
Psi 999 – 2025/2026 Exercices

Espaces préhilbertiens

1 Espaces préhilbertiens

1.1 Produits scalaires, orthogonalité
Exercice 1 – Keyword : densité [8/10]
Soit (un)n∈N une suite de réels de [0, 1]. Donner une condition nécessaire et suffisante simple pour que

(f, g) 7→
∞∑

n=0

f(un)g(un)

2n
soit un produit scalaire sur C([0, 1],R).

Exercice 2 – Centrale 2007 [3/10]
Soient F et G deux sous-espaces de E euclidien. Montrer : (F +G)⊥ = F⊥∩G⊥ et (F ∩G)⊥ = F⊥+G⊥.

Exercice 3 – CCP 2015 [4/10]
On définit, pour A,B ∈Mn(R), ⟨A|B⟩ = tr(ATB).

1. Montrer que ⟨·|·⟩ est un produit scalaire.
2. Soient M ∈ Sn(R) et N ∈ An(R). Montrer : ⟨M |N⟩ = 0.
3. Soit A ∈Mn(R). Calculer :

Inf
S∈Sn(R)

∑
1⩽i,j⩽n

(ai,j − si,j)
2

Exercice 4 – Décomposition OT ; aka QR [7/10]
1. Soient E1, E2 et E3 trois bases d’un même espace E. Exprimer Pas

E1→E3

à l’aide de Pas
E1→E2

et Pas
E2→E3

.

2. Soit P ∈ GLn(R). Montrer qu’il existe O ∈ On(R) et T triangulaire supérieure telles que P = OT .

3. Exemples : P =

(
3 1
−1 2

)
puis P =

1

9

 8 25 −22
−4 −8 −7
1 11 −14

.

Exercice 5 – Mines 2010 ; archi classique [7/10]
Soit E euclidien. Montrer qu’un projecteur de E est orthogonal si et seulement pour tout x ∈ E,
∥p(x)∥ ⩽ ∥x∥.

Exercice 6 – On vous avait prévenu... [5/10]
Trouver la borne inférieure, pour (a, b) ∈ R2, de∫ π

0

(
cos t− (at+ b)

)2
dt.

Exercice 7 – Peut-être une forme linéaire ? [3/10]
Soit n ∈ N. Montrer qu’il existe un unique P ∈ Rn[X] tel que pour tout Q ∈ Rn[X],

Q(945)− 1515Q′(42) =

∫ 2048

2016

P (t)Q(t) sin2 tdt.
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Exercice 8 – IMT 2016 [5/10]
L’espace E = R3 est muni de sa structure euclidienne canonique.

1. Déterminer la matrice A dans la base canonique de la projection orthogonale sur le plan normal

à −→n =

1
1
1


2. La matrice A est-elle diagonalisable ? Déterminer ses éléments propres.

1.2 Quelques calculs
Exercice 9 – Mines 2022 [5/10] - Paul H.

Calculer la borne inférieure de
∫ 1

−1

(t4 − at2 − bt− c)2dt, lorsque (a, b, c) décrit R3.

Exercice 10 – Une projection dans R3 [3/10]
Déterminer la matrice dans la base canonique de R3 de la projection orthogonale sur D = R(1,−2, 1).
Trace de la matrice obtenue ?

Exercice 11 – CCP 2010 (PC) [5/10]
Dans R4 muni de sa structure euclidienne canonique, on note

F = {(x, y, z, t) ∈ R4; x+ 2y + z = 0 et x+ y + z + t = 0}.

Donner une base de F et une base de F⊥.

Exercice 12 – TPE 2013 (MP) [5/10]
DansMn(R), on note An(R)et Sn(R) les sous-espaces des matrices antisymétriques (resp. symétriques).

1. Montrer que pour le produit scalaire usuel, An et Sn sont des supplémentaires orthogonaux.

2. Calculer la distance de


1 . . . 1
2 . . . 2
...

...
n . . . n

 à Sn.

1.3 Polynômes orthogonaux
Exercice 13 – Polynômes de Legendre ; Mines 2016 [8/10]

1. Déterminer une base orthonormée de R2[X] pour :

⟨P |Q⟩ =
∫ 1

−1

P (t)Q(t)dt.

2. Montrer que les polynômes de Legendre (Pn =
1

n!

(
(X2 − 1)n

)(n)) constituent une base orthogo-
nale de R[X].

3. En dehors de toutes considérations d’orthogonalité, montrer que Pn possède n racines simples
dans ]− 1, 1[.

4. Déterminer ∥Pn∥2.

Exercice 14 – Polynômes de Tchebychev de première espèce [7/10]
1. Déterminer une base orthonormée de R2[X] pour :

⟨P |Q⟩ =
∫
]−1,1[

P (t)Q(t)√
1− t2

dt.
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2. Montrer que les polynômes de Tchebychev de première espèces (Tn(cos θ) = cos(nθ)) constituent
une base orthogonale de R[X].

3. Déterminer les racines de Tn.

Exercice 15 – Polynômes d’Hermite [8/10]
1. Déterminer une base orthonormée de R2[X] pour :

⟨P |Q⟩ =
∫ +∞

−∞
P (t)Q(t)e−t2/2dt.

2. Montrer que les polynômes de Hermite (Hn(x) = (−1)2ex2/2
(
e−x2/2

)(n)

) constituent une base
orthogonale de R[X].

3. En dehors de toutes considérations d’orthogonalité, montrer que Ln possède n racines simples
réelles.

Exercice 16 – Racines des polynômes orthogonaux [8/10]
Soit w une application continue par morceaux intégrable à valeurs strictement positives sur un intervalle
borné I.

1. Montrer qu’on définit bien un produit scalaire sur E = R[X] en posant :

∀P,Q ∈ E, ⟨P |Q⟩ =
∫
I

P (t)Q(t)φ(t)dt.

2. Montrer qu’il existe une unique base (Pn)n∈N de E, échelonnée en degrés, orthogonale, et consti-
tuée de polynômes unitaires.

3. Montrer que chaque Pn admet exactement n racines simples dans I.

2 Isométries vectorielles, matrices orthogonales

2.1 Généralités
Exercice 17 – CCP 2016 [6/10]
Soit (e1, ..., en) une base orthonormée d’un espace euclidien E. On suppose que f ∈ L(E) préserve
l’orthogonalité :

∀x, y ∈ E, ⟨x|y⟩ = 0 =⇒ ⟨f(x)|f(y)⟩ = 0

1. Que dire de (f(e1), ..., f(en)) ?
2. On considérant ⟨f(ei) + f(ej)|f(ei)− f(ej)⟩, montrer que les f(ei) ont tous la même norme.
3. Trouver une décomposition de f en deux endomorphismes connus.

Exercice 18 – Mines 2010 (MP) [5/10]
Soit A ∈ On(R). Montrer : ∣∣∣∣∣∣

∑
i,j

ai,j

∣∣∣∣∣∣ ⩽ n.

Exercice 19 – Telecom Sud-Paris (INT) [5/10]

Soit F les sous-espace vectoriel de R4 défini par :
{
x+ y + z + t = 0
x+ y − z − t = 0

1. Donner la dimension de F .
2. Déterminer la matrice dans la base canonique de la projection orthogonale sur F .
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Exercice 20 – TPE [6/10]
Calculer le cardinal de On(R) ∩Mn(Z).

Exercice 21 – Mines 2008 [3/10]
On considère E = R3 muni de sa base canonique, du produit scalaire canonique ⟨.|.⟩ et de sa norme
euclidienne ∥.∥ associée. Pour u ∈ E unitaire et a ∈ R∗, on définit fa : x 7→ x+ a⟨u|x⟩u.

1. Montrer que fa ∈ L(E).
2. Montrer qu’il existe un unique a ∈ R∗ tel que pour tout x ∈ E, ∥fa(x)∥ = ∥x∥. Montrer qu’on a

alors Ker (fa − IdE)⊕Ker (fa + IdE) = E.
3. Montrer que fa est un endomorphisme symétrique. Préciser ses éléments propres.

2.2 En dimension 2
Dans cette partie, E désigne un espace euclidien orienté de dimension 2.

Exercice 22 – Une réflexion [2/10]
Donner la matrice dans la base canonique de R2 de la réflexion par rapport à R(2e1 + e2).

Exercice 23 – Un angle... [2/10]
Déterminer l’angle orienté (̂a, b) si a = 3e1 + 4e2 et b = e1 − 2e2.

2.3 En dimension 3
Exercice 24 – Division vectorielle [7/10]
Soient a, b ∈ E (espace euclidien de dimension 3). Déterminer l’ensemble des vecteurs x ∈ E tels que
a ∧ x = b.
On pourra commencer par une petite analyse – éventuellement informelle – donnant des conditions
nécessaires simples portant sur a et b.

Exercice 25 – Écarts angulaires [1/10]
Déterminer les écarts angulaires mutuels entre les 3 vecteurs suivants de R3 : e1 + e2, e1 − e3, 3e1 +4e2,
où (e1, e2, e3) est la base canonique de R3.

Exercice 26 – Une réflexion [3/10]
Donner la matrice dans la base canonique de R3 de la réflexion par rapport à l’hyperplan (2e1 + e2)

⊥.

Exercice 27 – Une rotation [6/10]
Donner la matrice dans la base canonique (e1, e2, e3) de R3 de la rotation d’axe dirigé et orienté par
e1 + e3 (resp. e1 − e3) et d’angle

π

2
(resp.

π

3
).

Exercice 28 – CCP 2016 [6/10]
Caractériser complètement l’endomorphisme de R3 (euclidien) canoniquement associé à :

M =
1

3

 2 −2 −1
2 1 2
−1 −2 2



Exercice 29 – CCP 2016 (deux fois) [6/10]
Caractériser complètement l’endomorphisme de R3 (euclidien) canoniquement associé à :

M =
1

3

2 2 1
1 −2 2
2 −1 −2


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Exercice 30 – Mines 2010 (MP) [8/10]

Soient (a, b, c) ∈ R3. Montrer que

a c b
b a c
c b a

 appartient à SO3(R) si et seulement s’il existe t ∈ [0, 4/27]

tel que a, b et c soient les racines de X3 −X2 + t.

3 Endomorphismes et matrices symétriques
Exercice 31 – Mines 2013 [7/10]
Soit E un espace euclidien. Pour v1, ..., vp ∈ E, on définit :

G(v1, ..., vp) = ((⟨vi|vj⟩))1⩽i,j⩽p ∈Mp(R)

(matrice de Gram).
1. Montrer que si (v1, ..., vp) est liée, alors det (G(v1, ..., vp)) = 0.
2. Montrer la réciproque.
3. Montrer que si x ∈ E et F = Vect(v1, ..., vp), alors :

d(x, F )2 =
det (G(v1, ..., vp, x))
det (G(v1, ..., vp))

Exercice 32 – Adjoint d’un endomorphisme [8/10]
1. Soit u un endomorphisme d’un espace euclidien E. Montrer qu’il existe un unique endomorphisme

v de E tel que :
∀x, y ∈ E, ⟨u(x)|y⟩ = ⟨x|v(y)⟩.

v s’appelle l’adjoint de u, et est noté u∗.
2. Déterminer u∗ lorsque u est une homothétie, une projection orthogonale ou une symétrie ortho-

gonale.
3. Que dire de u∗ lorsque u est symétrique ?
4. Que dire de (λu1 + u2)

∗ ? Le prouver soigneusement !
5. Soit B une base orthonormale. Si U = Mat(u,B), montrer : Mat(u∗,B) = tU .

Exercice 33 – CCP 2008 [4/10]

Soit A =

−2 −2 1
−2 1 −2
1 −2 −2


1. Justifier que A est diagonalisable.
2. Expliciter P ∈ O3(R) telle que PTAP soit diagonale.

Exercice 34 – Une ortho-réduction [5/10]

« Réduire en base orthonormée » 1 la matrice

 6 −2 2
−2 5 0
2 0 7

.

Exercice 35 – Somme de carrés [7/10]
Soit A ∈ Sn(R) de valeurs propres λ1, ..., λn (comptées avec leur multiplicité). Montrer :

∑
i,j

a2i,j =
∑

λ2
i .

Exercice 36 – CCP 2012 (MP) [8/10]
Soient f et g autoadjoints tels que f3 = g3. Montrer que f = g.

1. Formulation calamiteuse qui n’est évidemment pas de moi !
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NDLR : il semblerait que les trois propositions de preuves (dont deux étaient tout de même justes !) aient
été rejetées par l’examinateur. Heureusement, le candidat n’était pas caractériel !

Exercice 37 – TPE 2014 (MP) [7/10]
Soit M ∈Mn(R). Déterminer l’ensemble des matrices symétriques S telles que

S3 + 3S − 4In = M

Exercice 38 – IMT 2015 [6/10]
Déterminer les matrices carrées complexes 2× 2 symétriques non diagonalisables.

4 Indications, solutions partielles
Exercice 1 – Si l’ensemble des valeurs prises par (un) n’est pas dense dans [0, 1], on doit pouvoir trouver
une fonction f non nulle telle que ⟨f |g⟩ = 0.

Exercice 2 – C’est du cours. L’une des quatre inclusions réclame un argument dimensionnel.

Exercice 3 – Sn(R) et An(R) sont deux supplémentaires orthogonaux. Un dessin plus tard, on voit que
Pythagore pourrait être d’un certain intérêt. Et comme on connaît explicitement la décomposition d’une
matrice selon les deux supplémentaires préalablement cités...

Exercice 4 – C’est du cours... et les exemples ont été construits (comment, à votre avis ?) pour que les
calculs soient raisonnables !

Exercice 5 – Un dessin et un résultat du collège fournit un sens. Pour l’autre, on fixe x1 ∈ Im (p) et
x2 ∈ Ker (p), et on peut s’intéresser à p(λx1+x2) : on a une information sur (le carré de) sa norme, puis
on fait vivre λ.

Exercice 6 – Géométrisation standard. Quelques intégrations par parties un peu lassantes seront proba-
blement nécessaires pour mener à bien les calculs.

Exercice 7 – Dans ma boule de cristal, je vois une forme linéaire sur Rn[X]. Je vois également un produit
scalaire.

Exercice 8 – Par exemple (après un dessin) via p(x) = x − ⟨x|n⟩
∥n∥2

n. On vérifiera que cette matrice

évidemment symétrique possède la bonne trace...

Exercice 9 – Après avoir fait un dessin et géométrisé la situation, il s’agit de projeter orthogonalement
X4 sur R2[X]. Je déconseille l’orthonormalisation dans ce cas : je chercherais plutôt (a, b, c) tel que
X4 − (aX2 + bX + c) soit orthogonal à 1, X et X2 : trois équations à trois inconnues. Ensuite, il reste à
calculer le carré d’une norme, qui est également un produit scalaire...

Exercice 10 – Après un dessin : p(x) =
⟨x|d⟩
∥d∥2

d... et on vérifie que la trace vaut bien 1.

Exercice 11 – F est vendu comme l’orthogonal de Vect(v1, v2), donc F⊥ est gratuit. Pour une base de
F , résoudre un système à deux équations et 4 inconnues.

Exercice 12 – Le point de vue le plus éclairant consiste probablement à considérer l’application Φ : M 7→
MT : c’est une involution linéaire, donc une symétrie... Cela fournit en particulier la décomposition
explicite de toute matrice selon ces deux sous-espaces, ce qui sera utile lors du calcul de distance.

Exercice 13 – Pour l’orthogonalité, intégrer n fois par parties dans ⟨Xk|Pn⟩, avec k < n. Ensuite, rolliser
pour obtenir de plus en plus de racines pour ((X − 1)n(X + 1)n)

(k) en n’oubliant pas la caractérisation
de l’ordre de multiplicité des racines d’un polynôme. Pour la norme, réfléchir à la valeur de ⟨Pn|Xn⟩
(d’une part, d’autre part...).
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Exercice 14 – Changement de variable t = cos θ ; racines : les cos
(
(2k + 1)

π

2n

)
pour k ∈ [[0, n− 1]] (sans

raisonnement par équivalence donc pourri...).

Exercice 15 – IPP, Rolle, ordre de multiplicité, récurrence.

Exercice 16 – Raisonner par l’absurde, noter x1, . . . , xr les racines de Pn de multiplicité impaire incluses
dans I, puis considérer ⟨Pn|Q⟩, où Q = (X − x1) . . . (X − xr).

Exercice 17 – La famille à l’arrivée est bien entendu orthogonale, et avec l’indication on montre que les
images des vecteurs de la base initiale ont tous la même norme, disons α. Si α ̸= 0 (sans quoi...), alors
f = (αId) ◦ g, avec g un automorphisme orthogonal.

Exercice 18 – Cauchy-Schwarz entre v = e1 + · · ·+ en et u(v)

Exercice 19 – F nous est vendu comme un orthogonal ; on a donc directement une base de F⊥. On vérifie
à la fin la trace.

Exercice 20 – Chaque colonne est constituée de n− 1 « 0 » et d’un « ±1 ». Mais c’est le cas aussi pour
chaque ligne : on doit donc choisir la permutation qui place en (sigma(i), i) le terme non nul de chaque
colonne. Finalement, on obtient 2nn! telles matrices.

Exercice 21 – Travailler dans une base adaptée.

Exercice 22 – s(x) = x1 − x2 = −(x1 + x2) + 2x1 = −x+ 2
⟨x|d⟩
∥d∥2

d...

Exercice 23 – Cosinus et sinus sont connus via le produit scalaire et le produit mixte.

Exercice 24 – On peut travailler géométriquement (analyse : il faut déjà avoir a et b orthogonaux...). On
peut aussi travailler de façon analytique, en calculant dans une base orthonormée raisonnable... après
avoir évacué les cas où a et b ne sont pas orthogonaux.

Exercice 25 – Donné par le cosinus, donné par le produit scalaire et les normes.

Exercice 26 – On vérifiera que la trace vaut... ce qu’il faut.

Exercice 27 – Au choix, r(x) = ... ou bien passer par une (autre) base orthonormée puis revenir à la
canonique. Vérifier la trace à la fin, ainsi que le caractère orthogonal.

Exercice 28 – C’est un endomorphisme orthogonal (trois produits scalaires, trois normes), de détermi-
nant 1 (u(e1)∧ u(e2) = +u(e3)) donc une rotation d’axe Ker (u− IdE). En regardant la trace on obtient
le cosinus de l’angle. En orientant l’axe par exemple par n dirigeant Ker (u− IdE) et en fixant x ⊥ n, le
signe du sinus sera celui de ⟨u(x)|n ∧ x⟩.

Exercice 29 – Voir l’exercice précédent !

Exercice 30 – Classique (sans être facile)... Relations coefficients/racines ; conditions d’orthogonalité
⟨fi|fj⟩ = δi,j , déterminant, et brassage d’air algébrique. Équivalences « déconseillées ». Dans le sens
direct, on localise t en étudiant tout bêtement les variations du polynôme, qui doit posséder trois racines
réelles (comptées avec leur multiplicité).

Exercice 31 – Que se passe-t-il quand on réalise l’opération C1 ← C1 −
p∑

k=2

αkCk dans la matrice de

Gram ?

Exercice 32 – La clé est le théorème de représentation des formes linéaires dans un espace euclidien.
Ensuite, on fixe et libère x et y dans un bon ordre après avoir établi des relations de la forme

⟨x|u∗(y)⟩ = ⟨u(x)|y⟩ = · · · = ⟨x|v(y)⟩
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Exercice 33 – Si on ouvre les yeux, on trouve que la matrice ressemble furieusement à une matrice

orthogonale rencontrée n fois (n ⩾ 5) :
1

3
A est orthogonale et symétrique ; c’est la matrice d’une symétrie

orthogonale (et même d’une réflexion, d’après la trace). Il reste à déterminer le noyau de A− 3I3 (c’est
une droite) et celui de A+ 3I3 (un plan).

Exercice 34 – Mouais... Je trouve comme valeurs propres 3, 6 et 9...

Exercice 35 – Le membre de gauche vaut
n∑

j=1

∥u(ej)∥2. On décompose calmement chaque ej dans une

base (orthonormée) de diagonalisation de u, on échange les deux sommes, etc.

Exercice 36 – Notons h = f3 (et oublions provisoirement g). Puisque h est autoadjoint, il est diagonali-
sable en base orthonormée. Et comme f et h commutent, les sous-espaces propres de h sont stables par
f . Ensuite, la restriction de f à chaque sous-espace propre de h est autoadjointe, donc diagonalisable.
Mais comme h est connu sur ces sous-espaces propres, on obtient une seule valeur possible pour f sur
ces sous-espaces (l’équation λ3 = µ (d’inconnue réelle λ) n’a pas le même comportement que l’équation
λ2 = µ !). Mais g vérifiant les mêmes hypothèses, vaut la même valeur que f sur chaque sous-espace
propre de h...

Exercice 37 – Je serais bien tenté par une analyse-synthèse. Déjà, il est probablement nécessaire que
M soit symétrique ; et sous cette hypothèse, en supposant l’équation vérifiée et après géométrisation,
on a deux endomorphismes qui commutent ; je serais alors tenté de regarder les restrictions de l’un aux
sous-espaces propres de l’autre : ne seraient-elles pas diagonalisables ? Etc.

Exercice 38 – Si une telle matrice est non diagonalisable, alors elle possède une seule valeur propre, donc
le discriminant du polynôme caractéristique est nul ; etc. Je trouve finalement comme solutions l’ensemble

des matrices de la forme
(

α i(α− β)/2
i(α− β)/2 β

)
avec α ̸= β.
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