rare.

II-2.1 : une question facile faite trés souvent, mais parfois quelques précisions manquent.

II-2.2 : cette question est souvent traitée correctement par ceux qui l'abordent. Les candidats
dérivent avec succes sur ]0,1[, mais d’autres trichent pour obtenir une dérivée nulle. Le passage a la
valeur en 1 n’est que rarement argumenté.

IMI-2.3 : souvent traitée avec ou sans la bonne valeur donnée par la question précédente.
II1-3 : question peu abordée et on conclut alors correctement en utilisant une fonction auxiliaire.

II-4 : cette derniere question (composée de trois sous-questions) est peu abordée. Pour ceux qui
s'en saisissent, les résultats sont satisfaisants.

III-4.1 : il y avait une trés regrettable erreur de signe devant I’une des intégrales proposées. 1l a été
tenu compte de cette erreur pour ne pas pénaliser les candidats donnant un résultat conforme a
I’énoncé et bonifier ceux qui ont remarqué cette erreur. Pour I’intégration par parties, la limite est
rarement vérifiée.

II-4.2 : calcul souvent fait, mais quelquefois au signe pres.

II-4.3 : question correctement traitée dans les meilleures copies qui I’abordent.

Conclusion

La progressivité des questions a permis un bon étalement des notes. Nous ne pouvons que
conseiller aux futurs candidats d’améliorer leurs préparations en mathématiques, se montrant
capables de mettre en ceuvre, sans erreurs, les notions et techniques de base. Une bonne
connaissance du cours est indispensable et de nombreuses questions posées sont souvent tres
proches de son application directe ; I’énoncé propose souvent une démarche de résolution qu’il
convient de comprendre et de suivre en montrant son savoir-faire, ce qui est 1’objet de 1’évaluation.



