
Psi 999 – 2025/2026 DM 11 – corrigé

Le corrigé est écrit par Isabelle Bigeard et Emmanuel Auclair – et retouché par mes soins.

Partie I - Temps d’arrivée du n-ième client

Q1. Par définition, T1 correspond au rang du premier succès dans une suite illimitée d’épreuves de
Bernoulli indépendantes et de même paramètre p.
Donc T1 suit une loi géométrique de paramètre p, ce qui correspond au résultat attendu.
De manière plus élémentaire, soit k ∈ N

∗ fixé. Alors :

{T1 = k} =

(

n−1
⋂

i=1

{Xi = 0}

)

∩ {Xk = 1} .

Donc, par indépendance des variables aléatoires (Xn)n⩾1,

P(T1 = k) =

(

n−1
∏

i=1

P(Xi = 0)

)

× P(Xk = 1) = (1− p)k−1 p .

Finalement, ∀k ∈ N
∗, P(T1 = k) = (1− p)k−1 p .

Q2. L’événement A est réalisé si et seulement si aucun des événements {T1 = k} n’est réalisé :

A =
⋂+∞

k=1 {T1 = k} = Ω \
(

⊔+∞

k=0{T1 = k}
)

.

Or, par σ-additivité de P,

P

(

+∞
⊔

k=0

{T1 = k}

)

=

+∞
∑

k=1

P (T1 = k) =

+∞
∑

k=1

(1− p)k−1 p =
p

1− (1− p)
= 1.

Donc P(A) = 0 et presque sûrement, un nouveau client doit arriver dans la file.

Q3. Pour tout k ∈ N
∗, on note ak = P(T1 = k) = p (1− p)k−1 > 0. Alors :

∀k ⩾ 1,
ak+1

ak
= 1− p −→

k→+∞

1− p .

Donc, par le critère de d’Alembert appliqué aux séries entières, R = 1
1−p

.

Soit t ∈ ]−R,R [ . Alors

GT1
(t) =

+∞
∑

k=1

p(1− p)k−1tk = pt
+∞
∑

k=1

((1− p)t)k−1 =
pt

1− (1− p)t
.

Finalement, ∀t ∈ ]−R,R [ , GT1
(t) = pt

1+(p−1)t .

Q4. Comme R > 1, la fonction GT1
est de classe C2 en 1, donc T1 est de variance finie.

De plus, après calcul,

∀t ∈ ]−R,R [ , G′

T1
(t) =

p

(1 + (p− 1)t)2
et G′′

T1
(t) = −

2p(p− 1)

(1 + (p− 1)t)3
.

On en déduit tout d’abord que E(T1) = G′

T1
(1) = 1

p
.
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De plus, par la formule de transfert,

G′′

T1
(1) =

+∞
∑

k=1

k(k − 1)P(T1 = k) = E(T1(T1 − 1)).

Cela entraîne, par la formule de Koenig-Huygens et par linéarité de l’espérance :

V (T1) = E(T 2
1 )− (E(T1))

2
= G′′

T1
(1) + E(T1)− (E(T1))

2
=

2(1− p)

p2
+

1

p
−

1

p2
.

Finalement, V (T1) =
1−p
p2 .

Q5. Par linéarité de l’espérance,

E(Dn) =
∑n

k=1E(Tk) = nE(T1) =
n
p
.

De plus, comme les variables aléatoires (Tk) sont indépendantes (deux à deux),

V (Dn) =
∑n

k=1 V (Tk) = nV (T1) =
n(1−p)

p2 .

Enfin, par indépendance des variables (Tk),

∀t ∈ ]−R,R [ , GDn
(t) =

∏n

k=1GTk
(t) = Gn

T1
(t) =

(

pt
1+(p−1)t

)n

.

Q6. Le développement en série entière de (1 + x)α au voisinage de 0 est donné par :

∀x ∈]− 1, 1 [ , (1 + x)α = 1 +
∑+∞

k=1
α(α−1)...(α+1−k)

k! xk .

Soit n ∈ N
∗, et soit t ∈ ]−R,R [ . Alors, |(p− 1)t| < 1 donc, par ce qui précède,

GDn
(t) = pntn(1 + (p− 1)t)−n = pntn

+∞
∑

k=0

ck(p− 1)ktk =

+∞
∑

k=0

ck p
n(p− 1)ktn+k

où ck = −n(−n−1)...(−n+1−k)
k! = (−1)k

(

k+n−1
k

)

.

Finalement,

∀t ∈ ]−R,R [ , GDn
(t) =

∑+∞

k=0

(

k+n−1
k

)

pn(1− p)ktn+k =
∑+∞

j=n

(

j−1
j−n

)

pn(1− p)j−ntj .

Alors, par unicité du développement en série entière, puisque PDn
(t) =

∑+∞

k=1 P(Dn = k)tk,

∀(k, n) ∈ (N∗)2, P(Dn = k) =
(

k−1
k−n

)

pn(1− p)k−n

avec, par convention,
(

k−1
k−n

)

= 0 si k < n.

Partie II - Étude du comportement de la file

II.1 - Une suite récurrente

Q7. La fonction f est strictement croissante sur R. De plus, f(0) = exp(−a) > 0 et f(1) = exp(0) = 1.
On en déduit que :

∀t ∈]0, 1[, f(t) ∈ ]f(0), f(1)[ ⊂ ]0, 1[ .

Autrement dit, l’intervalle ]0, 1[ est stable par f .

On montre par récurrence sur n ∈ N
∗ la proposition

(Hn) : (zn ∈ ]0, 1[ et zn+1 − zn est du même signe que z2 − z1) .
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(a) Initialisation : Par hypothèse, z1 ∈ ]0, 1[ , donc (H1) est vérifiée.

(b) Hérédité : Soit n ∈ N
∗ tel que (Hn) est vraie.

Alors zn ∈ ]0, 1[ donc par stabilité de ]0, 1[ par f , zn+1 = f(zn) ∈ ]0, 1[ .
De plus, par croissance de f , zn+2 − zn+1 = f(zn+1)− f(zn) a même signe que zn+1 − zn,
donc zn+2 − zn+1 a même signe que z2 − z1. Finalement, (Hn+1) est vérifiée.

(c) Conclusion : ∀n ∈ N
∗, zn ∈ ]0, 1[ et zn+1 − zn est du même signe que z2 − z1.

Q8. La suite (zn) est une suite réelle monotone et bornée.
Donc, par le théorème de la limite monotone, (zn) converge. On note ℓ = limn→+∞ zn.
Par ce qui précède,

∀n ∈ N
∗, 0 < zn < 1

donc, par passage à la limite, 0 ⩽ ℓ ⩽ 1. De plus, par définition de (zn),

∀n ∈ N
∗, zn+1 = f(zn) .

Alors, par passage à la limite et par continuité de f , on obtient :

ℓ = lim
n→+∞

zn+1 = lim
n→+∞

f(zn) = f(ℓ) .

Finalement, la suite (zn) converge, et sa limite ℓ ∈ [0, 1] est un point fixe de f .

Q9. Soit x ∈ ]0, 1]. Alors, par stricte croissance de exp,

0 ⩽ ψ(x) ⇐⇒ a(x− 1) ⩽ ln(x) ⇐⇒ exp(a(x− 1)) ⩽ exp(ln(x) ⇐⇒ f(x) ⩽ x.

NDSG : en aucun cas la simple croissance ne donne les équivalences.

De même, par bijectivité de exp : R → R
∗

+,

ψ(x) = 0 ⇐⇒ a(x− 1) = ln(x) ⇐⇒ exp(a(x− 1)) = exp(ln(x) ⇐⇒ f(x) = x.

NDSG : voici le graphe de f pour quelques valeurs de a :
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a=1/2
a=1
a=2

Figure 1 – Vous voyez les points fixes ?

Q10. La fonction ψ est dérivable sur ]0, 1] et ∀x ∈ ]0, 1[ , ψ′(x) = 1
x
− a > 1− a ⩾ 0.

On en déduit que ψ est strictement croissante sur ]0, 1] et ∀x ∈ ]0, 1] , ψ(x) ⩽ ψ(1) = 0.
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De plus, comme ψ est strictement croissante sur ]0, 1], ψ ne s’annule qu’en 1.

Alors, par la question Q9, ∀x ∈ ]0, 1] , f(x) = x ⇐⇒ ψ(x) = 0 ⇐⇒ x = 1 .

Autrement dit, 1 est l’unique point fixe de f dans ]0, 1], et donc dans [0, 1] car f(0) ̸= 0.

Alors, par la question Q8., limn→+∞ zn = 1.

Q11. Sachant que a > 1, les variations de ψ sont données par :

x 0 1/a 1

ψ′(x) + 0 −

ψ(x)

−∞

ψ(1/a)

0

Alors ψ(1/a) > 0 et limx→0 ψ(x) < 0 donc, par le théorème des valeurs intermédiaires, il existe
α ∈ ]0, 1/a[ tel que ψ(α) = 0. La stricte croissance de ψ sur ]0, 1/a[ assure l’unicité de α.

Finalement, il existe α ∈ ]0, 1] tel que ∀x ∈ ]0, 1], ψ(x) ⩾ 0 ⇐⇒ x ⩾ α.

La question Q9. entraîne alors que

∀x ∈ ]0, 1], f(x) = x ⇐⇒ ψ(x) = 0 ⇐⇒ x = α ou x = 1.

1er cas : z1 ∈ ]0, α]. Par croissance de f ,

∀x ∈ ]0, α], f(x) ⩽ f(α) = α.

On en déduit que ]0, α] est stable par f et ∀n ⩾ 1, zn ⩽ α.
Par passage à la limite, on en déduit que ℓ ⩽ α. Or α est l’unique point fixe de f sur [0, α].
Donc, par la question Q8, limn→+∞ zn = α.

2ème cas : z1 ∈ ]α, 1[. De même, par stricte croissance de f , ∀x ∈ ]α, 1[ , f(x) > f(α) = α.
Donc ]α, 1[ est stable par f et ∀n ⩾ 1, α < zn < 1.
De plus ψ ⩾ 0 sur ]α, 1] donc, par la question Q9, ∀x ∈ ]α, 1], f(x) ⩽ x.
Cela entraîne que la suite (zn) est décroissante, donc ℓ ⩽ z1 < 1 et, comme précédemment, ℓ = α.

Finalement, dans les deux cas, limn→+∞ zn = α.

II.2 - Groupes de clients

Q12. L’événement Z se réalise s’il existe un entier n ⩾ 1 tel que Vn = 0, c’est-à-dire si un groupe est
passé au guichet sans qu’aucun nouveau client n’arrive entretemps. Donc l’événement Z correspond

à la situation où à un moment donné, le guichet s’est libéré sans aucun nouveau client à servir.

Q13. La variable aléatoire Nn correspond au nombre de succès lors de la succession de n expériences de
Bernoulli indépendantes et de même paramètre p. Donc Nn suit une loi binomiale B(n, p) :

∀k ∈ [[0, n]], P(Nn = k) =
(

n
k

)

pk(1− p)n−k .

Q14. Soit (k, n) ∈ N
2. Par définition, V1 est le nombre de clients arrivés dans la file d’attente dans

l’intervalle de temps [[1, S]]. Donc, avec les notations précédentes, V1 = NS . On en déduit :

P(V1 = k|S = n) = P(Nn = k) =
(

n
k

)

pk(1− p)n−k.
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Soit k ∈ N. Alors, par la formule des probabilités totales, en utilisant que ({S = n})n∈N
forme un

système complet d’événements,

P(V1 = k) =
+∞
∑

n=0

P(V1 = k|S = n)P(S = n) =
+∞
∑

n=0

(

n

k

)

pk(1− p)n−k e−λλ
n

n!

= pke−λ

+∞
∑

n=k

(

n

k

)

(1− p)n−k λ
n

n!
=

(λp)k

k!
e−λ

+∞
∑

n=k

(1− p)n−k λn−k

(n− k)!
.

Finalement, après simplification,

∀k ∈ N, P(V1 = k) =
(λp)k

k!
e−λ e(1−p)λ = e−λp (λp)k

k!
,

donc V1 suit une loi de Poisson de paramètre λp.

Q15. Soit n ∈ N
∗. Alors {Vn = 0} ⊂ {Vn+1 = 0}. Donc, par continuité croissante de P,

lim
n→+∞

P({Vn = 0}) = P

(

+∞
⋃

n=1

{Vn = 0}

)

= P (Z) .

Cela signifie que (zn) converge et limn→+∞ zn = P (Z).

Q16. Soit j ∈ N.

1er cas : j = 0. Alors, pour tout n ⩾ 1, P (Vn+1 = 0|V1 = 0) = 1 = P(Vn = 0)0.

2ème cas : j ⩾ 1. Supposons que V1 = j. Alors le premier groupe est composé des clients de 1 à j.
Par analogie avec les groupes de clients définis dans l’énoncé, pour tout client d’indice 1 ⩽ i ⩽ j,

on note G
(i)
1 l’ensemble des clients du deuxième groupe qui sont arrivés pendant que i est servi.

Puis, récursivement, pour tout k ⩾ 2, on note G
(i)
k l’ensemble des clients du (k + 1)-ième groupe

arrivés pendant que les clients de G
(i)
k−1 sont servis.

Alors, par construction, le (k + 1)-ième groupe est l’union disjointe des (G
(i)
k )1⩽i⩽j , donc

Vk+1 =

j
∑

i=1

V
(i)
k ,

où V
(i)
k représente le nombre de clients de G

(i)
k .

Or, pour tout i, la variable V
(i)
k suit un processus identique à celui de la variable Vk en ne consi-

dérant que les temps de passage des clients appartenant aux groupes issus du client i.

On en déduit que V
(i)
k suit la même loi que Vk et, faute de preuve rigoureuse, il est intuitivement

raisonnable de considérer que les variables
(

V
(i)
k

)

1⩽i⩽j
sont indépendantes.

Soit n ∈ N
∗. Alors, par positivité des variables V

(i)
n ,

{Vn+1 = 0} =

n
⋂

i=1

{V (i)
n = 0}

donc, par indépendance,

P (Vn+1 = 0|V1 = j) =

j
∏

i=1

P

(

V (i)
n = 0

)

= P(Vn = 0)j .

Finalement, ∀j ∈ N, ∀n ∈ N
∗, P (Vn+1 = 0|V1 = j) = P(Vn = 0)j .
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Q17. Soit n ∈ N
∗. Alors, par la formule des probabilités totales, en utilisant que ({V1 = j})j∈N

forme un
système complet d’événements,

zn+1 =
+∞
∑

j=0

P (Vn+1 = 0|V1 = j) P (V1 = j) =
+∞
∑

j=0

P(Vn = 0)je−λp (λp)
j

j!
= e−λp

+∞
∑

j=0

(λpzn)
j

j!
.

Finalement, ∀n ∈ N
∗, zn+1 = e−λp eλpzn = exp(λp(zn − 1)) .

Q18. D’après la question précédente, la suite (zn) vérifie toutes les hypothèses de la partie II.1. avec
a = λp.

Donc, d’après la question Q10, si λp ⩽ 1, alors limn→+∞ zn = 1.

De plus, d’après la question Q11, si λp > 1, alors (zn) converge vers un réel α < 1.

Tout ceci est assez raisonnable : le cas limite λp = 1 correspond à la situation où « le nombre
moyen de clients qui arrivent quand on en sert 1 » vaut 1. En deçà de cette valeur on devine que
la file va se résorber et qu’on arrivera à un moment où il n’y aura personne qui attend. Au delà, il
se peut qu’avec un peu de chance la file se vide (probablement vers le début du processus), mais il
est aussi possible (et même « probable ») que sa longueur devienne de plus en plus grande, d’où la
probabilité strictement plus petite que 1 (et d’autant plus petite que λp est grand).

FIN
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1/ REMARQUES GÉNÉRALES 
  
Le sujet se compose d'un exercice et de deux problèmes indépendants. Le premier problème 

de probabilités se compose de deux parties principales et examine divers aspects de la théorie 

des files d'attente à travers plusieurs questions sur la loi géométrique, les séries génératrices 

et les suites récurrentes. L'exercice qui a suivi a pour objectif de démontrer l'équivalent de 

Stirling et faisait intervenir des calculs plus ou moins techniques d'analyse. Enfin, le problème 

d'algèbre linéaire était divisé en deux parties. La première s'intéressait à une propriété 

d’irréductibilité des blocs de Jordan et la seconde au caractère borné des solutions du système 

différentiel linéaire associé à une matrice de Jordan. 

Les examinateurs ont apprécié que les questions soient traitées dans l’ordre et que les 

résultats soient bien mis en valeur. Les ratures sont à éviter au maximum. 

La précision et la clarté des réponses sont des critères importants pour l’évaluation des copies. 

Les références aux théorèmes du cours sont nécessaires et ces références doivent être les 

plus équivoques possibles (par exemple, dire “par linéarité de l’espérance” plutôt que “par 

propriété de l’espérance”). Les abréviations sont à proscrire, ce qui n’empêche pas les 

rédactions synthétiques. 

L’honnêteté intellectuelle est également un critère important dans l’évaluation du travail des 

candidats. S’il est possible d’admettre un résultat pour traiter la suite d’un problème, il est en 

revanche inacceptable de donner un résultat sur un coup de bluff. Les questions sont détaillées 

pour accompagner le candidat dans sa réflexion et il est dommageable de s’en  

 
 

2/ ANALYSE DÉTAILLÉE DES QUESTIONS 
 
Problème 1 (probabilités) 
 

Q1 : Justification que T1 suit une loi géométrique : 

La plupart des candidats ont reconnu une loi géométrique mais ont paraphrasé l’énoncé sans 

fournir de démonstration rigoureuse.  

Beaucoup de candidats ont eu du mal à modéliser proprement la situation décrite dans 

l’énoncé.  

L’indépendance des événements a souvent été oubliée. 
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Q2 : Expression et probabilité de l’événement A : 

La bonne expression de l’événement A (ou 𝐴̅𝐴) avec les événements (X1=k) est rarement 

donnée. Certains tentent de calculer la probabilité de A par des arguments de continuité 

monotone, d’autres utilisent à tort l’indépendance des événements (T1 = k) pour tenter de 

conclure. 

Q3 : Rayon de convergence de la fonction génératrice : 
Bien que cette question soit en grande partie basée sur des connaissances de cours, de 
nombreux candidats ont commis des erreurs dans le calcul de la somme. 
Certains ont correctement identifié le rayon de convergence mais ont mal calculé la fonction 
génératrice. 
Il y a eu une tendance à oublier de justifier les étapes du calcul. 

Q4 : Espérance et variance de T1 : 
La plupart des candidats ont pu calculer l’espérance correctement, mais ont eu des difficultés 
avec la variance. 
Les justifications pour les dérivées nécessaires pour trouver l’espérance et la variance ont 
souvent été manquantes ou incorrectes. 

Q5 : Espérance, variance et fonction génératrice de Dn : 
Il y a eu une confusion fréquente entre la somme et le produit des fonctions génératrices. Les 
candidats ont eu tendance à négliger les justifications nécessaires pour les propriétés de 
linéarité de l’espérance et la variance. 

Q6 : Développement en série entière de GDn : 

La plupart des candidats se sont contentés de répondre à la question de cours. 
Peu de candidats ont bien appliqué le développement en série entière, et ceux qui l'ont tenté 
ont souvent manqué de rigueur dans leur démonstration. 
La transition entre le développement en série entière et l’application aux fonctions génératrices 
a été mal gérée. 

Q7 : Monotonie et signe de zn+1 - zn : 

Beaucoup de candidats ont seulement traité la première partie de la question concernant la 
monotonie, sans aborder correctement la justification du signe de zn+1 - zn. Certains ont pensé 
pouvoir trouver le signe sans soupçonner que les deux cas pouvaient se produire dans cette 
situation. 
Les justifications ont été souvent compliquées et ont manqué de clarté. 

Q8 : Convergence de ( zn ) et point fixe : 

Bien que beaucoup aient reconnu que ( zn ) converge, la justification de la monotonie et de la 
borne a souvent été incomplète. 
La continuité de ( f ) pour prouver que ( \ell ) est un point fixe a été presque systématiquement 
oubliée. 

Q9 : Fonction Ѱ et inégalité : 
La question était simple à résoudre mais souvent assez mal justifiée, avec des arguments du 
type “par passage à l’exponentielle”. De nombreux candidats pensent que le fait d’écrire la 
double flèche d’équivalence suffit à répondre à la question. 

Q10 : Signe de Ѱ et convergence de zn : 

L’étude du signe de Ѱ a souvent été incorrecte. 
Ceux qui ont bien traité cette partie ont réussi à montrer la convergence de zn vers 1 de 
manière cohérente. 

Q11 : Étude du signe de Ѱ avec a > 1 : 

Cette question était plus complexe et a souvent été mal abordée. 
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Les candidats ont eu du mal à montrer l’existence des deux solutions α et 1 et à prouver la 
convergence de zn vers α. 

Q12 : Situation concrète de l’événement Z : 

Interprétation souvent incorrecte, avec beaucoup de réponses fantaisistes. Il se cache 

souvent, derrière le raisonnement des candidats, une confusion entre le OU et le ET. 

Q13 : Loi du nombre Nn de clients arrivés : 

Confusion assez fréquente entre la loi binomiale et la loi uniforme. 

Q14 : Loi de Poisson pour V1 : 

Question visiblement classique pour un bon nombre de candidats, bien que certains n’aient 
pas réussi à aller jusqu’à la démonstration complète. 
Les justifications utilisant le système complet d’événements ont souvent été incomplètes. 

Q15 : Convergence de (zn) et P(Z) : 
Question peu traitée mais généralement de manière plutôt satisfaisante. 

Q16 : Probabilité conditionnelle P(Vn+1 = 0 | V1 = j) : 
Question difficile, souvent mal abordée, excepté le cas j = 0. 

Q17 et Q18 : Formule pour zn+1 et limite de zn suivant λ p : 

Questions peu abordées mais les rares réponses sont souvent pertinentes. 
Certains candidats ont correctement identifié les cas mais ont eu du mal à fournir des 
justifications rigoureuses. 

Exercice (analyse) 
 

Q19 : Convergence de l’intégrale : 

Une question assez emblématique des attendus du concours en analyse. Les candidats ont 

généralement bien identifié ce qu’il fallait étudier, malgré l’oubli fréquent de mentionner la 

continuité de la fonction sur l’intervalle d’intégration. Les comparaisons asymptotiques ont été 

souvent justes mais on peut suspecter de nombreuses fois que le candidat les a écrites par 

habitude, sans réellement les comprendre. 

Q20 : Relation de récurrence pour Γ (x+1)  : 
La plupart des candidats ont correctement utilisé l’intégration par parties pour démontrer la 
relation. La récurrence était facile à mener mais assez souvent bâclée dans sa rédaction. 

Q21 : Formule pour Γ(n+1/2) : 
Des résultats plus mitigés pour cette question abandonnée par un tiers des candidats. Pour 
les autres, on trouve parfois des bizarreries comme (n+1/2)! ou plus souvent des récurrences 
peu habilement menées, ou encore un changement de variable mis en œuvre sur l’intégrale 

Γ(n+1/2) alors qu’il est plus simple de se limite au cas où n=0. Quelques candidats 
redémontrent l’équation fonctionnelle déjà vue à la question précédente pour le cas où 
x=n+1/2. 

Q22 : Expression de ln Γ(n) : 
Les candidats ont souvent bien utilisé la relation de Chasles pour transformer l’expression. 
Beaucoup de récurrences inutiles ont été observées. 

Q23 : Calcul de ρk : 

La plupart des candidats se sont contentés de traiter la deuxième partie de l’égalité, plus 
simple. 
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Q24 : Convergence de la somme des ρk : 

Question peu réussie, les tentatives d’intégration terme à terme d’une série se sont révélées 

peu concluantes. On observe des confusions entre convergence de la série et convergence 

de l’intégrale et des intégrations d’équivalents sans justification. Les rares candidats ayant 

pensé à de simples majorations s’en tirent beaucoup mieux. 

Q25 : Asymptotique de ln Γ(n) : 
Le développement asymptotique est rarement entamé. Les candidats sont souvent tentés de 
composer les équivalents par l’exponentielle. 

Q26 : Expression de ln Γn(x) : 
La manipulation du changement de variable affine a été bien traitée par la majorité des 
candidats. 
Quelques erreurs dans l’application correcte des bornes ont été notées. 

Q27 : Expression de Γn(x) pour tout ( n ) : 
Il fallait penser à traiter le cas n=1, non trivial, et les récurrences immédiates ne pouvaient 
difficilement être prises au sérieux ici. 

Q28 : Convergence de Γn(x) vers Γ(x)  : 
L’application du théorème de convergence dominée a souvent été incorrecte ou incomplète, 
avec des majorations dépendant de n ce qui est très décevant vu l’importance de ce théorème 
dans le programme. 
Les majorations par inégalités de convexité ont été souvent peu convaincantes. 

Q29 : Limite de Γ(x+n) / Γ(n)nx : 

Les candidats ont eu des difficultés à appliquer correctement les résultats précédents pour 
démontrer la limite. Un manque de recul évident sur le sujet a été détecté chez les candidats 
qui ont utilisé le résultat de l’équivalent de Stirling pour répondre à la question. 
 

Problème 2 (algèbre linéaire) 
 

Q30 : Calcul de 𝒖𝒖0𝟐𝟐(ej) et J0 : 

Les candidats ont souvent bien compris comment calculer les itérations de u0. 

Certains candidats calculent 𝐽𝐽0𝟐𝟐 mais ne savent pas donner 𝑢𝑢02(ej), ce qui montre que le lien 
entre matrice et endomorphisme n’est pas compris. 

Q31 : Spectre de uλ et sous-espace propre : 

La détermination du spectre de uλ a généralement été bien réalisée. 
Les candidats ont eu plus de mal à identifier correctement le sous-espace propre associé. 
Certains ne s’inquiètent pas d’avoir un sous-espace propre engendré par le vecteur nul. 

Q32 : Stabilité par uλ et u0 : 

Question souvent mal comprise avec un raisonnement consistant à considérer λ=0 comme un 
cas particulier de λ quelconque. Il suffisait d’écrire la relation entre u0 et uλ pour conclure. 

Q 33 : Forme de la matrice de uλ dans une base donnée : 
Pour les candidats ayant compris la question, les réponses ont varié entre des réponses 
correctes et des diagonales par bloc ou des matrices triangulaires. 

Q34 et Q35 : Division du polynôme caractéristique et inexistence de décomposition en 
sous-espaces stables : 

Question abordée par une minorité de candidats. Quelques justifications sur la divisibilité, 
presque rien pour la suite. 
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Q36 : Solutions particulières de (S) pour Jλ : 
Les candidats ont généralement bien compris que les solutions particulières peuvent être 

exprimées sous la forme donnée. 

Q37 : Dérivabilité de φ et propriétés : 

Ici beaucoup de candidats ne se sont pas laissés guider par le sujet qui définissait 

l’exponentielle dans ce cas particulier. Certains ne se sont pas aperçus qu’il s’agissait de 

l’exponentielle d’une matrice, d’autres ont employé des arguments généraux de cours sur 

l’exponentielle de matrice alors qu’on attendait une redémonstration dans ce cas particulier. 

Q38 : Inversibilité de exp(t Jλ) ) : 
L’argument de nilpotence a été souvent bien utilisé. Les meilleurs candidats arrivent à 

reconnaître un binôme de Newton dans le calcul. 

Q39 à Q42 : Ces questions ont été peu traitées en général. 
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