
Corrigé de l’épreuve CCMP Maths II PSI

1 Une propriété sur les sommes de Riemann

1. Au programme de toutes les classes de première année, il y a le résultat suivant, démontré seulement pour
les fonctions de classe C1 :

Théorème : pour f continue sur le segment [a, b],
b− a

n

n−1∑

k=0

f

(
a+ k

b− a

n

)
n→∞→

∫ b

a

f(t)dt.

g étant continue et intégrable sur ]a, b[, on applique ce théorème à f :

1

n

n−1∑

k=0

f

(
a+ k

b− a

n

)
n→∞→ 1

b− a

∫ b

a

f(t)dt,

puis on constate que

1

n

n−1∑

k=1

g

(
a+ k

b− a

n

)
=

1

n

n−1∑

k=1

f

(
a+ k

b− a

n

)

=
1

n

n−1∑

k=0

f

(
a+ k

b− a

n

)
− 1

n
f(a)

n→∞→
∫ b

a

f(t)dt− 0

=

∫ b

a

g(t)dt

,

ce qui prouve bien que g ∈ Da,b.

2. • Pour tout k ≥ 1,

ak − bk+1 =
1

k(k + 1)
− 1

2k+2

=
1

k(k + 1)

(
1− k(k + 1)

2k+2

) ,

et
k(k + 1)

2k+2
→ 0 quand k →∞ par croissance comparée : il existe k0 tel que

k(k + 1)

2k+2
< 1 pour tout

k ≥ k0. Il semble même que k0 = 1 convienne.

• On prend ici k0 = 2.

Les intervalles [ak, bk], k ≥ 2, chacun centré en
1

k
, forment une suite d’intervalles deux à deux disjoints

de l’intervalle ]0, 1[, donc tout réel t ∈]0, 1[ appartient à au plus un de ces intervalles, sur chacun

desquels f est bien définie (raccord de valeur k2 en t =
1

k
). Donc f est bien définie sur ]0, 1[.

• f est une fonction affine par morceaux, donc continue, sauf peut-être en les réels ak et bk.

Or, ∀k ≥ 2, f(ak) = 0 = lim
t→0−

f(t) et f(bk) = 0 = lim
t→0+

f(t).

Donc f est continue sur ]0, 1[.

• f est prolongeable par continuité en 1 (valeur 0), donc pour tout x ∈]0, 1[,
∫ 1

x

f(t)dt converge.

Ensuite, f est à valeurs positives, donc la fonction x 7→
∫ 1

x

f(t)dt est décroissante sur ]0, 1[.

Enfin, puisque ak → 0 quand k →∞, pour tout x ∈]0, 1[, il existe un entier p tel ap ≤ x, et
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∫ 1

x

f(t)dt ≤
∫ 1

ap

f(t)dt

=
2∑

k=p

1

2k+1

=
+∞∑

k=2

1

2k+1
puisque cette série converge.

Ainsi, la fonction x 7→
∫ 1

x

f(t)dt admet une limite finie quand x → 0, ce qui prouve que f est

intégrable sur [0, 1].

• 1

n

n−1∑

k=1

f

(
k

n

)
≥ 1

n
f

(
k

n

)
= n→ +∞ quand n→∞.

Ainsi
1

n

n−1∑

k=1

f

(
k

n

)
n’admet pas de limite finie, et f n’appartient pas à Da,b.

3. φ est définie et continue sur ]0, 1], et, pour tout x ∈]0, 1],
∫ 1

x

φ(t)dt = [2
√
t]1x = 2(1−

√
x)→ 2 quand x→ 0.

Donc φ est bien intégrable sur ]0, 1[.

Pour montrer que φ appartient à D0,1, on montre le résultat suivant, que l’on utilisera aussi dans la
question suivante :

Théorème : toute fonction f continue, intégrable, monotone et à valeurs positives sur l’intervalle ]a, b[
appartient à Da,b.

On fait la démonstration dans le cas où f est décroissante.

Soit n ∈ N
∗.

Par un principe classique de comparaison d’aires, pour tout entier k ∈ J1, n− 1K,

∫ a+(k+1) b−a
n

a+k b−a
n

f(t)dt ≤ b− a

n
f

(
a+ k

b− a

n

)
≤
∫ a+k b−a

n

a+(k−1) b−a
n

f(t)dt.

En sommant pour k = 1 . . . n− 1, il vient :

n−1∑

k=1

∫ a+(k+1) b−a
n

a+k b−a
n

f(t)dt ≤ b− a

n

n−1∑

k=1

f

(
a+ k

b− a

n

)
≤

n−1∑

k=1

∫ a+k b−a
n

a+(k−1) b−a
n

f(t)dt,

soit encore :

1

b− a

∫ b

a+ b−a
n

f(t)dt ≤ 1

n

n−1∑

k=1

f

(
a+ k

b− a

n

)
≤ 1

b− a

∫ b− b−a
n

a

f(t)dt.

Quand n→∞, et puisque f est intégrable sur )a, b[, les membres de gauche et de droite de cette double

inégalité tendent tous les deux vers
1

b− a

∫ b

a

f(t)dt, et donc, par encadrement,
1

n

n−1∑

k=1

f

(
a+ k

b− a

n

)
→

1

b− a

∫ b

a

f(t)dt quand n→∞.

Finalement, f ∈ Da,b.

On applique alors ce théorème à la fonction φ, qui est continue, intégrable, décroissante et à valeurs
positives sur ]0, 1[, et appartient donc à D0,1.

4. h̃ est dérivable et pour tout t ∈
]
0,

1

2

]
, h̃′(t) = −1

2
× 1

[t(1− t)]
3
2

× (1− 2t) ≤ 0 : h̃ est décroissante.
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Ensuite, h̃ est continue, à valeurs positives, et h̃(t) ∼ 1√
t

quand t → 0. Par comparaison, on en déduit

que h̃ est intégrable sur

]
0,

1

2

]
.

Enfin, h̃ ∈ D0, 1
2

par le théorème démontré à la question précédente.

5. h est intégrable sur

]
0,

1

2

]
, et le changement de variable u = 1−t, C1 et strictement décroissant, transforme

∫ 1
2

0

h(t)dt en

∫ 1

1
2

h(t)dt. Ces deux intégrales sont donc de même nature, convergentes, et finalement, h est

intégrable sur ]0, 1[.

De plus,

∫ 1
2

0

h(t)dt =

∫ 1

1
2

h(t)dt, et

∫ 1

0

h(t)dt = 2

∫ 1
2

0

h(t)dt = 2

∫ 1
2

0

h̃(t)dt.

6. Puisque h̃ ∈ D0, 1
2

:

1

n

n−1∑

k=1

h

(
k

2n

)
→ 2

∫ 1
2

0

h(t)dt =

∫ 1

0

h(t)dt quand n→∞.

Or, puisque h(1− t) = h(t) pour tout t ∈]0, 1[ :

n−1∑

k=1

h

(
k

2n

)
=

n−1∑

k=1

h

(
1− k

2n

)

=

n−1∑

k=1

h

(
2n− k

2n

)

=

n+1∑

k=2n−1

h

(
k

2n

)
par le changement d’indice 2n− k ← k

=
1

2

[
2n−1∑

k=1

h

(
k

2n

)
− h

(
1

2

)]

.

Donc
1

2n

2n−1∑

k=1

h

(
2n− k

2n

)
=

1

n

n−1∑

k=1

h

(
k

2n

)
+ o(1)→

∫ 1

0

h(t)dt quand n→∞.

7. Soit n ∈ N
∗. Puisque h est décroissante sur

]
0,

1

2

]
, et que

k

2n
∈
]
0,

1

2

]
pour tout k ∈ J1, nK,

h

(
k

2n

)
≤ h

(
k

2n+ 1

)
≤ h

(
k

2(n+ 1)

)
∀k = 1 . . . n,

et donc

2n

2n+ 1
.
1

2n

n∑

k=1

h

(
k

2n

)
≤ 1

2n+ 1

n∑

k=1

h

(
k

2n+ 1

)
≤ 2(n+ 1)

2n+ 1
.

1

2(n+ 1)

n∑

k=1

h

(
k

2(n+ 1)

)
.

Or
1

2n

n∑

k=1

h

(
k

2n

)
=

1

2n

n−1∑

k=1

h

(
k

2n

)
+

1

2n
h

(
1

2

)
→
∫ 1

2

0

h(t)dt quand n→∞, et
1

2(n+ 1)

n∑

k=1

h

(
k

2(n+ 1)

)
→

∫ 1
2

0

h(t)dt.

Donc par encadrement,
1

2n+ 1

n∑

k=1

h

(
k

2n+ 1

)
→
∫ 1

2

0

h(t)dt quand n→∞.

Enfin,
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1

2n+ 1

2n∑

k=1

h

(
k

2n+ 1

)
=

1

2n+ 1

n∑

k=1

h

(
k

2n+ 1

)
+

1

2n+ 1

2n∑

k=n+1

h

(
k

2n+ 1

)

=
1

2n+ 1

n∑

k=1

h

(
k

2n+ 1

)
+

1

2n+ 1

2n∑

k=n+1

h

(
2n− (k − 1)

2n+ 1

)

=
1

2n+ 1

n∑

k=1

h

(
k

2n+ 1

)
+

1

2n+ 1

1∑

k=n

h

(
k

2n+ 1

)

= 2.
1

2n+ 1

n∑

k=1

h

(
k

2n+ 1

)

→ 2

∫ 1
2

0

h(t)dt =

∫ 1

0

h(t)dt

.

8. Si on note Sp =
1

p

p−1∑

k=1

h

(
k

p

)
, le résultat de la question 6 prouve que la suite (S2n)n est convergente de

limite

∫ 1

0

h(t)dt, et celui de la question 7 que la suite (S2n+1)n est convergente de limite

∫ 1

0

h(t)dt.

Un résultat de cours permet de conclure que la suite (Sp)p est convergente de limite

∫ 1

0

h(t)dt, c’est-à-dire,

compte tenu de la continuité de h et de son intégrabilité obtenue à la question 5, que h ∈ D0,1.

9. On effectue dans l’intégrale convergente

∫ 1

0

h(t)dt le changement de variable strictement croissant u =
√
t,

soit t = u2.

Puisque dt = 2udu,

∫ 1

0

h(t)dt =

∫ 1

0

1√
t(1− t)

dt = 2

∫ 1

0

du√
1− u2

= 2 [arcsin(u)]
1
0 = π.

10. D’après la question 3, la fonction φ appartient à D0,1. Donc :

1

n

n−1∑

k=1

1√
k
n

→
∫ 1

0

dt√
t

quand n→∞,

ce qui s’écrit encore :

1√
n

n−1∑

k=1

1√
k
→ 2.

On en conclut que
1√
n

n−1∑

k=1

1√
k
∼ 2
√
n, puis, compte-tenu du fait que

√
n+ 1 ∼ √n, que :

1√
n

n∑

k=1

1√
k
∼ 2
√
n.

11. Puisque cette fois h ∈ D0,1,

1

n

n−1∑

k=1

1√
k
n

(
1− k

n

) →
∫ 1

0

h(t)dt quand n→∞,

alors :

n−1∑

k=1

1√
k(n− k)

→ π.

12. Soit ǫ un réel strictement positif. Puisque ǫn → 0 quand n→∞, il existe un entier naturel non nul n0 tel
que :

∀n ≥ n0, |ǫn| < ǫ.
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Pour tout n > n0,

n−1∑

k=1

|ǫk|√
k(n− k)

=

n0−1∑

k=1

|ǫk|√
k(n− k)

+

n−1∑

k=n0

|ǫk|√
k(n− k)

≤ max(|ǫ1|, . . . , |ǫn0−1|)×
n0−1∑

k=1

1√
k(n− k)

+ ǫ×
n−1∑

k=n0

1√
k(n− k)

≤ max(|ǫ1|, . . . , |ǫn0−1|)×
n0−1∑

k=1

1√
n− n0 + 1

+ ǫ×
n−1∑

k=1

1√
k(n− k)

.

Comme la suite

(
n−1∑

k=1

1√
k(n− k)

)

n

est convergente, elle est bornée, donc il existe un réel M tel que,

pour tout n ≥ n0,
n−1∑

k=1

1√
k(n− k)

≤M .

Ainsi,

n−1∑

k=1

|ǫk|√
k(n− k)

≤ max(|ǫ1|, . . . , |ǫn0−1|)×
n0 − 1√
n− n0 + 1

+Mǫ .

Le premier terme tendant vers 0 lorsque n→∞, il existe un entier naturel non nul n1 tel que :

∀n ≥ n1, max(|ǫ1|, . . . , |ǫn0−1|)×
n0 − 1√
n− n0 + 1

< ǫ.

Ainsi, pour tout n ≥ max(n0, n1),

n−1∑

k=1

|ǫk|√
k(n− k)

< (M + 1)ǫ.

Cela prouve que

n−1∑

k=1

|ǫk|√
k(n− k)

→ 0 quand n→∞.

13. Pour tout entier n ≥ 1 et tout entier i compris entre 1 et n− 1,

(1 + ǫi)(1 + ǫn−i)

1 + ǫn
− 1 =

ǫi

1 + ǫn
+

ǫn−i

1 + ǫn
+

ǫiǫn−i

1 + ǫn
− ǫn

1 + ǫn
.

Puisque ǫn → 0, il existe n2 ∈ N
∗ tel, pour tout n ≥ n2, 1 + ǫn ≥

1

2
.

Donc

∣∣∣∣∣

n−1∑

i=1

1√
i(n− i)

ǫi

1 + ǫn

∣∣∣∣∣ ≤ 2
n−1∑

i=1

|ǫi|√
i(n− i)

→ 0 quand n→∞.

De la même façon, et puisque le changement d’indice i← n−i laisse inchangé i(n−i),
n−1∑

i=1

1√
i(n− i)

ǫn−i

1 + ǫn
→

0.

La suite (ǫk)k étant bornée, on majore dans le troisième terme |ǫiǫn−i| par m × |ǫi|, et on en déduit que
n−1∑

i=1

1√
i(n− i)

ǫiǫn−i

1 + ǫn
→ 0.

Enfin,

∣∣∣∣∣

n−1∑

i=1

1√
i(n− i)

ǫn

1 + ǫn

∣∣∣∣∣ ≤ 2

n−1∑

i=1

1√
i(n− i)

× |ǫn| → 0.

2 Une étude de marche aléatoire

14. Pour tout entier naturel n, la variable aléatoire
1 +Xn

2
est à valeurs dans {0, 1}. Elle suit donc une loi de

Bernoulli.

La probabilité que
1 +Xn

2
vaille 1 est la probabilité que Xn égale 1, soit

1

2
.
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15. Pour tout i = 1 . . . n, Ai est l’évènement "le 2i-uplet (X1, . . . , X2i) comporte le même nombre de −1 que
de 1".

Or il y a

(
2i

i

)
2i-uplets de −1 et de 1 comportant autant de −1 que de 1, et pour chacun de ces 2i-uplets,

la probabilité que (X1, . . . , X2i) lui soit égal vaut

(
1

2

)2i

.

Finalement, P(Ai) =

(
2i

i

)
×
(
1

2

)2i

.

16. Notons Yn la variable aléatoire égale à Card{i ∈ J1, nK | Xi = 1}, et Zn la variable aléatoire égale à
Card{i ∈ J1, nK | Xi = −1}.
Alors Yn + Zn = n et Sn = Yn − Zn.

Ainsi n− Sn = 2Zn est à valeurs dans 2N.

On en déduit que, si l − n est impair, (Sn = l) est l’évènement impossible, et P(Sn = l) = 0.

Lorsque l = n − 2p, où p est un entier naturel, l’évènement (Sn = l) est l’évènement (Yn = n − p), de

probabilité

(
n

n− p

)
×
(
1

2

)n

=

(
n

p

)
×
(
1

2

)n

=

(
n

n+l
2

)
×
(
1

2

)n

.

17. Le fait que la série
∑

n

dn diverge est un résultat de cours.

Ensuite, cn ∼ dn équivaut à dn − cn = o(cn). Comme la série
∑

n

cn est à termes positifs et divergente, le

théorème admis dans l’énoncé permet d’écrire que :

n∑

k=1

(dk − ck) = o(

n∑

k=1

ck),

ce qui prouve que

n∑

k=1

ck ∼
n∑

k=1

dk quand n→∞.

18. Nn est une variable aléatoire à valeurs dans J0, nK. C’est donc une variable aléatoire finie, qui possède
nécessairement une espérance.

Pour le calcul de E(Nn), on note χAi
la variable aléatoire qui vaut 1 si l’évènement Ai est réalisé, et 0

sinon.

On remarque alors que Nn =

n∑

i=1

χAi
, et on en déduit que

E(Nn) =

n∑

i=1

E(χAi
) =

n∑

i=1

P(Ai) =

n∑

i=1

(
2i

i

)
×
(
1

2

)2i

.

19. On utilise la formule de Stirling rappelée dans le préambule, puis la question 17.

Déjà,

(
2i

i

)
=

(2i)!

(i!)2
∼ 2
√
iπ
(
2i
e

)2i

2iπ
(
i
e

)2i =
22i√
iπ

.

Ainsi,

(
2i

i

)
×
(
1

2

)2i

∼ 22i√
iπ
×
(
1

2

)2i

=
1√
iπ

.

La série
∑

i

n∑

i=1

(
2i

i

)
×
(
1

2

)2i

est bien divergente, par comparaison avec la série de Riemann d’exposant

1

2
, et sa somme partielle d’indice n, à savoir E(Nn) est équivalente à

1√
π

n∑

i=1

1√
i
.

La question 10 permet alors d’assurer que

E(Nn) ∼
2√
π

√
n.
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20. L’urne contenant au départ autant de boules blanches que de boules noires, un indice d’égalité est néces-
sairement pair.

Comme à la question 18, on utilise les fonctions indicatrices des évènements Bi : χBi
vaut 1 si i est un

indice d’égalité, 0 sinon. En particulier, χB2j+1
= 0 pour tout entier j. On remarque alors que Mn =

2n∑

i=1

χBi
=

n∑

j=1

χB2j
.

On en déduit que E(Mn) =

n∑

j=1

P(B2j).

Pour tout j ∈ J1, nK, on calcule P(B2j) par dénombrement :

— un tirage est en général un 2n-uplet de blanc et de noir, comportant n boules blanches : il y a

(
2n

n

)

possibilités de placer les boules blanches, et donc le cardinal de tous les résultats possibles est

(
2n

n

)
.

— un tirage favorable est en particulier un tirage dont les 2j derniers éléments sont constitués de j

boules blanches et de j boules noires. Il y a

(
2j

j

)
possibilités de placer les boules blanches ...

— un tirage favorable est aussi un tirage dont les 2(n− j) premiers éléments sont constitués de jn− j

boules blanches et de n− j boules noires. Il y a

(
2(n− j)

n− j

)
possibilités de placer les boules blanches.

Finalement, P(Bj) =

(
2j
j

)(
2(n−j)
n−j

)
(
2n
n

) , et

E(Mn) =

n∑

j=1

(
2j
j

)(
2(n−j)
n−j

)
(
2n
n

) =

n−1∑

j=0

(
2j
j

)(
2(n−j)
n−j

)
(
2n
n

) .

21. On utilise encore Stirling : on rappelle que l’on a démontré à la question 19 que

(
2j

j

)
∼ 22j√

jπ
quand

j →∞. Donc il existe une suite (ǫj)j de réels, convergente de limite nulle, telle que :

(
2j

j

)
=

22j√
jπ

(1 + ǫj).

On remplace alors dans l’expression de E(Mn) obtenue à la question précédente :

E(Mn) = 1 +

n−1∑

j=1

(
2j
j

)(
2(n−j)
n−j

)
(
2n
n

)

= 1 +

n−1∑

j=1

22j√
jπ

(1 + ǫj)
22(n−j)

√
(n− j)π

(1 + ǫn−j)

22n√
nπ

(1 + ǫn)

= 1 +

√
n

π
.

n−1∑

j=1

1√
j(n− j)

.
(1 + ǫj)(1 + ǫn−j)

1 + ǫn

.

Pour simplifier, notons ∆n =

n−1∑

j=1

1√
j(n− j)

.
(1 + ǫj)(1 + ǫn−j)

1 + ǫn
et Σn =

n−1∑

j=1

1√
j(n− j)

.

Alors
1√
n
E(Mn) =

1√
n
+

1√
π
(∆n − Σn) +

1√
π
Σn → 0 + 0 +

√
π d’après les questions 13 et 11, et

E(Mn) ∼
√
πn quand n→∞.

OUF !
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1.7 Mathématiques 2 - filière PSI

1.7.1 Présentation générale et intérêt scientifique du sujet

Le but ultime du sujet était d’étudier un équivalent du nombre de retours à zéro sur n pas, dans
deux situations :

• une marche aléatoire symétrique (questions 14 à 19) ;

• un tirage sans remise dans une urne initialement équilibrée (questions 20 et 21).

Afin d’obtenir lesdits équivalents, il était nécessaire de disposer de plusieurs résultats de comportement
asymptotique de sommes, notamment :

• un équivalent de
Pn

k=1
1√
k

quand n tend vers +∞ (question 10, directement liée à la question 3) ;

• un équivalent de
Pn−1

k=1
1√

k(n−k)
quand n tend vers +∞ (question 11), qui s’avère être une

constante non nulle ;

• et enfin une généralisation du deuxième équivalent (question 13).

Ces résultats sur les équivalents de sommes s’avèrent relever du même principe général : un théorème
sur les sommes de Riemann, adapté à des fonctions intégrables sur un intervalle ouvert borné. Une
difficulté majeure est que l’hypothèse d’intégrabilité ne suffit pas à assurer la convergence de sommes
de Riemann, même régulières, vers l’intégrale : un contre-exemple était étudié à la question 2. En
revanche, il est classique que des hypothèses de monotonie au voisinage des bornes de l’intervalle,
en plus bien sûr de l’intégrabilité, suffisent à assurer la convergence des sommes de Riemann vers
l’intégrale. Dans le sujet, on se limitait à deux exemples simples : la fonction t 7→ t−1/2 sur ]0, 1[
(question 3), et la fonction t 7→ 1√

t(1−t)
sur ce même intervalle (questions 4 à 8).

1.7.2 Structure du sujet

Le sujet était constitué de deux parties à thèmes bien distincts : la première partie utilisait
de façon quasi exclusive les techniques sur les intégrales, tandis que la seconde faisait appel aux
raisonnements probabilistes, avec quelques questions de calcul asymptotique. Plusieurs résultats de la
partie 1 intervenaient dans la partie 2, et seules les toutes premières questions de la partie 2 pouvaient
être traitées de façon entièrement autonome.

Remarques générales sur la présentation et la rédaction

Le jury déplore une nouvelle fois que la présentation des copies soit souvent négligée. Orthographe
et syntaxe sont souvent défaillantes. Trop peu de candidats font l’effort d’organiser clairement leur
argumentation avec des paragraphes bien découpés, des formules encadrées, etc. La rigueur est trop
régulièrement absente dans le discours sur les objets : confusions innombrables entre la fonction f et la
valeur f(x), usage de la notation f(x)′ dénuée de sens, etc. Enfin, et comme signalé dans les rapports
précédents, on attend un surcroît de rigueur de la part des candidats lorsqu’ils utilisent un résultat
établi antérieurement dans le sujet : il faut qu’ils s’astreignent systématiquement à faire une référence
précise à la question où ledit résultat a été démontré.
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1.7.3 Remarques sur les difficultés rencontrées

Ce problème a dans l’ensemble été fort mal réussi par les candidats. Beaucoup d’entre eux sont
parvenus uniquement à résoudre les parties les plus élémentaires des questions, très proches du cours,
et n’ont presque jamais réussi à traiter une question en profondeur. Notamment, peu de candidats
ont compris l’esprit de la première partie, à savoir un recours quasi systématique à la comparaison
somme-intégrale pour une fonction monotone : il est possible d’ailleurs que des candidats aient été
étonnés d’avoir à utiliser la même technique à trois reprises, et aient voulu chercher dans d’autres
directions. Quoi qu’il en soit, il est visible que bien des candidats ont été désarçonnés de ne rester qu’en
surface pour les questions 2 à 7, allant jusqu’à perdre complètement de vue la structure argumentative
de cette partie : ainsi, le jury a été étonné par la très faible proportion de copies identifiant un simple
raisonnement sur la convergence d’une suite fondé sur la séparation selon les termes de rang pair et les
termes de rang impair, ce qui est pourtant un schéma classique (question 8).

Chez bon nombre de candidats, on note une différence très sensible de performance entre la partie
« intégrales » et la partie « probabilités ».

Certains semblent assez à l’aise avec les intégrales généralisées, et très maladroits avec les probabilités,
et d’autres présentent le défaut inverse.

Quant au traitement des questions de probabilités, on doit signaler le peu de soin avec lequel
beaucoup de candidats traitent les variables aléatoires.

On lit trop souvent des raisonnements abusifs comme « Xn = 1 ou Xn = −1 », révélant une confusion
entre la variable Xn (qui est une fonction), et ses réalisations. De tels raisonnements doivent être
impérativement formalisés par retour à une issue (on fixe ω dans l’univers Ω et on raisonne sur Xn(ω)).

Trop de candidats dédaignent la discipline voulant qu’invoquer un théorème nécessite d’en vérifier
les hypothèses.

Les candidats étaient confrontés à une difficulté classique, qui réside dans le degré de crédibilité qu’on
peut accorder aux réponses intuitives en probabilités, dans un cadre où le sujet fournit un formalisme
parfaitement rigoureux du problème. En particulier, pour résoudre une question telle que les questions
15 et 16, les candidats doivent s’astreindre autant que possible à s’appuyer sur le formalisme des
variables aléatoires développé par l’énoncé plutôt que d’agiter des raisonnements intuitifs.

En revanche, quand aucun formalisme clair n’est fourni dans l’énoncé, comme dans la question 20,
une réponse intuitive peut rapporter la totalité des points à condition que le candidat fasse des efforts
d’explication (très) conséquents, d’autant plus que le résultat est ici donné.

Une analyse détaillée des questions est présentée dans l’annexe F.

1.7.4 Ultimes conseils aux futurs candidats

Terminons comme toujours par réitérer quelques conseils importants pour les futurs candidats.

• Maîtriser parfaitement son cours.

• Être très attentif à la précision de l’énoncé.

• Bien réfléchir, aidé d’un brouillon, à la structure du raisonnement ou du calcul avant de le coucher
sur le papier. Au moment de la rédaction, donner toutes les justifications pertinentes (et rien
qu’elles !), et structurer correctement ses raisonnements.

• Il est toujours préférable d’analyser un nombre réduit de questions en profondeur plutôt que de
traiter superficiellement la totalité du sujet. Beaucoup de candidats ont réussi à avoir une note
tout à fait satisfaisante en ne traitant que cinq ou six questions (mais en profondeur).
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• Les tentatives de picorage désespéré sur les questions tardives sont le plus souvent vouées à
l’échec et irritent les correcteurs.
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