
Psi 999 – 2025/2026 Cours

Espaces préhilbertiens réels
« Il n’y a pas de plat suffisamment bon, pour ne pas être encore meilleur avec du confit de canard. » –
proverbe culinaire.
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Dans tout ce chapitre, les espaces vectoriels sont réels. Il existe une version complexe des notions abordées
(utiles par exemple pour traiter les séries de Fourier – RIP) mais qui sont maintenant hors programme.

1 Produits scalaires, utilisation de l’orthogonalité

1.1 Produits scalaires ; premiers exemples
Définition 1 — Produit scalaire ; espaces préhilbertiens réels et euclidiens.

Soit E un R-espace vectoriel.
— Un produit scalaire sur E est une application φ : E × E → R telle que :

— φ est symétrique :
∀x, y ∈ E, φ(y, x) = φ(x, y)

— φ est bilinéaire : pour tout x0 ∈ E, l’application y ∈ E 7→ φ(x0, y) est linéaire
(linéarité à droite de φ), et pour tout y0 ∈ E, l’application x ∈ E 7→ φ(x, y0) est
linéaire (linéarité à gauche).

— φ est positive : φ(x, x)⩾0 pour tout x ∈ E.
— φ est définie : x = 0 est le seul vecteur tel que φ(x, x) = 0.

— Un R-espace vectoriel muni d’un produit scalaire est déclaré préhilbertien.
— Un espace préhilbertien est dit euclidien quand il est de dimension finie.

Remarques :
— En pratique, pour montrer la bilinéarité d’une application symétrique, il suffit de montrer la linéarité à gauche. Le

plus souvent, on se contentera d’ailleurs d’un « φ est clairement bilinéaire », éventuellement agrémenté d’un « du
fait de la linéarité de l’intégration, de la dérivation, de la somme... ». Agiter les bras finira souvent de convaincre le
contradicteur. Ce dernier, tel un chien truffier, détectera le doute ou le bluff dans l’œil/la voix de son interlocuteur,
le poussant ainsi à demander quelques précisions.

— Toujours montrer le caractère positif avant le caractère défini, même si on trouve souvent l’expression « défini,
positif ».

— Comment prouver le caractère défini ? On suppose que φ(x, x) = 0, et on montre que x = 0. AUCUNE équivalence
à écrire, bien entendu...

— Les produits scalaires sont souvent notés de façon infixe (comme une loi de composition interne) : −→x .−→y à la place
de φ(x, y). On trouvera également les notations ⟨x|y⟩, ou (x|y), etc.

Exemples :
• Sur E = Rn :

— Le produit scalaire dit canonique est donné par φ(x, y) =
n∑

k=1

xkyk ; on remarque que si on

note X et Y les vecteurs colonnes associés, alors φ(x, y) = XT Y .
— Sur R2, on peut prendre φ(x, y) = x1y2 + 2x2y2, ou (moins clair)

φ(x, y) = 2x1y1 + x2y1 + x1y2 + 2x2y2 = XT
(
2 1
1 2

)
Y

— D’une manière générale, on verra que si A est une matrice symétrique dont toutes les valeurs
propres sont dans R∗

+, alors (X,Y ) 7→ XT AY constitue un produit scalaire sur Rn (pudique-
ment confondu avec Mn,1(R)).

• Sur E = Mn(R) : Mn(R) est isomorphe à Rn2

; il est donc naturel de prendre comme produit
scalaire : ⟨A|B⟩ =

∑
i,j

ai,jbi,j . Le lecteur vérifiera sans mal qu’on a :

∑
1⩽i,j⩽n

ai,jbi,j = tr(ATB),

formule parfois efficace pour accélérer certains calculs ou certaines preuves.
• Sur R[X] (ou Rn[X]) :

— (P,Q) 7→
n∑

k=0

pkqk constitue un produit scalaire (la somme va jusqu’au maximum des deux

degrés ; on écrit parfois
+∞∑
k=0

pkqk, en se souvenant qu’il s’agit d’une somme finie et non d’une

somme de série).
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— On trouve aussi (P,Q) 7→
∫ b

a

P (t)Q(t)dt lorsque a < b.

— Si on se restreint à Rn[X], (P,Q) 7→
n∑

i=0

P (i)Q(i) constitue un produit scalaire ; mais il n’est

plus défini si on se place sur R[X] ; on peut alors réparer le problème avec quelque chose comme
∞∑

n=0
P (n)Q(n)e−n.

• Sur E = C([a, b]) :

— Le produit scalaire (f, g) 7→
∫ b

a

fg est l’un des plus fréquents sur ce type d’espace.

— Le produit scalaire précédent se généralise à ceux de la forme

⟨f |g⟩ =
∫ b

a

fgρ,

où ρ est une application continue sur [a, b], à valeurs positives, et ne s’annulant qu’en un
nombre fini de points (exemple sur [0, 1] : t 7→ sin(πt)).

1.2 Cauchy-Schwarz ; normes euclidiennes
Voici enfin la version générale de l’inégalité de Cauchy-Schwarz !

Théorème 1 — Inégalité de Cauchy Schwarz
Soit φ une forme bilinéaire symétrique positive sur un R-espace vectoriel E.

— Si x, y ∈ E, alors |φ(x, y)| ⩽ φ(x, x)1/2φ(y, y)1/2.
— Si de plus φ est définie, alors il y a égalité si et seulement si x et y sont liés (colinéaires).

Preuve : Comme on l’a déjà vu dans quatre cas particuliers (sommes finies, sommes de séries, intégrales,
espérances), il suffit de considérer l’application λ 7→ ⟨λx+ y|λx+ y⟩...

Exercice 1. Soient a1, ..., an ∈ R. Montrer :

1

2
√
n

(
n∑

k=1

ak

)2

⩽
n∑

k=1

a2k
√
k.

La géométrie des classes antérieures relie le produit scalaire à la notion usuelle de norme dans R2 et R3,
via la relation :

−−→
AB.

−−→
AB =

∥∥∥−−→AB
∥∥∥2

On va définir de façon générale une norme sur un espace vectoriel. Une telle norme n’est pas forcément
reliée à un produit scalaire, mais tout produit scalaire fournit de façon naturelle une norme.

Définition 2 — Norme
Si E est un R-espace vectoriel, on appelle norme sur E toute application N : E → R+ vérifiant :

— N(λx) = |λ|N(x) pour tout (λ, x) ∈ R× E (homogénéité).
— N(x) = 0 (si et) seulement si x = 0 (séparation ; le sens « si x = 0 alors N(x) = 0 » est

conséquence de l’homogénéité).
— Pour tout (x, y) ∈ E2, N(x+ y)⩽N(x) +N(y) (inégalité triangulaire).

Proposition 1 — Normes euclidiennes

Si φ est un produit scalaire sur E, alors l’application x 7→
√
φ(x, x) est une norme sur E.

Preuve : La seule chose non triviale est l’inégalité triangulaire (« inégalité de Minkowsky » dans le cas d’un
produit scalaire). Là encore, on l’a déjà vue dans le passé. On prouvera même qu’il y a égalité si et seulement si
les deux vecteurs sont positivement liés.
On commence par noter que N(x+ y) ⩽ N(x) +N(y) si et seulement si N(x+ y)2 ⩽ (N(x) +N(y))2 (pourquoi,
au fait ?). Ensuite, après simplifications, on est ramené à ⟨x|y⟩ ⩽ ∥x∥ ∥y∥, qui doit être une conséquence de
l’inégalité de Cauchy-Schwarz (mais n’est pas équivalente, bien entendu...).
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Il faut savoir passer des produits scalaires aux normes (c’est la définition !), mais aussi faire le travail
dans l’autre sens !

Proposition 2 — Polarisation
Si x, y ∈ E, alors :

⟨x|y⟩ = 1

2

(
∥x+ y∥2 −

(
∥x∥2 + ∥y∥2

))
=

1

4

(
∥x+ y∥2 − ∥x− y∥2

)
Preuve : Pffff... Le point essentiel est que vous soyez capable de retrouver une telle formule, et pas dans votre
mémoire ou sur la copie du voisin.

Remarque : Si ∥·∥ est une norme associée à un produit scalaire, on parle de norme euclidienne. Question naturelle :
existe-t-il des normes qui ne sont pas euclidiennes ? Réponse : OUI ! Question : par exemple ? Réponse : patience !

1.3 Orthogonalité
Commençons par un scoop sidérant :

x
y

Figure 1 – On peut avoir ⟨x|y⟩ = 0 sans que ni x ni y ne soit nul !

Inutile donc de proférer des « ⟨x|y⟩ = 0, or x ̸= 0, donc ... ».

Définition 3 — Vecteurs et espaces orthogonaux
Soit E un espace préhilbertien.

— Deux vecteurs x, y ∈ E sont dits orthogonaux lorsque ⟨x|y⟩ = 0 ; on note alors x ⊥ y.
— Deux sous-espaces F1 et F2 sont dits orthogonaux lorsque ⟨x|y⟩ = 0 pour tout (x, y) ∈

F1 × F2 ; on note alors F1 ⊥ F2.
— Une famille de vecteurs (y1, . . . , yk) est dite orthogonale (abréviation : ⊥) lorsque pour

tout (i, j) ∈ [[1, k]]2 tel que i ̸= j, ⟨yi|yj⟩ = 0 . Dans le cas où les yi sont de norme 1, la
famille est dite orthonormée (abréviation : ∥⊥∥).

Proposition 3 — Les yeux bandés
Dans un espace préhilbertien :

— Si (y1, . . . , yn) est une famille orthogonale de vecteurs non nuls (en particulier si la
famille est orthonormée), alors elle est libre.

— Si F1 = Vect(x1, . . . , xk) et F2 = Vect(y1, . . . , yp), alors F1 ⊥ F2 si et seulement si
xi ⊥ yj pour tout (i, j) ∈ [[1, k]]× [[1, p]].

— Si F1 ⊥ F2, alors F1 ∩ F2 = {0}.

Remarques :
— La CNS pour avoir F1 ⊥ F2 n’est pas ÉQUIVALENTE à l’orthogonalité de la famille (x1, . . . , xk, y1, . . . , yp).
— Retenir ce qui se passe lorsqu’on « scalairise » une combinaison linéaire de vecteurs orthogonaux avec l’un d’eux :

il s’agit d’une étape importante dans de nombreux raisonnements dans les espaces euclidiens. Cela fournit aussi
la décomposition d’un vecteur dans une base orthonormée : c’est souvent utile en maths... comme en physique, et
probablement en SI !

Définition 4 — Orthogonal d’une partie

Si X ⊂ F , l’orthogonal de X, noté X⊥ est l’ensemble des vecteurs de E orthogonaux à tous
les éléments de X :

X⊥ = {y ∈ E | ∀x ∈ X, ⟨x|y⟩ = 0}.

Remarque : En pratique, X est souvent un singleton {v0} (et on note v⊥0 plutôt que {v0}⊥) ou un sous-espace de E.
On montrera sans problème le :
Fait : Si X ⊂ E, alors X⊥ est un sous-espace vectoriel de E.
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Exercice 2. Soit F est un sous-espace de E. Montrer : F⊥ ⊥ F .

Les résultats suivants sont faciles à montrer (le faire tout de même : il s’agit d’un bon exercice, pour
vérifier qu’on a bien compris ces mystérieuses histoires de quantificateurs et surtout de machins qu’on
fixe. . .) et très utiles.

Proposition 4 — Facile mais important
Dans un espace préhilbertien E :

— {0}⊥ = E et E⊥ = {0} ;
— si F ⊂ G, alors G⊥ ⊂ F⊥ ;
— si v0 ∈ E, alors v⊥0 = Vect(v0)

⊥ ;
— F ∩ F⊥ = {0}.

L’exercice suivant fournit également une série de résultats à savoir établir rapidement et proprement
(plutôt que de les apprendre de façon imprécise).

Exercice 3. Soient F et G deux sous-espaces de E. Montrer les relations suivantes :
— F⊥ ∩G⊥ = (F +G)⊥ ;
— F ⊂ (F⊥)⊥ ;
— F⊥ +G⊥ ⊂ (F ∩G)⊥.

Remarque : On verra que les deux dernières inclusions sont des égalités dans le cas de la dimension finie, mais peuvent
être strictes en dimension quelconque. En particulier, si vous pensez les avoir montrées, reprenez vos démonstrations :
pour montrer A ⊂ B, avez-vous commencé par FIXER un élément de A pour prouver À LA FIN qu’il était dans B ? Ben
non ! C’est pour ça que vos démonstrations sont fausses... y compris probablement celles établissant des résultats pourtant
corrects !

Continuons avec un résultat connu essentiellement depuis le collège !
Théorème 2 — Pythagore

Soient x1, . . . , xk ∈ E (k⩾2) ; alors :
— x1 ⊥ x2 si et seulement si ∥x1 + x2∥2 = ∥x1∥2 + ∥x2∥2 ;
— SI la famille x1, . . . , xk est orthogonale, ALORS :

∥x1 + · · ·+ xk∥2 = ∥x1∥2 + · · ·+ ∥xk∥2 .

Exercice 4. Pythagore a-t-il plutôt énoncé son théorème dans le cadre des espaces euclidiens ou préhil-
bertiens ?

Encore une relation valable dans tous les préhilbertiens :
Proposition 5 — Identité du parallélogramme
Si x, y ∈ E, alors :

∥x+ y∥2 + ∥x− y∥2 = 2(∥x∥2 + ∥y∥)2).

Preuve : Pfff...

Exercice 5. Regarder le dessin suivant, et prendre un air inspiré.

A

B
C

D

Figure 2 – AC2 +BD2 = AB2 +BC2 +DC2 +AD2

Exercice 6. Soit E = C([0, 1],R). Pour f ∈ E, on note ∥f∥∞ le maximum de |f | (justifier l’existence...).
Montrer que ∥.∥∞ est une norme sur E, mais qu’elle n’est pas euclidienne.
Pour le second point, on cherchera f et g niant l’identité du parallélogramme.
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1.4 Un exercice kleenex : utile sur le moment puis à jeter après utilisation !

Exercice 7. Pour a, b ∈ R, on pose f(a, b) =

∫ 1

0

(
t2 − (at+ b)

)2
dt.

Montrer que Inf{f(a, b) | a, b ∈ R} est en fait un minimum, et le calculer.

« Avec un peu de métier », on voit qu’il s’agit de déterminer la distance d’un bon vecteur à un bon
sous-espace d’un bon espace vectoriel muni du bon produit scalaire...

— Soit E = R2[X], muni du produit scalaire usuel ⟨P |Q⟩ =
∫ 1

0

PQ et de la norme ∥·∥ associée. On

a f(a, b) =
∥∥X2 − (aX + b)

∥∥2. Il s’agit donc de minimiser une distance (en fait, son carré).
— Faisons un dessin...

X2

X2−(aX+b)

aX+b
αX+β

R1[X]

Figure 3 – Interprétation géométrique du problème

Sur le dessin, on fait intervenir un hypothétique vecteur αX + β tel que X2 − (αX + β) soit
orthogonal à R1[X] (oui, celui que vous appellerez le projeté orthogonal de X2 sur R1[X]...). Il
semblerait qu’un tel vecteur, s’il existait, aurait un rôle particulier. . .

— SI PAR MIRACLE un tel vecteur P0 = αX + β existe, on peut écrire grâce à Pythagore, au
dessin, et à la décomposition qu’il inspire :

f(a, b) =
∥∥X2 − (aX + b)

∥∥2 =
∥∥(X2 − (αX + β)

)
+
(
(αX + β)− (aX + b)

)∥∥2
=

∥∥X2 − (αX + β)
∥∥2 + ∥(α− a)X + β − b)∥2 ⩾

∥∥X2 − (αX + β)
∥∥2 = f(α, β)

Les f(a, b) sont donc minorés par une valeur particulière f(α, β), ce qui assure l’existence d’un
minimum.

— Cherchons si, par hasard, un tel polynôme P0 existe. La condition P0 ∈ (R1[X])⊥ revient aux

deux équations ⟨X2− (αX+β)|1⟩ = 0 et ⟨X2− (αX+β)|X⟩ = 0, soit :
α

2
+β =

1

3
et

α

3
+

β

2
=

1

4
·

Ce système admet une unique solution (α, β) = (1,−1/6).
— Ainsi, f(a, b) est minoré par f(1,−1/6), qui est donc un minimum. Il ne reste plus qu’à calculer

ce minimum, en notant que par construction, ⟨X2 − αX + β)|αX + β⟩ = 0, de sorte que :

f(α, β) = ⟨X2 − αX + β)|X2 − αX + β)⟩ = ⟨X2 − αX + β)|X2⟩

= ⟨X2|X2⟩ − ⟨X2|X⟩+ 1

6
⟨X2|1⟩ = 1

180
·

Remarques :
— Il est exclu de traiter ce type d’exercice sans faire de dessin (sauf à vouloir faire une petite blague).
— Très bientôt (quelques pages !), on verra que l’existence et l’unicité de P0 étaient en fait acquises du simple fait

qu’on travaille en dimension finie : le miracle n’en était pas un... et la rédaction pour ce type d’exercice sera donc
très différente a posteriori.

— Bien des variantes de cet exercice vous seront proposées en TD, khôlles, et plus si affinités. 1

1.5 Bases orthonormées
Le premier point à avoir en tête est qu’en base orthonormée (ou seulement orthogonale), la décomposition
d’un vecteur est simple (contrairement à ce qui se passe dans le cas général).

1. Bon, c’est assez clair ou il faut (encore) faire un dessin ?
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Proposition 6 — Décomposition d’un vecteur en base orthonormée

Si E = (e1, ..., en) est une base orthonormée de E, alors :

∀x ∈ E, x = ⟨x|e1⟩e1 + · · ·+ ⟨x|en⟩en =

n∑
k=1

⟨x|ek⟩ek.

Si E est seulement orthogonale, cette décomposition s’écrit :

∀x ∈ E, x =

n∑
k=1

⟨x|ek⟩
∥ek∥2

ek.

Preuve : Écrire x =
n∑

k=1

αkek et cogner contre ek...

Exercice 8. Comparer la complexité (en terme de multiplications/additions de réels, et en fonction de
n) du coût de cette décomposition, et celle d’une décomposition générale en base quelconque. Dans les
deux cas, on donnera une évaluation de ces coûts à la louche, sous la forme nα, avec α à préciser.

Le résultat qui suit dit qu’on peut toujours travailler en base orthonormée si on le souhaite (et on le
souhaite souvent d’après l’exercice précédent !)

Théorème 3 — Existence de bases orthonormées

Tout espace euclidien (préhilbertien de dimension finie) possède une base orthonormée.

Preuve : On peut travailler par récurrence sur la dimension de E. Le cœur de la preuve étant qu’en prenant
un vecteur x0 de norme 1 puis on considérant son orthogonal, on obtient un espace euclidien (l’orthogonal) de
dimension égale à la dimension de l’espace initial moins un. On en prend alors une base orthonormée, qu’on
complète par x0 pour avoir une base orthonormée de l’espace initial.

Le résultat suivant est plus précis, en plus d’être effectif : il dit qu’on peut trouver des bases orthonormées
(ou orthogonales) particulièrement bien adaptées à une première base, non orthonormée.

Théorème 4 — Procédé de Gram-Schmidt
Soit (e1, . . . , en) une base d’un espace euclidien E. Alors il existe une base orthogonale
(f1, . . . , fn) telle que pour tout k ∈ [[1, n]], Vect(f1, . . . , fk) = Vect(e1, . . . , ek).

Preuve :
— On fait quoi ?
— Une récurrence !
— Oui, mais avant ?
— Un dessin ?
— Bravo ! ! !

ek+1

g

fk+1

f1

f2

fkFk

Figure 4 – Le procédé d’orthogonalisation de Schmidt

Notons pour k ∈ [[1, n]] : Fk = Vect(e1, . . . , ek).
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— Pour k ∈ [[1, n]], soit P(k) la proposition : « Il existe une famille orthogonale (f1, . . . , fk) telle que pour
tout i ∈ [[1, k]], Vect(f1, . . . , fi) = Fi. »

— P(1) ne pose pas de problème : il suffit de prendre f1 = e1.
— Supposons P(k) établie, avec k ∈ [[1, n− 1]] ; on dispose donc de (f1, ..., fk) qui constitue une base ortho-

gonale de Fk. Ensuite, ek+1 n’est pas dans Fk (liberté des ei). Le dessin nous suggère de chercher fk+1

sous la forme ek+1−g, avec g ∈ Fk (on ne peut pas encore parler de projection, attention. . .). Maintenant,
on peut chercher g sous la forme

∑
αiei ou bien sous la forme

∑
βifi. Le deuxième point de vue sera

le bon puisqu’il conduit à des conditions d’orthogonalité très simples. En effet, on a ek+1 − g ⊥ Fk si et
seulement ⟨ek+1− g|fi⟩ = 0 pour tout i ∈ [[1, k]] (puisque f1, . . . , fk est une base de Fk), et cette condition
s’écrit en fait βi ∥fi∥2 = ⟨ek+1|fi⟩, équation qui admet bien une solution, ce qui prouve P(k + 1).

Ainsi, P(k) est vérifié pour tout k ∈ [[1, n]]. Pour k = n, on a le résultat souhaité.
Remarques :

— Dans la construction précédente, on a posé :

fk+1 = ek+1 −
k∑

i=1

⟨ek+1|fi⟩
∥fi∥2

fi,

formule qu’il est INTERDIT d’apprendre. Ceci dit, il faut savoir la retrouver rapidement.
— On peut également énoncer un théorème d’« orthonormalisation », où on construit une base orthonormée. La

preuve est la même : on normalise simplement les vecteurs à chaque étape, ce qui revient à prendre :

fk+1 =

ek+1 −
k∑

i=1

⟨ek+1|fi⟩fi∥∥∥∥∥ek+1 −
k∑

i=1

⟨ek+1|fi⟩fi

∥∥∥∥∥
·

— En y regardant de plus près, il y a unicité de la famille (f1, . . . , fn) si on impose qu’ils soient de norme 1, ainsi
qu’une condition du type ⟨ek|fk⟩ > 0 (puisqu’il existe deux vecteurs de norme 1 qui conviennent).

— Attention, on ne montrera jamais l’unicité par récurrence, pour éviter la petite blague classique « il existe un unique
chemin allant de A à B et il existe un unique chemin allant de B à C, donc il existe un unique chemin allant de A
à C ». L’existence est transitive ; pas l’unicité ! Pour montrer l’unicité, on s’intéresse à la dimension de F⊥

k−1 ∩ Fk.
Le code Python correspondant est quasiment une traduction en anglais de l’algorithme :

def schmidt(ancienne, prod_scal): # orthonormalisation
e0 = ancienne[0]
nouvelle = [e0 / prod_scal(e0, e0)**(0.5)]
for i in range(1, len(ancienne)):

projection = sum( prod_scal(ancienne[i], h)*h for h in nouvelle)
f = ancienne[i] - projection
nouvelle.append(f / prod_scal(f, f)**(0.5))

return nouvelle

>>> schmidt([ array([1,1]), array([0,1])], vdot)
[array([ 0.70710678, 0.70710678]), array([-0.70710678, 0.70710678])]
>>> schmidt([ array([1,1,1]), array([1,-1,1]), array([1,0,0])], vdot)
[array([ 0.57735027, 0.57735027, 0.57735027]), array([ 0.40824829, -0.81649658, 0.40824829]),
array([ 7.07106781e-01, -1.57009246e-16, -7.07106781e-01])]

Notons qu’en combinant l’orthormalisation avec le théorème de la base incomplète, on obtient le « nou-
veau » (2022) résultat :

Théorème 5 — « de la base orthonormée incomplète »

Toute famille orthonormée peut être complétée en une base orthonormée de l’espace ambiant.

Terminons ce chapitre en notant que dans les bases orthonormées, les produits scalaires et normes se
calculent « comme dans les petites classes » : en faisant des sommes de produits de coordonnées.

Proposition 7 — Expression du produit scalaire et de la norme en base orthonormée

Si F = (f1, ..., fn) est une base orthonormée de E, x =
n∑

i=1

xifi et y =
n∑

i=1

yifi, alors :

∥x∥2 =

n∑
i=1

x2
i et ⟨x|y⟩ =

n∑
i=1

xiyi.
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Preuve : Bilinéarité du produit scalaire.

En d’autres termes, ⟨x|y⟩ = XT Y , avec X et Y les coordonnées de x et y dans F . La section suivante
va permettre de systématiser/automatiser un peu ce type de calculs, en base quelconque.

1.6 Projections orthogonales
Remarque : BIEN ENTENDU, on sait qu’il est grotesque de parler de LA projection sur un sous-espace F de E ; idem
pour la symétrie par rapport à F (comment ces applications seraient-elles définies ? ? ? Précisez votre réponse sur un dessin
SVP...)

Proposition 8 — Supplémentaire orthogonal

Si F est un sous-espace DE DIMENSION FINIE de E, alors E = F ⊕ F⊥.

Preuve : Prendre une base orthonormée de F et x ∈ E. On cherche f ∈ F tel que x− f soit orthogonal à F ,
ce qui revient à ⟨x− f |fi⟩ = 0 pour chacun des fi de la base orthonormée choisie. En cherchant f sous la forme
n∑

i=1

αifi, il s’agit donc de trouver des αi tels que ⟨f |fi⟩ − αi⟨fi|fi⟩ = 0 pour tout i : ce n’est pas trop difficile.

Remarques :
— Ainsi, dans ce cadre, on pourra parler de la projection sur F parallèlement à F⊥. C’est en particulier vrai bien

entendu si E est lui-même de dimension finie !

— Attention, si E = C([0, 1]) est muni du produit scalaire φ(f, g) =

∫ 1

0
fg, alors le sous-espace F constitué des

applications polynomiales est d’orthogonal réduit à {0} (attention, je ne dis pas que c’est évident ! Mais c’est
vrai...), donc E ̸= F ⊕ F⊥.

— Ce dernier contre-exemple nous dit d’ailleurs que – contrairement à ce que j’allais écrire – une condition de la forme
« F⊥ est de dimension finie » ne fournira pas E = F ⊕ F⊥.

Définition 5 — Projections et symétries orthogonales
Soit F un sous-espace de dimension finie d’un espace préhilbertien E.

— La projection orthogonale sur F est la projection sur F dans la direction F⊥.
— La symétrie orthogonale par rapport à F est la symétrie par rapport à F dans la

direction F⊥.

F

F⊥
x2

−x2

x

p(x) = x1

s(x) = x1 − x2

Figure 5 – Pas de projection ou de symétrie sans dessin...

Remarques :
— Pour que ces définitions aient un sens, il était crucial d’avoir E = F ⊕ F⊥.
— Comme toujours, les projections et symétries se déduisent l’une de l’autre par la relation s = 2p − Id à savoir

retrouver très rapidement à l’aide d’un dessin...
— En pratique, pour calculer p(x) ou s(x) (au choix, d’après la remarque précédente), on calcule la projection y

sur le plus petit espace dont on connaît une base (e1, . . . , ek), si possible orthogonale ! On obtient les conditions
d’orthogonalité en annulant les produits scalaire ⟨x− y|ei⟩.

Exercice 9. Soient p et s respectivement une projection orthogonale et une symétrie orthogonale.
— Montrer que la matrice A de p dans toute base vérifie A2 = A. Montrer que si cette base est

orthonormée, alors A est symétrique.
— Montrer que la matrice B de s dans toute base vérifie B2 = In. Montrer que si cette base est

orthonormée, alors B est symétrique et orthogonale.
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Il est essentiel de savoir calculer effectivement des projections orthogonales !

Proposition 9 — Calcul de projections orthogonales
Le projeté orthogonal de x ∈ E sur :

— une droite Vect(d) est :

p(x) =
⟨x|d⟩
∥d∥2

d;

— un hyperplan n⊥ est :

p(x) = x− ⟨x|n⟩
∥n∥2

n;

— le sous-espace Vect(f1, ..., fk), avec (f1, ..., fk) orthogonale, est :

p(x) =

k∑
i=1

⟨x|fi⟩
∥fi∥2

fi.

Preuve : Dans le premier cas, on écrit p(x) = αd, et ⟨x − p(x)|d⟩ = 0. Dans le deuxième, p(x) = x − αn avec

p(x) ⊥ n, et dans le troisième, p(x) =
k∑

i=1

αifi, avec x− p(x) orthogonal à chaque fi. Mais surtout :

ON FAIT SYSTÉMATIQUEMENT UN DESSIN

Définition 6 — Des symétries orthogonales particulières
Si s est la symétrie orthogonale par rapport à une droite, on parle de retournement ; si c’est
par rapport à un hyperplan, on parle de réflexion.

Exercice 10. En dimension finie, donner les matrices d’un retournement et d’une réflexion dans des
bases adaptées. En déduire leur trace et leur déterminant, en fonction de n = dim(E).

Proposition 10 — Distance à un sous-espace de dimension finie

Si F est un sous-espace de dimension finie d’un préhilbertien E et x0 ∈ E, les distances ∥x0 − y∥
entre x0 et les éléments y de F sont minorées par ∥x0 − y0∥, où y0 est le projeté orthogonal de
x0 sur F ), qui est donc un minimum : on parle de la distance de x0 à F .

Preuve : Dessin, Pythagore, épicétout.

Avec ces nouveaux résultats, la rédaction de « l’exercice kleenex » ressemblerait plutôt à ça : après avoir
introduit le matériel géométrique et noté que f(a, b) =

∥∥X2 − (aX + b)
∥∥, on peut affirmer que la borne

inférieure recherchée est la distance de X2 à R1[X], donc au projeté orthogonal de X2 sur R1[X]. La suite
des calculs est la même, mais la rédaction s’en trouve allégée puisque dès le début on connaît l’existence
de ce projeté orthogonal, et il n’y a donc plus à écrire la moindre équivalence...

Exercice 11. CCP 2009
On pose, pour A,B ∈ Mn(R) : ⟨A|B⟩ = tr

(
ATB

)
.

1. Montrer que ⟨·|·⟩ est un produit scalaire.
2. Montrer que Sn(R) et An(R) sont supplémentaires orthogonaux.

3. Calculer la distance de A =

 0 1 2
2 0 1
−1 −1 0

 à S3(R).

4. Soit H le sous-espace de E = Mn(R) constitué des matrices de trace nulle. Montrer que c’est un

sous-espace de E et préciser sa dimension. Calculer la distance de J =

1 · · · 1
... (1)

...
1 · · · 1

 à H.
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Lorsque (e1, ..., en) est une base orthonormée d’un espace euclidien et x ∈ E, on a x =
n∑

k=1

⟨x|ek⟩ek, puis :

∥x∥2 =

n∑
k=1

⟨x|ek⟩2

Mais qu’en est-il en dimension infinie ? Tout d’abord, il existe bien des bases orthonormées, mais elles
sont en général peu intéressantes (leur existence est donnée par un argument non constructif). En fait,
on dispose le plus souvent de familles orthonormées (qui ne sont pas des bases algébriques). On a alors
un résultat qui ressemble au précédent :

Proposition 11 — Inégalité de Bessel – hors programme

Soit (en)n∈N une famille orthonormée d’un espace E. On a alors :

∀x ∈ E ∀n ∈ N,
n∑

k=0

⟨x|ek⟩2 ⩽ ∥x∥2

Preuve : Si on note Fn = Vect(f1, ..., fn), on a Fn de dimension finie, donc E = Fn ⊕F⊥
n . On décompose alors

x selon cette somme orthogonale, puis on Pythagorise.

1.7 Aspects matriciels
Définition 7 — Matrice d’un produit scalaire

Soit E = (e1, ..., en) une base d’un R-espace vectoriel E. Si φ est une forme bilinéaire symétrique
(en particulier si c’est un produit scalaire), sa matrice dans la base E est :

Mat(φ, E) = ((φ(ei, ej)))1⩽i,j⩽n

On note dès maintenant que dans le cas d’une base orthonormée, la matrice représentant le produit
scalaire est In. Dans le cas général, de telles matrices permettent bien entendu de calculer des produits
scalaires...

Proposition 12 — Calcul matriciel des produits scalaires, changement de base
Soit E une base d’un espace préhilbertien E.

— Si x, y ∈ E ont pour coordonnées X,Y ∈ Mn,1(R) dans une base E et A = Mat(φ, E)
(avec φ le produit scalaire), alors :

⟨x|y⟩ = XTAY,

avec l’abus de notation qu’on imagine...
— Si F est une autre base de E, B = Mat(φ,F) et P est la matrice de passage de E vers

F , alors :
B = PTAP

Preuve : Le premier résultat est une simple conséquence de la bilinéarité. Pour la formule de changement de
base, se souvenir que :

— si x a pour coordonnées X et X ′ dans E et F , alors X = PX ′ (et non l’inverse) ;
— les identifications non justifiées restent à fuir comme la peste 2.

Remarque : Si P est la matrice de passage entre deux bases orthonormées, alors la formule de changement de base
précédente nous donne : PTP = In (et aussi bien entendu : PPT = In).

Définition 8 — Matrices orthogonales
Soit n ∈ N∗.

— Une matrice A ∈ Mn(R) est dite orthogonale lorsqu’elle vérifie ATA = AAT = In.
— L’ensemble des matrices orthogonales (n, n) constitue le groupe orthogonal, noté

On(R) ou O(n,R).
— Celles de déterminant 1 constituent le groupe spécial orthogonal, noté SOn(R) ou

SO(n,R).

2. Cette dernière offrant un taux de survie bien supérieur.
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Remarques :
— On(r) est bien un groupe (ouf !) pour la multiplication matricielle. C’est même un sous-groupe de GLn(R).
— De même, SOn(R) est un sous-groupe de On(R).
— Au fait, c’est quoi un (sous-)groupe ?
— Il suffit de vérifier une seule des deux relations ATA = AAT = In ; pourquoi ?

Proposition 13 — Matrices orthogonales vs. bases orthonormées
Soit E un espace euclidien.

— Si E et F sont deux bases orthonormées, alors la matrice de passage de E vers F est
orthogonale.

— Si E est orthonormée et la matrice de passage de E vers F est orthogonale, alors F est
orthonormée.

Preuve : Il suffit de regarder la formule de changement de base pour le produit scalaire...

Remarques :
— Le nom des matrices orthogonales est dangereux : on ne peut rien dire des matrices de passage entre bases ortho-

gonales...
— Pour vérifier qu’une matrice est orthogonale, il suffit donc de vérifier que les vecteurs colonne constituent une

famille orthonormée de Mn,1(R). Par exemple,
1
√
2

(
1 −1
1 1

)
et

1

9

 8 1 −4
−4 4 −7
1 8 4

 sont orthogonales mais pas(
1 −1
1 1

)
.

On peut maintenant revisiter l’algorithme de Gram-Schmidt pour obtenir une version matricielle inat-
tendue :

Théorème 6 — Décomposition QR

Si A ∈ GLn(R), alors il existe Q ∈ On(R) et R ∈ T +
n (R) (triangulaire supérieure) telles que

A = QR.

Preuve : Il suffit de bien géométriser le problème, calmement : on prend par exemple E la base canonique de
Rn, et on note F la famille de vecteurs représentée par A dans E . Il s’agit d’une base puisque A est inversible.
On peut l’orthonormaliser pour obtenir une troisième base G. On a alors :

A = Mat(Id,F , E) = Mat(Id,G, E)Mat(Id,F ,G).

D’une part, Mat(Id,G, E) est la matrice de passage de E vers G – deux bases orthonormées – donc est orthogonale.
D’autre part, Mat(Id,F ,G) est la matrice qui représente les fk en fonction des gi. Or, l’algorithme de Gram-
Schmidt fournit une relation (une fois retournée) de la forme :

fk = ∥· · ·∥ gk +

k−1∑
i=1

⟨fk|gi⟩gi,

donc Mat(Id,F ,G) est bien triangulaire supérieure.

Le code Python qui suit consiste essentiellement à passer d’une liste de vecteurs à une matrice, et
réciproquement (avant et après la Gram-schmidtisation) :

def QR(A): # il faut transposer avant puis après, puisqu’on lit les lignes...
ancienne = [A.transpose()[i] for i in range(len(A))]
nouvelle = schmidt(ancienne, vdot)
Q = array(nouvelle).transpose()
return Q, Q.transpose().dot(A) # On évite d’inverser...

>>> A = array([[1,-1],[1,1]])
>>> Q, R = QR(A)
>>> Q, R
(array([[ 0.70710678, -0.70710678],

[ 0.70710678, 0.70710678]]), array([[ 1.41421356, 0. ],
[ 0. , 1.41421356]]))

>>> Q.dot(R)
array([[ 1., -1.],

[ 1., 1.]])
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1.8 Deux spécificités des espaces euclidiens
Dans un espace euclidien (préhilbertien de dimension finie), l’orthogonal d’un sous-espace est mieux
maîtrisé : on connaît sa dimension. Cela permet d’affiner des inclusions vues plus tôt.

Proposition 14 — Dimension des orthogonaux dans les euclidiens
Si F est un sous-espace d’un espace E de dimension finie, alors :

dim(F⊥) = dim(E)− dim(F ).

Preuve : E = F ⊕ F⊥ !

Corollaire : Soit E un espace de dimension finie.
— Si F1 et F2 sont deux sous-espaces, alors (F1 ∩ F2)

⊥ = F⊥
1 + F⊥

2 .
— Si F est un sous-espace, alors (F⊥)⊥ = F .
— Si F est un sous-espace tel que F⊥ = {0} alors F = E.

Le fait suivant est un simple constat :

Si on fixe x0 ∈ E, alors l’application x 7→ ⟨x|x0⟩ est une forme linéaire sur E.

Le résultat qui suit nous dit qu’en fait, toute forme linéaire est de ce type.

Théorème 7 — Théorème de représentation

L’application Φ

∣∣∣∣∣∣∣∣ E −→ L(E,R)
x0 7−→ (x 7→ ⟨x|x0⟩)

est un isomorphisme.

En particulier, si f est une forme linéaire, alors il existe un unique x0 ∈ E tel que :

∀x ∈ E, f(x) = ⟨x|x0⟩.

Preuve : Montrer soigneusement la linéarité et l’injectivité, et regarder les dimensions.
On ne confondra pas Φ, Φ(x0), et Φ(x0)(x), BIEN ENTENDU. . . Ceux qui confondent encore f et f(x) à ce
moment de l’année peuvent passer leur chemin.

Corollaire : Si H est un hyperplan de E, alors il est de la forme v⊥, pour un certain vecteur non nul
v ∈ E.

2 Isométries dans les espaces euclidiens
Commençons par une petite remarque : si u ∈ L(E) conserve le produit scalaire, au sens où

∀x, y ∈ E, ⟨u(x)|u(y)⟩ = ⟨x|y⟩,

alors il conserve la norme :
∀x ∈ E, ∥u(x)∥ = ∥x∥ .

Exercice 12. Énoncer et prouver la réciproque au constat précédent.

Conserver l’un (ou l’autre, donc) impose l’injectivité (si u(x) = 0, alors ∥x∥ = ∥u(x)∥ = 0), donc la
bijectivité.

2.1 Isométries vectorielles (automorphismes orthogonaux)
Ces deux termes sont synonymes mais c’est le premier qui sera utilisé prioritairement.

Définition 9 — Isométries vectorielles
On dit que u ∈ L(E) est une isométrie vectorielle lorsqu’elle conserve la norme :

∀x ∈ E, ∥u(x)∥ = ∥x∥ .

On parle encore d’automorphisme orthogonal.
L’ensemble des isométries vectorielles constitue un groupe pour la composition, noté O(E)
(groupe orthogonal géométrique).
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Exemples :
— les symétries orthogonales sont des isométries ;
— les rotations vectorielles en dimension 2 (qui seront détaillées plus tard) également ;
— attention, les projections orthogonales (sur autre chose que {0} et E !) ne sont pas des automor-

phismes orthogonaux !

Proposition 15 — Image d’une base orthonormée par une isométrie vectorielle

Si u ∈ O(E), il transforme toute base orthonormée en une base orthonormée. Réciproquement,
si u ∈ L(E) transforme UNE base orthonormée en une base orthonormée, alors il est orthogonal
(et transforme donc TOUTE base orthonormée en une base orthonormée !).

Preuve : Le premier résultat est direct. Pour le second, ce n’est guère plus compliqué : décomposer un vecteur
donné selon la base orthonormée en question.

2.2 Groupes orthogonaux
On note (après un petit rappel de la définition hors programme !) que O(E) est un groupe géométrique ; en
regardant les matrices associées dans des bases orthonormées, on va constater que les groupe orthogonaux
géométrique et matriciels sont bien entendu cousins germains.

Proposition 16 — Caractérisation matricielle des isométries
Les trois propositions suivantes sont équivalentes, pour u ∈ L(E) :

1. u est une isométrie vectorielle ;
2. dans toute base orthonormée, la matrice de u est orthogonale ;
3. il existe une base orthonormée dans laquelle la matrice de u est orthogonale.

Preuve : C’est une traduction matricielle de la proposition 15.

Remarques :
— On notera les deux extrémités de la chaîne d’implication :

∃b ∥⊥∥ ; ... =⇒ u ∈ O(E) =⇒ ∀b ∥⊥∥ , ...

— On ne peut pas se contenter d’une base orthogonale : dans R2 muni du produit scalaire usuel, l’endomorphisme de

matrice A =

(
0 1
1 0

)
dans la base (e1, 2e2) n’est pas une isométrie vectorielle (il ne conserve pas la norme puisque

e1 est envoyé sur 2e2) bien que A soit une matrice orthogonale.
— Le déterminant des isométrie vectorielles vaut donc 1 ou −1...

Définition 10 — Groupe spécial orthogonal

SO(E) désigne l’ensemble des isométries vectorielles de E qui ont pour déterminant 1.

Remarque : Du fait des « propriétés morphiques » du déterminant, SO(E) est un sous-groupe de O(E). Il sera parfois
noté O+(E). C’est évidemment le cousin germain du groupe spécial orthogonal matriciel SOn(R). Attention, O−(E)

n’existe pas !

Pour résumer, nous disposons de quatre groupes orthogonaux :
— O(E) est l’ensemble des isométries vectorielles : elles conservent la norme et le produit scalaire.
— SO(E) est le sous-groupe constitué des isométries vectorielles de déterminant 1.
— On(R) est le groupe des matrices orthogonales. Il s’agit des matrices de changement de base entre

deux bases orthonormées. Elles sont aussi les matrices représentant les isométries vectorielles dans
une base orthonormée.

— SOn(R) est le sous-groupe de On(R) constitué des matrices de déterminant égal à 1.
Et ne vous plaignez pas : avant, il y en avait 4 de plus, avec les versions complexes !
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2.3 Orientation des espaces euclidiens, produit mixte
Dans la suite, on va s’intéresser aux groupes orthogonaux en dimension 2 et 3. Pour pouvoir parler
d’angles entre vecteurs puis de rotations, on commence par orienter les espaces euclidiens : il s’agit de
déclarer directes ou indirectes les bases orthonormées de cet espace. On commence par choisir une base
de référence qui est déclarée directe, puis on oriente les autres en fonction de leur matrice de passage
(qu’on sait orthogonale) avec la base de référence.

Définition 11 — Orientation d’un espace
Soit E un espace euclidien et B0 une base orthonormée de E. On oriente E à l’aide de B0

en déclarant directes les bases orthonormées B de E telles que Pas
B0→B

est de déterminant 1, et

indirectes les autres.
Exemple : Rn muni de sa structure euclidienne canonique est habituellement orienté à l’aide de la base
canonique qui est déclarée directe. Pour n = 3, les bases orthonormées (e2, e3, e1) et (−e3, e1,−e2) sont
alors directes, alors que la base (e2, e1, e3) est indirecte.

Remarque : Si B et B′ sont deux bases de E, elles ont même orientation si et seulement si Pas
B→B′

est de déterminant 1.

Pourquoi ? On peut également orienter un hyperplan en se fixant un vecteur normal :
Définition 12 — Orientation d’un hyperplan

On suppose E orienté par une base B0. Soit H un hyperplan de E et −→n un vecteur normal
à H (de sorte que E = H ⊕ R−→n : pourquoi ?). On oriente H relativement à −→n en déclarant

directes les bases orthonormées (e1, . . . , en−1) de H telles que la base
(
e1, . . . , en−1,

−→n
∥−→n ∥

) de

E est orthonormée directe.

Remarque : Si une base B de H est directe relativement à −→n , elle est indirecte relativement à −−→n : pourquoi ? Ce
type d’orientation interviendra dans les questions d’angle de rotation en dimension 3.

Définition 13 — Produit mixte
Dans un espace euclidien E orienté par une base B0, le produit mixte de n vecteur est leur
déterminant dans la base B0. Il est noté Det(v1, ...vn) (avec un D majuscule), ou encore [v1, ...vn].

Det(v1, ...vn) = [v1, ...vn] = det
B0

(v1, ...vn)

Remarques :
— Si B1 est une autre base orthonormé directe, alors [v1, ...vn] = det

B1

(v1, ...vn) (car detB0
(B1) = 1).

— En dimension 2, [v1, v2] est l’aire (algébrique) du parallélogramme « défini par v1 et v2 », l’unité d’aire étant celle
d’un carré porté par une base orthonormé.

— De même, en dimension 3, [v1, v2, v3] s’interprète comme le volume d’un parallélépipède.
— Après avoir plissé les yeux et avant de lire cette phrase, le lecteur aura évidemment fait deux dessins, et pas

seulement dans sa tête...

2.4 Isométries en dimension 2

E est dans cette partie de dimension 2, et on l’oriente en choisissant une base orthonormée E0 que l’on
déclare directe 3. On va voir que les matrices orthogonales, ainsi que les endomorphismes orthogonaux
sont complètement connus : ce sont des objets géométriques rencontrés au lycée (à l’époque sous leur
forme affine : elles agissent sur des points plutôt que des vecteurs)...

2.4.1 Rotations

Commençons par la description de SO2(R) : pour θ ∈ R, on définit la matrice Rθ =

(
cos θ − sin θ
sin θ cos θ

)
.

Un simple calcul permet de vérifier le
Fait : Pour tout θ ∈ R, Rθ ∈ SO2(R), et de plus :

∀θ1, θ2 ∈ R, Rθ1Rθ2 = Rθ1+θ2 .

3. En pratique, si on travaille dans R2 muni de sa structure euclidienne usuelle, on déclare en général la base canonique
directe.
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Dit de façon snob : « l’application θ 7→ Rθ réalise donc un morphisme de (R,+) dans
(
SO2(R), .

)
». Le

résultat suivant précise que ce morphisme est surjectif.

Proposition 17 — Groupe spécial orthogonal matriciel

SO2(R) =
{
Rθ

∣∣ θ ∈ R
}
.

Preuve : L’inclusion ⊃ a déjà été vue. Pour l’autre, on fixe A =

(
a c
b d

)
dans SO2(R). a2+b2 = 1, donc il existe

φ ∈ R tel que a = cosφ et b = sinφ. De même, il existe ψ ∈ R telle que c = sinψ et d = cosψ. La condition sur
le déterminant s’écrit cos(φ+ψ) = 1, donc φ+ψ est de la forme 2kπ. On a alors sinψ = sin(2kπ−φ) = − sinφ,

et cosψ = cos(2kπ − φ) = cosφ, de sorte que A =

(
cosφ − sinφ
sinφ cosφ

)
= Rφ.

Remarques :
— Cela inclut la matrice I2 qui vaut R0, mais aussi R4000π .
— En changeant seulement la fin de la preuve, on montrerait que les matrices orthogonales de déterminant −1 sont

les matrices de la forme
(
cos θ sin θ
sin θ − cos θ

)
.

Exercice 13. En utilisant les deux résultats de cette partie, montrer que SO2(R) est commutatif.

Reprenons l’étude géométrique de SO(E) : le résultat qui suit nous dit que ses éléments ont une matrice
qui ne dépend pas de la base (orthonormée directe...) dans laquelle on les représente, ce qui est assez
remarquable.

Proposition 18 — Groupe spécial orthogonal géométrique

Si u ∈ SO(E), alors il existe θ ∈ R tel que dans toute base orthonormée directe, la matrice
représentant u est Rθ.

Preuve : On sait que la matrice de u dans toute base orthonormée directe est dans SO2(R) donc de la forme
Rθ, mais le tout est de montrer que cette matrice ne dépend pas de la base considérée.
Déjà, la matrice de u dans E0 est dans SO2(R), donc de la forme A = Rθ0 . Si F est une autre base orthonormée
directe, la matrice B représentant u dans F est B = P−1AP , avec P la matrice de passage entre E0 et F .
Puisque ces deux bases sont orthonormées directes, P est dans SO2(R), et on peut alors utiliser la commutativité
(cf exercice 13) pour obtenir : B = P−1PA = A = Rθ0 .

Définition 14 — Rotations vectorielles
Si θ ∈ R, la rotation d’angle θ (que je noterai rθ) est l’endomorphisme de E dont la matrice
dans toute base orthonormée directe est Rθ.

Remarque : Si r est une rotation admettant un vecteur (non nul) x fixe (c’est-à-dire : r(x) = x), alors r − IdE n’est
pas injective, donc son déterminant est nul. Si θ est un angle de cette rotation, ce déterminant vaut (cos θ− 1)2 + sin2 θ =

2 cos θ − 1. On a donc cos θ = 1 puis sin θ = 0 : r est en fait l’application identité.

Exercice 14. Soit x ∈ E. Montrer : [x, rθ(x)] = sin θ ∥x∥2.
On pourra par exemple travailler dans une base orthonormée directe dont le premier vecteur est

x

∥x∥
·

2.4.2 Réflexions

Commençons par quelques exercices simples mais qui éclaireront la suite...

Exercice 15. Écrire la matrice dans la base canonique (e1, e2) de R2 de la réflexion par rapport à
Re1. Donner ensuite la matrice de cette même réflexion dans la base orthonormée directe (f1, f2), avec

f1 =
e1 + e2√

2
et f2 =

−e1 + e2√
2

·

Exercice 16. Donner la matrice dans la base canonique (e1, e2) de R2 de la réflexion par rapport à
R ((cosφ)e1 + (sinφ)e2).
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Exercice 17. Que dire de la composée de deux réflexions (sans rentrer dans les détails) ?

Exercice 18. Calculer le produit
(
cos θ − sin θ
sin θ cos θ

)(
1 0
0 −1

)
en raisonnant uniquement géométrique-

ment. Vérifier ensuite le résultat par le calcul !

Proposition 19 — Rotations et réflexions
— Les éléments de O(E) qui ne sont pas des rotations sont des réflexions.
— Toute rotation peut s’écrire comme composée de deux réflexions.

Preuve :
— Soit u ∈ O(E) \ SO(E) : La matrice A de u dans E0 est dans O2(R) \ SO2(R), donc de la forme(

cos θ sin θ
sin θ − cos θ

)
. Deux possibilités alors :

1. On a traité l’exercice 16, et on peut alors affirmer que u est la réflexion par rapport à R
(
cos θ

2
e1 +

sin θ
2
e2
)
, avec E0 = (e1, e2).

2. On ne l’a pas traité (bravo...) et on peut alors chercher s’il existe des vecteurs (non nuls) vérifiant
u(x) = x ou u(x) = −x, ce qui revient à la non injectivité de u − IdE et u + IdE . Les déterminants

de
(
cos θ − 1 sin θ
sin θ − cos θ − 1

)
et
(
cos θ + 1 sin θ
sin θ − cos θ + 1

)
étant nuls, on est effectivement assuré de

l’existence de x1 et x2 non nuls tels que u(x1) = x1 et u(x2) = −x2. Puisque ⟨u(x1)|u(x2)⟩ vaut
d’une part ⟨x1|x2⟩ et d’autre part ⟨x1| − x2⟩ = −⟨x1|x2⟩, on a donc x1 et x2 orthogonaux, puis

E = Rx1
⊥
⊕Rx2, et u est bien la réflexion par rapport à Rx1.

Ici, on se dit que finalement, on aurait peut-être bien fait de traiter l’exercice 16...
— Soit r ∈ SO(E) : si on fixe une réflexion s, alors r ◦ s est dans O(E) \ SO(E) (regarder le déterminant !)

donc est une réflexion s′ d’après ce qui précède. Mais dans la relation r ◦ s = s′, si on compose à droite
par s, on trouve : r = s′ ◦ s !

Remarques :
— Attention ! ! ! ! le premier résultat est spécifique à la dimension 2. En dimension supérieure, il existe des éléments de

O(E) \ SO(E) qui ne sont pas des réflexions. Cependant, tout élément de O(E) peut s’écrire comme la composée
d’au plus n réflexions.

— Il n’y a pas unicité de la décomposition comme composée de deux réflexions : au vu de la preuve, on peut même
prendre la première comme on veut !

2.4.3 Angle orienté entre deux vecteurs

Fait : Si x, y ∈ E sont de norme 1, alors il existe une unique rotation r telle que r(x) = y.

Preuve : Pour l’existence, il suffit de compléter x en une base orthonormée directe (x, x′) et y en une base
orthonormée directe (y, y′). L’unique application linéaire envoyant x sur y et x′ sur y′ répond alors au problème
(justifier l’existence de cette application, et le fait qu’elle répond au problème !).
Pour l’unicité, il suffit de noter que si r1 et r2 répondent au problème, alors r−1

1 ◦ r2 est une rotation (pourquoi ?)
qui admet un point fixe (lequel ?) donc vaut l’identité (pourquoi ?).

Remarque : En dimension supérieure, l’existence est maintenue (en termes snobs, on dit que « SO(E) agit transitivement
sur la sphère unité de E »). Cependant, l’unicité n’est plus valide (on peut compléter de nombreuses façons, contrairement
à la dimension 2).

Définition 15 — Angle orienté entre deux vecteurs

Soient a et b deux vecteurs non nuls de E. On dit (abusivement) que θ est l’angle orienté entre

a et b, et on note θ = (̂a, b), lorsque
b

∥b∥
= rθ

( a

∥a∥
)
·

Remarque : En fait, si
b

∥b∥
= rθ

( a

∥a∥
)
, alors

b

∥b∥
= rφ

( a

∥a∥
)

si et seulement si φ est de la forme θ + 2kπ (dans un

sens, c’est clair, mais dans l’autre ? pour montrer le sens « seulement si », on pourra se rappeler que la seule rotation avec
un point fixe est l’identité). Ainsi, l’angle orienté entre deux vecteurs est « défini modulo 2π ». Il est caractérisé par son
cosinus et son sinus.
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Le résultat suivant permet de calculer effectivement les angles orientés. Pour le prouver, et très excep-
tionnellement, on se placera dans une base orthonormée directe adaptée...

Fait : Si θ = (̂a, b), alors ⟨a|b⟩ = ∥a∥ ∥b∥ cos θ et [a, b] = ∥a∥ ∥b∥ sin θ.

2.5 Isométries en dimension 3

2.5.1 Produits mixte et vectoriel

L’espace est orienté par une base E0 déclarée directe.

Remarque : À MÉDITER AVANT LA SUITE...
Le produit mixte « hérite » des propriétés du déterminant : en particulier, si on FIXE a, b ∈ E, alors l’application
φ : x 7→ [a, b, x] est linéaire. C’est donc une forme linéaire, et on sait alors 4 qu’il existe un unique c ∈ E tel que pour tout
x ∈ E, φ(x) = ⟨c|x⟩ (attention à la quantification...).

Définition 16 — Produit vectoriel
Soient u, v ∈ E. Le produit vectoriel de u et v, noté u ∧ v, est l’unique vecteur z tel que :

∀w ∈ E [u, v, w] = ⟨z|w⟩.

Les premiers résultats qui suivent s’obtiendraient facilement à l’aide des formules fournissant les coor-
données d’un produit vectoriel dans une base orthonormée. Cependant, on peut les démontrer à partir
de la définition précédente, qui est assez abstraite, mais qui a le mérite de ne pas fournir des formules
étranges, parachutées, et dépendant (a priori) d’une base particulière.

Proposition 20 — Propriétés bien connues du produit vectoriel...

(Les quantificateurs universels sont implicites)
— u ∧ u =

−→
0 , v ∧ u = −u ∧ v (attention !),

(λu1 + u2) ∧ v = λu1 ∧ v + u2 ∧ v, u ∧ (λv1 + v2) = λu ∧ v1 + u ∧ v2;

— u ∧ v ∈
(
Vect(u, v)

)⊥ ;
— u et v sont colinéaires si et seulement si u ∧ v = 0 ;
— si u et v ne sont pas colinéaires, alors (u, v, u ∧ v) est libre.

Preuve :
— Pour tout w ∈ E, le caractère alterné du déterminant nous assure : ⟨u ∧ u|w⟩ = [u, u, w] = 0 = ⟨−→0 |w⟩.

Ceci étant valable pour tout w, on a donc u ∧ u =
−→
0 . Même chose pour les 3 autres relations.

— Soit z ∈ Vect(u, v) : il s’écrit z = αu+ βv, et on a alors :

⟨u ∧ v|z⟩ = [u, v, z] = α[u, v, u] + β[u, v, v] = 0,

donc u ∧ v est orthogonal à tous les éléments de Vect(u, v).
— Déjà, si u et v sont colinéaires, ⟨u ∧ v|w⟩[u, v, w] = 0 pour tout w ∈ E, donc u ∧ v =

−→
0 . Établissons la

réciproque par la contraposée : on suppose (u, v) libre. On peut alors compléter cette famille en une base
(u, v, w). Le déterminant [u, v, w] est alors non nul, donc ⟨u ∧ v|w⟩ ̸= 0, donc u ∧ v ̸= −→

0 .
— Il suffit de noter que le déterminant [u, v, u ∧ v] vaut ⟨u ∧ v|u ∧ v⟩ = ∥u ∧ v∥2, qui est non nul d’après le

résultat précédent.

Ça y est : voila la formule que vous attendiez...

Proposition 21 — Calcul effectif de produit vectoriel

Si les coordonnées de u et v dans une base orthonormée directe E sont respectivement

a
b
c

 eta′

b′

c′

 alors celles de u ∧ v dans cette même base sont :

bc′ − cb′

ca′ − ac′

ab′ − ba′


4. Grâce au théorème de représentation.
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Preuve : Simple calcul. Si x a pour coordonnées

x1x2
x3

 dans E , alors en développant le déterminant par rapport

à la dernière colonne :

⟨x|u ∧ v⟩ = [u, v, x] =

∣∣∣∣∣∣
a a′ x1
b b′ x2
c c′ x3

∣∣∣∣∣∣ = x1(bc
′ − cb′)− x2(ac

′ − ca′) + x3(ab
′ − ba′) =

x1x2
x3

 .

bc′ − cb′

ca′ − ac′

ab′ − ba′


et on peut identifier les deux extrémités car la relation est valable pour tout x.

Remarque : On retiendra :

a
b
c

 ∧

a′

b′

c′

 =

bc′ − b′c
...
...

mais attention : il faut que la base dans laquelle on a pris les

coordonnées soit orthonormée directe.
Les deux corollaires suivants sont très utiles en pratique...

Corollaire : Si (u, v) est une famille orthonormée, alors (u, v, u∧ v) est une base orthonormée directe
de E.

Corollaire : Si (e1, e2, e3) est une base orthonormée directe de E, alors e1 ∧ e2 = e3, e2 ∧ e3 = e1,
e3 ∧ e1 = e2, et les autres produits vectoriels s’obtiennent par antisymétrie.

Exercice 19. Utile pour la suite...
Donner la matrice dans la base canonique de R3 de l’application −→x 7→ −→x0 ∧ −→x , avec x0 = (a, b, c).

De façon plus anecdotique (en maths, pas en méca) !

Proposition 22 — Double produit vectoriel
Si a, b, c ∈ E, on a :

a ∧ (b ∧ c) = ⟨a|c⟩b− ⟨a|b⟩c.

Preuve : Déjà si (b, c) est liée, alors le membre de gauche est nul, ainsi que le membre de droite. On va donc
traiter le cas où (b, c) est libre, et on fixe b et c ainsi. Si on note H = Vect(b, c), on a alors d = b ∧ c ∈ H⊥, donc
a ∧ d est orthogonal à d, donc est dans (H⊥)⊥ = H.
On travaille donc dans une base adaptée au problème : il existe (pourquoi ?) une base orthonormée directe
(f1, f2, f3) telle que b = αf1 et c = βf2+γf3. On écrit alors a = a1f1+a2f2+a3f3, et on calcule les coordonnées
de chacun des deux membres dans cette base. Pour le membre de gauche :a1a2

a3

 ∧

(α0
0

 ∧

βγ
0

) =

a1a2
a3

 ∧

 0
0
αγ

 =

 a2αγ
−a1αγ

0


et pour le membre de droite :

(a1β + a2γ)

α0
0

− a1α

βγ
0

 =

 a2γα
−a1αγ

0


Gagné...

Remarque : Voila comment je la retiens (plus ou moins...) : je refais le raisonnement vu en début de preuve, et je sais
alors que a ∧ (b ∧ c) = αb+ βc ; je sais que α et β sont des produits scalaires, et que dans chacun des deux termes, a, b et
c apparaissent. Je sais qu’il y a un signe MOINS, et je traite un cas particulier « avec les doigts » pour savoir où.

Exercice 20. Donner une formule analogue pour (a ∧ b) ∧ c :
— En utilisant l’anti-commutativité et la formule précédente ;
— avec des considérations similaires à celles données dans la remarque précédente.

2.5.2 Écart angulaire entre deux vecteurs

On ne peut plus parler d’angle orienté entre deux vecteurs, en dimension 3 (on pourrait être tenté de
se ramener à la dimension 2, mais il faudrait pour cela orienter le plan qu’ils engendrent, or il y a deux
façons « équiraisonnables » de faire : comment choisir ?). On prend donc le parti de ne regarder que le
produit scalaire, dont on déduira un angle entre 0 et π, les cas extrêmes correspondant aux cas où les
vecteurs sont (positivement ou négativement) liés.
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Définition 17 — Écart angulaire

Si u et v sont deux vecteurs non nuls de E, l’écart angulaire entre u et v, noté (u, v) ( ?) est
l’unique θ ∈ [0, π] tel que ⟨u|v⟩ = ∥u∥ ∥v∥ cos θ.

Remarques :
— C’est bien licite d’après Cauchy-Schwarz...
— Avec cette définition, on vérifie immédiatement que les endomorphismes orthogonaux conservent les écarts angu-

laires.
— Lorsque u et v sont positivement (resp. négativement) liés, leur écart angulaire est 0 (resp. π), et réciproquement

(cas d’égalité dans Cauchy-Schwarz).
On termine par une formule bien connue en physique, claire lorsque les vecteurs sont colinéaires ou
orthogonaux :
Fait : Si θ est l’écart angulaire entre x et y, alors : ∥x ∧ y∥ = ∥x∥ ∥y∥ sin θ.
Preuve : Travailler dans une base adaptée au problème, comme toujours...

Corollaire :
∀a, b ∈ E, ∥a ∧ b∥2 + ⟨a|b⟩2 = ∥a∥2 × ∥b∥2

(c’est « l’identité de Lagrange »).

2.5.3 Étude des rotations

On ne peut pas décrire les éléments de SO3(R) aussi simplement que ceux de SO2(R). Par contre,
géométriquement, la description des membres de SO(E) est relativement claire :

Proposition 23 — Groupe spécial orthogonal géométrique

Si u ∈ SO(E), alors il existe une base orthonormée directe F telle que :

Mat(u,F) =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ


(la question de l’unicité de F et θ sera discutée plus loin).

Preuve : La clef de voûte de la preuve est l’existence d’un vecteur (non nul !) fixé par u. On propose ici une
preuve efficace (une preuve géométrique est fournie dans les remarques). On veut montrer que u− IdE n’est pas
injective. Considérons 5 l’application φ : λ 7→ det(u − λIdE). En travaillant dans n’importe quelle base, on voit
que φ est une application polynomiale du troisième degré, de coefficient dominant −1, et qui vaut detu = 1 en
0. Puisqu’elle tend vers −∞ en +∞ (du fait de son coefficient dominant), sa continuité nous assure (théorème
des valeurs intermédiaires) qu’il existe λ0 > 0 tel que φ(λ0) = 0. On a alors u − λ0 non injective, donc il existe
x0 non nul tel que u(x0) = λ0x0. Comme u préserve la norme, on doit avoir |λ0| = 1, puis λ0 = 1, et c’est gagné.
On sait maintenant que Rx0 est stable par u, donc son orthogonal H = x⊥0 également (déjà prouvé plus tôt mais
refaites le sans revenir en arrière dans le poly !). Ainsi, u induit un endomorphisme v de H. Cet endomorphisme

reste orthogonal (pourquoi ?). Si on fixe une base orthonormée (f2, f3) de H et on note R =

(
a b
c d

)
la matrice

de v dans cette base (on sait déjà que R ∈ O2(R) ), on a en prenant f1 =
x0

∥x0∥
: Mat(u,F) =

1 0 0
0 a b
0 c d

.

Comme detu = 1, on a donc det R = 1, donc R ∈ SO2(R), ce qui impose sa forme. Si jamais F n’est pas directe,
il suffit de remplacer f1 par son opposé, ce qui n’affecte pas la matrice.
En fait, j’ai imposé le caractère direct dans l’énoncé car c’est sous cette condition qu’on parlera de la rotation
d’axe dirigé et orienté par f1 et d’angle θ...

Remarques :
— Sans passer par le déterminant de λIdE−u, on peut prouver l’existence d’un vecteur non nul fixe de façon purement

géométrique : on fixe x0 non nul. Si u(x0) = x0, c’est terminé. Sinon, il existe une réflexion s1 par rapport à un
hyperplan H1 envoyant u(x0) sur x0. L’application v = s1◦u envoie alors x0 sur lui-même : comme v est orthogonal,
il stabilise x⊥

0 . Maintenant, la restriction de v à x⊥
0 est une réflexion (déterminant...) par rapport à une droite Rx1.

v est alors la réflexion s2 par rapport à H2 = Vect(x0, x1). Ainsi, s1 ◦ u = s2, puis u = s1 ◦ s2, et il n’y a plus qu’à
considérer l’intersection H1 ∩H2 : c’est une droite (ou un plan) dont les éléments sont fixés par les deux réflexions,
donc par u : gagné !

5. Ce fragment de poly a été écrit à l’époque pour des sups, qui ne connaissaient pas la réduction !
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— Géométriquement, l’application u de la proposition précédente agit de la façon suivante : si x ∈ E, on le décompose
x = x1 + x2 avec x1 ∈ H et x2 ∈ Rf1. La composante x2 n’est pas modifiée, tandis que u opère une rotation de la
composante x1 d’angle θ, H étant orienté par la base orthonormée (f2, f3) :

Figure 6 – Un vieux dessin que je n’ai pas le courage de refaire... désolé pour la qualité !

— Que dire si par ailleurs Mat(u,F ′) =

1 0 0
0 cosφ − sinφ
0 sinφ cosφ

 avec F ′ une autre base orthonormée directe ? Déjà,

par égalité des traces, on a cos θ = cosφ donc θ = φ [2π] ou bien θ = −φ [2π]. Si θ (donc φ) est de la forme 2kπ,
u vaut l’identité et on pouvait prendre F n’importe comment. Sinon, Ker (u − Id) = Rf1 = Rf ′

1, donc f ′
1 vaut f1

ou −f1.

Dans le premier cas, la matrice de changement de base entre F et F ′ est de la forme
(

1 (0)
(0) R

)
avec R ∈ SO2(R).

Par commutativité de SO2(R), la formule de changement de base nous fournira alors Rφ = Rθ donc φ = θ [2π].
Dans le second cas, F ′′ = (f1, f ′

3, f
′
2) est orthonormée directe et la matrice de passage entre F et F ′′ est de la

forme
(

1 (0)
(0) R

)
avec R ∈ SO2(R), donc la matrice de u dans F ′′ est

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

. Comme par ailleurs

c’est

1 0 0
0 cosφ sinφ
0 − sinφ cosφ

, on en déduit que φ = −θ [2π]. Ouf...

Définition 18 — Rotation dans l’espace
La rotation d’axe dirigé et orienté par f et d’angle θ sera par définition l’endomorphisme tel

que pour toute base orthonormée directe F dont le premier vecteur est
f1
∥f1∥

:

Mat(u,F) =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 .

Remarques :
— Pour savoir si une matrice A est dans O3(R), on regarde si « les trois vecteurs colonnes (c1, c2, c3) forment une

famille orthonormée ». Lorsque c’est le cas, pour déterminer si A ∈ SO3(R), inutile de calculer le déterminant : il
suffit de calculer c1 ∧ c2, qui vaut c3 lorsque A ∈ SO3(R) et −c3 sinon. En fait, le signe de la première composante
(si elle est non nulle) permet de conclure !

— On a Rf,θ = Rg,φ si et seulement si :
f et g sont positivement liés et θ = φ [2π]

ou
f et g sont négativement liés et θ = −φ [2π]

— Concrètement, pour déterminer les éléments propres (direction, angle) d’une rotation u donnée par sa matrice, on
commence par déterminer sa direction Ker (u − IdE), son « angle non orienté » à l’aide de la trace. Ensuite, on
oriente Ker (u − IdE) à l’aide d’un vecteur f . Pour déterminer le signe de θ (avec disons θ ∈] − π, π]), on peut
prendre g ∈ f⊥ (ce n’est guère difficile à construire) et comparer u(g) et f ∧ g : moralement si θ ∈]0, π[, u(g) sera
« du coté de f ∧ g », et sinon « du coté de −f ∧ g », ce qui va se détecter en regardant le signe du produit scalaire
⟨u(g)|f ∧ g⟩.
Plus formellement : en notant f1 = f , f2 =

g

∥g∥
et f3 = f1 ∧ f2, les coordonnées respectives de u(g) et f ∧ g sont 0

∥g∥ cos θ
∥g∥ sin θ

 et

1
0
0

 ∧

 0
∥g∥
0

 =

 0
0

∥g∥

 donc leur produit scalaire ∥g∥2 sin θ est bien du signe de sin θ.
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Exemple : Déterminons la nature géométrique précise de l’endomorphisme u de E dont la matrice dans

une base orthonormée 6 E est : A =
1

3

 2 1 2
−2 2 1
−1 −2 2

.

En notant c1, c2 et c3 les trois colonnes de A, on vérifie sans mal : ∥c1∥2 = ∥c2∥2 = ∥c3∥2 = 1 et
⟨c1|c2⟩ = ⟨c1|c3⟩ = ⟨c2|c3⟩ = 0, donc A ∈ O3(R). On sait alors que c1 ∧ c2 vaut c3 ou −c3. Or :

c1 ∧ c2 =

> 0
×
×

, donc c1 ∧ c2 = c3, et A ∈ SO3(R). Puisque c’est la matrice représentant u dans une

b.o.n., u est donc une rotation. On détermine sa direction qui est Ker (u− IdE) : on trouve (en regardant
droit dans les yeux A− I3 qu’on aura calculé correctement, et en cherchant un habitant du noyau) Rf ,

avec f =

 1
−1
1

 dans E . Le cosinus de l’angle est donné par tru = 1 + 2 cos θ = 2 donc cos θ =
1

2
puis

θ = ±π

3
· Le vecteur g =

1
1
0

 est dans f⊥. f ∧g =

−1
1
2

 et u(g) =

 1
0
−1

 donc ⟨f ∧g|u(g)⟩ = −3 < 0,

donc u est la rotation d’axe dirigé et orienté par f , d’angle −π

3
·

Remarque : Réciproquement, si on cherche la matrice dans une base orthonormée E (directe ou pas) de la rotation de
direction/orientation et angle connu, on pourra prendre l’un des deux points de vue suivants (je n’ai pas de préférence,
mais certains collègues lèvent les yeux au ciel quand ils voient la première) :

— On travaille dans une base adaptée et on fait un changement de base (se souvenir qu’une matrice de passage entre
deux bases orthonormées n’est pas trop compliquée à inverser...). Bien entendu, par « base adaptée », on entend
une base orthonormée directe dont le premier vecteur est sur l’axe : il suffit de normaliser le vecteur directeur de
l’axe. Pour le second , on prend n’importe quel vecteur orthogonal au premier et de norme 1. Pour le troisième, il
suffit de prendre le produit vectoriel des deux premiers !

— On retrouve rapidement le fait que si u est la rotation d’axe dirigé et orienté par x0 de norme 1, alors :

u(x) = ⟨x|x0⟩x0 + cos θ(x− ⟨x|x0⟩x0) + (sin θ)x0 ∧ x

(faire un dessin : la composante sur Rx0 est le premier terme. La rotation sur la composante x1 de x sur x⊥
0 amène

le terme (cos θ)x1 + (sin θ)x0 ∧ x1...). Attention : si x0 n’est pas de norme 1, il faut penser à le normaliser dans la
formule précédente.
Ensuite, on peut calculer l’image de chaque membre de la base E, ou bien utiliser les matrices des différentes

applications intervenant dans la formule précédente : si x0 ↔

a
b
c

 dans E, la matrice de x 7→ ⟨x|x0⟩x0 seraa2 ba ca
ab b2 cb
ac bc c2

 On calcule ensuite :

a
b
c

 ∧

1
0
0

 =

 0
c
−b

 a
b
c

 ∧

0
1
0

 =

−c
0
a

 a
b
c

 ∧

0
0
1

 =

 b
−a
0


de sorte que la matrice dans E de x 7→ x0 ∧ x sera

 0 −c b
c 0 −a
−b a 0

.

On note que les matrices antisymétriques représentent exactement les applications de la forme x 7→ x0 ∧ x dans
les bases orthonormées.

Bien entendu, il faut avoir pratiqué soi-même 3 ou 4 fois pour être à peu près autonome. Comme la plupart d’entre-vous
allez seulement voir un guignol s’agiter au tableau pour le faire deux ou trois fois devant vous, il ne sera peut-être pas
évident de le refaire vous même le 15 juillet 2023, pour votre dernier oral 7...

Exercice 21. Donner la matrice A dans la base canonique (e1, e2, e3) de R3 de la rotation d’axe dirigé

et orienté par e1 + e2 + e3 et d’angle
2π

3
· Que vaut A3 ?

Solution : On trouvera :

0 0 1
1 0 0
0 1 0


Faites les deux calculs, pour pouvoir choisir celui qui vous convient le mieux.

6. Pas forcément directe : on s’en fiche !
7. Encore une remarque pour vous montrer que j’ai repris mon poly cette année.
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Remarque : Ceux qui « voient dans l’espace » et/ou sont champions de Rubik’s Cube (un jeu qui a occupé vos ancêtres
dans un lointain passé...) n’avaient pas besoin de faire le moindre calcul !

3 Réduction des endomorphismes autoadjoints (symétriques)
Les deux orthographes auto-adjoint et autoadjoint sont pratiquées et (donc) autorisées. Ce terme est
synonyme mais remplace prioritairement le terme « symétrique », pour un endomorphisme.

3.1 Les endomorphismes autoadjoints (symétriques)
Définition 19 — Endomorphismes symétriques

Soit E un espace euclidien. Un endomorphisme de E est déclaré autoadjoint, ou symétrique
lorsque :

∀x, y ∈ E, ⟨u(x)|y⟩ = ⟨x|u(y)⟩

On note en général S(E) l’ensemble des endomorphismes autoadjoints de E.

Exercice 22. Montrer que les projections orthogonales sont des endomorphismes autoadjoints.

Cette définition ne donne pas accès rapidement à beaucoup d’exemples. Le résultat suivant va donner
une caractérisation matricielle simple.

Proposition 24 — Caractérisation matricielle des endomorphismes autoadjoints

Soit E une base orthonormée de E. L’endomorphisme u ∈ L(E) est autoadjoint si et seulement
si sa matrice dans E est symétrique.

Preuve : Avec les notations qu’on imagine (coordonnées et matrice dans E), on a (AX)T Y = XT(AY ), et ceci
pour tous X,Y ∈ Mn,1(R) ; etc.

Exercice 23. Soit u ∈ L(E) diagonalisable dans une base orthonormée. Montrer que u est symétrique.

La suite va révéler que cette situation est en fait générique : tous les endomorphismes autoadjoints sont
effectivement diagonalisables en base orthonormée.

3.2 Deux résultats intermédiaires
La preuve (hors programme) du théorème spectral repose sur deux outils principaux présentés ici.

Proposition 25 — La première valeur propre

Tout endomorphisme autoadjoint possède (au moins) une valeur propre réelle.

Preuve (hors programme) :
Version misérable : on écrit AX = λX avec λ ∈ C et X ̸= 0. D’une part, XT

AX = λX
T
X = λ

∑
|xi|2. D’autre

part, puisque A = A :
X

T
AX = X

T
A

T
X = AX

T
X = λX

T
X = λ

∑
|xi|2 .

Et on en déduit piteusement que λ = λ.
Il existe une belle 8 preuve qui est plus compliquée, mais ne consiste pas à faire ce calcul mystérieux. On maximise
pour cela ⟨u(x)|x⟩ sur la sphère unité de Rn, avec u canoniquement associé à A puis on fait un développement
limité autour du point où ce maximum est atteint... Bon, passons !

La deuxième brique de la preuve du théorème spectral est bien plus simple à prouver !
Proposition 26 — Orthogonal d’un sous-espace stable

Si F est un sous-espace de E stable par un endomorphisme autoadjoint u, alors F⊥ est également
stable par u.

Preuve : Fixons x ∈ F⊥. Pour montrer que u(x) est dans F⊥, on le cogne contre y ∈ F ; détails laissés au
lecteur.

8. Mais surtout : qui a du sens !
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3.3 Théorème spectral
Théorème 8 — « Théorème spectral sans E à la fin »

Tout endomorphisme autoadjoint est diagonalisable en base orthonormée.

Preuve : Par récurrence, en considérant l’orthogonal d’un vecteur propre : il est stable par l’endomorphisme
autoadjoint, la restriction de ce dernier restant autoadjointe.

Exercice 24. Soit u un endomorphisme autoadjoint de E, espace euclidien de dimension n, de valeurs
propres triées par ordre croissant : λ1 ⩽ λ2 ⩽ · · · ⩽ λn. Montrer :

∀x ∈ E \ {0}, λ1 ⩽
⟨u(x)|x⟩
∥x∥2

⩽ λn,

en exhibant des cas d’égalité.

Théorème 9 — « Théorème spectral sans E à la fin » – version matricielle

Toute matrice symétrique réelle S est orthodiagonalisable : il existe P ∈ On(R) telle que
P−1SP soit diagonale.

Preuve : Géométriser !

Exemple : Soit A =

(
1 2
2 1

)
. On trouve un premier vecteur propre « à vue » : A

(
1
1

)
=

(
3
3

)
= 3

(
1
1

)
On cherche alors sur l’orthogonal : A

(
−1
1

)
=

(
1
−1

)
= −

(
−1
1

)
Si (après normalisation) on pose

P =
1√
2

(
1 −1
1 1

)
alors P est orthogonale, et P−1AP =

(
3 0
0 −1

)

3.4 Endomorphismes autoadjoints (définis) positifs
Le résultat qui suit peut être vu comme un exercice, mais est crucial dans les définitions passées main-
tenant au programme : il convient de savoir les traiter les yeux bandés.

Exercice 25. Soit u ∈ S(E). Montrer que les valeurs propres de u sont toutes positives si et seulement
si :

∀x ∈ E, ⟨u(x)|x⟩ ⩾ 0

On établirait la même équivalence en remplaçant « positif » par « strictement positif ».

Définition 20 — Endomorphismes autoadjoints (définis) positifs

Un endomorphisme autoadjoint u ∈ SE est déclaré :
— positif lorsque toutes ses valeurs propres sont dans R+ (ou encore : ⟨u(x)|x⟩ ⩾ 0 pour

tout x ∈ E).
— défini positif lorsque toutes ses valeurs propres sont dans R+

∗ (ou encore : ⟨u(x)|x⟩ > 0
pour tout x ∈ E non nul).

On définit de la même façon la notion de matrice (définie) positive.

Définition 21 — Matrices symétriques (définies) positives

Une matrice symétrique réelle A ∈ Sn(R) est déclarée :
— positive lorsque toutes ses valeurs propres sont dans R+ (ou encore : XTAX ⩾ 0 pour

tout X ∈ Mn,1(R)).
— définie positive lorsque toutes ses valeurs propres sont dans R+

∗ (ou encore : XTAX > 0
pour tout X ∈ Mn,1(R) non nul).

Exercice 26. Soit A ∈ Mn(R). Montrer que ATA est positive. Montrer que si A est inversible, alors
ATA est définie positive.

24



3.5 Quelques applications
Aucune des applications qui suit n’est explicitement au programme. Cependant, la première (« racine
d’un autoadjoint positif ») est vraiment à connaître, au moins pour la partie « existence », la partie
« unicité » étant très instructive, mais clairement plus difficile (essentiellement géométrique, contraire-
ment à l’existence, qu’on peut traiter à encéphalogramme plat grâce aux matrices). La décomposition
polaire et celle de Cholesky constituent des exercices abordables.

3.5.1 Racine d’un endomorphisme symétrique positif

Proposition 27 — Racine d’un autoadjoint positif
Soit u un endomorphisme de E autoadjoint positif. Il existe alors un unique v autoadjoint positif
tel que v2 = u.

Preuve : L’existence est assez simple : si E = (e1, ..., en) est une base orthonormée de diagonalisation de u,
avec u(ek) = λkek, il suffit de prendre v l’unique endomorphisme de E de matrice Diag(

√
λ1, ...,

√
λn) dans E : il

s’agit bien (pourquoi ?) d’un endomorphisme autoadjoint positif de carré égal à u.
La preuve de l’unicité est plus délicate (et pourrait constituer une analyse préliminaire). Soit donc w répondant
au problème. Puisque w2 = u, on a w ◦ u = u ◦ w, donc les sous-espaces propres Fi de u sont stables par w.
La restriction de w à chaque Fi est symétrique, donc diagonalisable. Le caractère positif de w (donc de ses
restrictions) impose alors : w|Fi =

√
λiIdFi . La valeur de w est imposée sur chaque Fi, et la somme des Fi vaut

E : ceci prouve l’unicité d’une éventuelle solution.

On a évidemment les versions matricielles du résultat précédent. La preuve de l’existence est encore plus
simple (assez mécanique par orthodiagonalisation), mais la preuve de l’unicité nécessite un passage au
géométrique : l’économie n’était que de façade.

3.5.2 Décomposition polaire

On donne à nouveau une version géométrique. Le lecteur pourra énoncer la version matricielle.
Proposition 28 — Décomposition polaire

Soit u ∈ GL(E). Il existe un unique couple (f, s) ∈ O(E) × S++(E) tel que u = f ◦ s (avec
S++(E) qui désigne l’ensemble des endomorphismes autoadjoints positifs).

Preuve : On va passer en matriciel, pour changer (il manque un outil géométrique : l’adjonction, alter ego de la
transposition chez les matrices). Soit donc A la matrice de u dans une base orthonormée qu’on fixe. On cherche
M ∈ On(R) et S ∈ S+

n (R) tels que A =MS.
ANALYSE : si une telle relation est vérifiée, alors nécessairement, ATA = S2, donc S est obligatoirement l’unique
« racine positive » de la matrice symétrique positive ATA (voir l’exercice 26 et le paragraphe précédent). La valeur
de S est donc imposée, donc également celle de M = AS−1 (on a noté que nécessairement, S est inversible).
SYNTHÈSE : considérons la matrice ATA. Elle est symétrique positive, donc on peut trouver S symétrique
positive telle que S2 = ATA. Comme A est inversible, il en va de même pour S, et on peut donc poser M = AS−1.
On a alors évidemment A =MS, et il ne reste qu’à vérifier le caractère orthogonal de M : part de gâteau !

3.5.3 Décomposition de Cholesky

Proposition 29 — Décomposition de Cholesky

Soit A ∈ Mn(R) une matrice symétrique définie positive. Il existe alors P ∈ Mn(R) triangulaire
supérieure telle que A = PTP .

Preuve : Par récurrence, en travaillant par blocs ! On peut être coincé en fin de la preuve quand on se retrouve
à résoudre (en α) une équation du type CTC + α2 = an,n. On peut s’en sortir en disant qu’il existe une solution
a priori dans C : en regardant le déterminant de A, on prouve alors que α est réel.
Une version plus jolie (mais qui peut donner un peu mal à la tête) consiste à se placer dans Rn, et considérer
la forme bilinéaire (X,Y ) 7→ XTAY : il s’agit d’un produit scalaire. La base canonique de Rn n’est a priori
pas orthonormée, mais on peut l’orthonormaliser à la Schmidt. Si on note Q la matrice de passage de la base
canonique vers la nouvelle base, alors Q est triangulaire supérieure. Maintenant, à quoi sont égales les matrices
du produit scalaire (celui défini par A !) dans ces deux bases ?
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On peut même montrer qu’il y a unicité, si on impose aux coefficients diagonaux de P d’être positifs.
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