Psi 999 — 2025/2026 .
Exercices

Espaces préhilbertiens

1 Espaces préhilbertiens

1.1 Produits scalaires, orthogonalité

Exercice 1 — Keyword : densité [8/10]
Soit (un)nen une suite de réels de [0, 1]. Donner une condition nécessaire et suffisante simple pour que

(f.9) > 32 TUloln)
=0

soit un produit scalaire sur C([0, 1], R).

Exercice 2 — Centrale 2007 [3/10]
Soient F et G deux sous-espaces de E euclidien. Montrer : (F+G)*+ = F-NGL et (FNG)t = FH+G*.

Exercice 3 — CCP 2015 [}/10]
On définit, pour 4, B € M,,(R), (A|B) = tr(A" B).

1. Montrer que (:|-) est un produit scalaire.
2. Soient M € S, (R) et N € A,(R). Montrer : (M|N) = 0.
3. Soit A € M, (R). Calculer :
Inf Z (ai; — sij)*

SeS, (R
€SB Gian

Exercice 4 — Décomposition OT ; aka QR [7/10]

1. Soient &1, & et &3 trois bases d’un méme espace E. Exprimer Pas & l'aide de Pas et Pas .

E1—E3 E1—E2 Ex—E3
2. Soit P € GL,(R). Montrer qu’il existe O € O, (R) et T triangulaire supérieure telles que P = OT.
3 1 8 25 22
3. Exemples : P = (_1 2) pusP=-|-4 -8 -7
P\ o1 -

Exercice 5 — Mines 2010; archi classique [7/10]
Soit E euclidien. Montrer qu'un projecteur de E est orthogonal si et seulement pour tout x € F,

Ip(@)[ < ]l

Exercice 6 — On vous avait prévenu... [5/10]
Trouver la borne inférieure, pour (a,b) € R?, de

/Tr (cost — (at + b))2dt.
0

Exercice 7 — Peut-étre une forme linéaire ¢ [3/10]
Soit n € N. Montrer qu'il existe un unique P € R, [X] tel que pour tout Q € R, [X],

2048

Q(945)—1515Q’(42):/ P(t)Q(t) sin® tdt.

2016



Exercice 8 — IMT 2016 [5/10]
L’espace E = R? est muni de sa structure euclidienne canonique.

1. Déterminer la matrice A dans la base canonique de la projection orthogonale sur le plan normal

1
am=|1
1

2. La matrice A est-elle diagonalisable 7 Déterminer ses éléments propres.

1.2 Quelques calculs
Exercice 9 — Mines 2022 [5/10] - Paul H.
1

Calculer la borne inférieure de / (t* — at® — bt — ¢)2dt, lorsque (a, b, c) décrit R®.
~1

Exercice 10 — Une projection dans R [3/10]
Déterminer la matrice dans la base canonique de R? de la projection orthogonale sur D = R(1, -2, 1).

Trace de la matrice obtenue ?

Exercice 11 — CCP 2010 (PC) [5/10]

Dans R* muni de sa structure euclidienne canonique, on note
F={(z,y,2,t) ERY 2 +2y+2=0et x+y+2-+t=0}

Donner une base de F et une base de FL.

Exercice 12 — TPE 2013 (MP) [5/10]
Dans M, (R), on note A, (R)et S,,(R) les sous-espaces des matrices antisymétriques (resp. symétriques).

1. Montrer que pour le produit scalaire usuel, A, et S,, sont des supplémentaires orthogonaux.

1 ... 1
2 ... 2

2. Calculer la distance de | . | as,.
n n

1.3 Polynémes orthogonaux

Exercice 13 — Polyndomes de Legendre ; Mines 2016 [8/10]

1. Déterminer une base orthonormée de Ry[X] pour :

1
(PlQ) = / PH)Q(1)dt.

-1

1 n
2. Montrer que les polynémes de Legendre (P, = ot ((X 2 1)")( )) constituent une base orthogo-
n!

nale de R[X].
3. En dehors de toutes considérations d’orthogonalité, montrer que P, posséde n racines simples
dans | —1,1].

4. Déterminer ||P, H2

Exercice 14 — Polyndomes de Tchebychev de premiére espéce [7/10]

1. Déterminer une base orthonormée de Ry[X] pour :

[ PO
(PIQ) = /]M[%1 .



2. Montrer que les polynémes de Tchebychev de premiére espéces (T, (cosf) = cos(nf)) constituent
une base orthogonale de R[X].

3. Déterminer les racines de T,,.

Exercice 15 — Polynomes d’Hermite [8/10]

1. Déterminer une base orthonormée de Ry[X] pour :

+oo 5
Pl = [ PR

—0o0

(n)
2. Montrer que les polynémes de Hermite (H,(x) = (—1)2e’52/2 (e_wz/z) ) constituent une base
orthogonale de R[X].

3. En dehors de toutes considérations d’orthogonalité, montrer que L, posséde n racines simples
réelles.

Exercice 16 — Racines des polynomes orthogonauz [8/10]
Soit w une application continue par morceaux intégrable & valeurs strictement positives sur un intervalle
borné 1.

1. Montrer qu’on définit bien un produit scalaire sur £ = R[X] en posant :
VPQEE,  (PI)= [ PO
I

2. Montrer qu'il existe une unique base (P, )nen de E, échelonnée en degrés, orthogonale, et consti-
tuée de polynémes unitaires.

3. Montrer que chaque P, admet exactement n racines simples dans I.

2 Isométries vectorielles, matrices orthogonales

2.1 Généralités

Exercice 17 — CCP 2016 [6/10]
Soit (eq,...,e,) une base orthonormée d’un espace euclidien E. On suppose que f € L(FE) préserve
Porthogonalité :

Ve,ye B, (zly) =0 = (f(2)[f(y) =0

1. Que dire de (f(e1), ..., f(en))?
2. On considérant (f(e;) + f(e;)|f(e;) — f(e;)), montrer que les f(e;) ont tous la méme norme.

3. Trouver une décomposition de f en deux endomorphismes connus.

Exercice 18 — Mines 2010 (MP) [5/10]
Soit A € O, (R). Montrer :

E Q; 5 <n
(2]

Exercice 19 — Telecom Sud-Paris (INT) [5/10]
THy+z+t=0

. . . : 4 Japos .
Soit F' les sous-espace vectoriel de R* défini par : vty —z—t=0

1. Donner la dimension de F'.

2. Déterminer la matrice dans la base canonique de la projection orthogonale sur F.



Exercice 20 — TPE [6/10]
Calculer le cardinal de O, (R) N M,,(Z).

Exercice 21 — Mines 2008 [3/10]

On considére E = R3 muni de sa base canonique, du produit scalaire canonique (.|.) et de sa norme
euclidienne ||.|| associée. Pour u € E unitaire et a € R*, on définit f, : © — x + a(u|z)u.

1. Montrer que f, € L(E).

2. Montrer qu'il existe un unique a € R* tel que pour tout = € E, || fo(z)]| = ||z||. Montrer qu’on a

alors Ker (f, —Idg) ® Ker (f, + Idg) = E.

3. Montrer que f, est un endomorphisme symétrique. Préciser ses éléments propres.

2.2 En dimension 2

Dans cette partie, E désigne un espace euclidien orienté de dimension 2.

Exercice 22 — Une réflexion [2/10]
Donner la matrice dans la base canonique de R? de la réflexion par rapport a R(2e; + e3).

Exercice 23 — Un angle... [2/10]

Déterminer 1’angle orienté (a,b) si a = 3e; + 4eg et b = eq — 2e5.

2.3 En dimension 3

Exercice 24 — Division vectorielle [7/10]

Soient a,b € E (espace euclidien de dimension 3). Déterminer ’ensemble des vecteurs x € E tels que
aNx=Dh.

On pourra commencer par une petite analyse — €éventuellement informelle — donnant des conditions
nécessaires simples portant sur a et b.

Exercice 25 — Ecarts angulaires [1/10]
Déterminer les écarts angulaires mutuels entre les 3 vecteurs suivants de R? : e; + es, €1 — €3, 3e1 + 4es,
oll (e1, ez, e3) est la base canonique de R3.

Exercice 26 — Une réflexion [3/10]

Donner la matrice dans la base canonique de R? de la réflexion par rapport a 'hyperplan (2e; + e3)=*.

Exercice 27 — Une rotation [6/10]
Donner la matrice dans la base canonique (eg, ez, e3) de R? de la rotation d’axe dirigé et orienté par

e1 + es (resp. e; — e3) et d’angle g (resp. g)

Exercice 28 — CCP 2016 [6/10]
Caractériser complétement I’endomorphisme de R3 (euclidien) canoniquement associé a :

2 -2 -1

Exercice 29 — CCP 2016 (deuz fois) [6/10]
Caractériser complétement ’endomorphisme de R? (euclidien) canoniquement associé & :

1 2 2 1
M = 3 1 -2 2
2 -1 =2



Exercice 30 — Mines 2010 (MP) [8/10]

a ¢ b
Soient (a,b,c) € R®. Montrer que | b a c¢ | appartient & SO3(R) si et seulement s’il existe ¢ € [0,4/27]
c b a

tel que a, b et ¢ soient les racines de X3 — X2 + .

3 Endomorphismes et matrices symétriques

Exercice 31 — Mines 2013 [7/10]
Soit E un espace euclidien. Pour vy, ...,v, € F, on définit :

G(vr, s vp) = (((vilv)))1<ij<p € Mp(R)

(matrice de Gram).
1. Montrer que si (v1,...,vp) est liée, alors det (G(v1, ...,vp)) = 0.
2. Montrer la réciproque.

3. Montrer que si x € E et F' = Vect(v, ..., vp), alors :

o det (G(v1, e, vp, @)
d(z, F)" = det(g(;hu-a%))

Exercice 32 — Adjoint d’un endomorphisme [8/10]

1. Soit u un endomorphisme d’un espace euclidien E. Montrer qu’il existe un unique endomorphisme
v de E tel que :

Ve,y € B, (u(@)ly) = (zlv(y)).
v s’appelle 'adjoint de u, et est noté u*.

2. Déterminer u* lorsque u est une homothétie, une projection orthogonale ou une symétrie ortho-
gonale.

3. Que dire de u* lorsque u est symétrique ?
4. Que dire de (Auy + u2)* 7 Le prouver soigneusement !
5. Soit B une base orthonormale. Si U = Mat(u, B), montrer : Mat(u*, B) = *U.

Exercice 33 — CCP 2008 [4/10]
-2 =2 1
Soit A=1[-2 1 =2
1 -2 -2
1. Justifier que A est diagonalisable.
2. Expliciter P € O3(R) telle que PT AP soit diagonale.

Exercice 34 — Une ortho-réduction [5/10]

6 -2 2
« Réduire en base orthonormée » ! la matrice [ =2 5 0
2 0 7

Exercice 35 — Somme de carrés [7/10]
Soit A € S,,(R) de valeurs propres Ay, ..., A, (comptées avec leur multiplicité). Montrer : Z a?) ;= Z P
,J

Exercice 36 — CCP 2012 (MP) [8/10]
Soient f et g autoadjoints tels que f3 = g3. Montrer que f = g.

1. Formulation calamiteuse qui n’est évidemment pas de moi!



NDLR : il semblerait que les trois propositions de preuves (dont deux étaient tout de méme justes!) aient
été rejetées par l'examinateur. Heureusement, le candidat n’était pas caractériel !

Exercice 37 — TPE 2014 (MP) [7/10]
Soit M € M,,(R). Déterminer ’ensemble des matrices symétriques S telles que

S3 435 —4l, =M

Exercice 38 — IMT 2015 [6/10]
Déterminer les matrices carrées complexes 2 x 2 symétriques non diagonalisables.

4 Indications, solutions partielles

FEzercice 1 — Sil’ensemble des valeurs prises par (u,) n’est pas dense dans [0, 1], on doit pouvoir trouver
une fonction f non nulle telle que (f|g) = 0.

Exercice 2 — C’est du cours. L'une des quatre inclusions réclame un argument dimensionnel.

Ezxercice 3 — S, (R) et A, (R) sont deux supplémentaires orthogonaux. Un dessin plus tard, on voit que
Pythagore pourrait étre d’un certain intérét. Et comme on connait explicitement la décomposition d’une
matrice selon les deux supplémentaires préalablement cités...

Ezercice 4 — C’est du cours... et les exemples ont été construits (comment, & votre avis ?) pour que les
calculs soient raisonnables !

FEzercice 5 — Un dessin et un résultat du collége fournit un sens. Pour l'autre, on fixe x; € Im (p) et
29 € Ker (p), et on peut s’intéresser & p(Ax1 4+ x2) : on a une information sur (le carré de) sa norme, puis
on fait vivre .

Ezercice 6 — Géométrisation standard. Quelques intégrations par parties un peu lassantes seront proba-
blement nécessaires pour mener a bien les calculs.

FEzercice 7 — Dans ma boule de cristal, je vois une forme linéaire sur R, [X]. Je vois également un produit
scalaire.

{x[n)

- 2
I

Ezxercice 8 — Par exemple (aprés un dessin) via p(z) = n. On vérifiera que cette matrice

évidemment symétrique posséde la bonne trace...

Exercice 9 — Apreés avoir fait un dessin et géométrisé la situation, il s’agit de projeter orthogonalement
X% sur Ry[X]. Je déconseille I'orthonormalisation dans ce cas : je chercherais plutot (a,b,c) tel que
X4 — (aX?+bX + ¢) soit orthogonal & 1, X et X? : trois équations & trois inconnues. Ensuite, il reste a
calculer le carré d’une norme, qui est également un produit scalaire...

(z|d)

Exercice 10 — Aprés un dessin : p(z) = Tk d... et on vérifie que la trace vaut bien 1.

Ezercice 11 — F est vendu comme I'orthogonal de Vect(v;,vs), donc F* est gratuit. Pour une base de
F, résoudre un systéme a deux équations et 4 inconnues.

Ezercice 12 — Le point de vue le plus éclairant consiste probablement & considérer 'application ® : M +—
MT : c’est une involution linéaire, donc une symétrie... Cela fournit en particulier la décomposition
explicite de toute matrice selon ces deux sous-espaces, ce qui sera utile lors du calcul de distance.

Exercice 13 — Pour 'orthogonalité, intégrer n fois par parties dans (X*|P,), avec k < n. Ensuite, rolliser
pour obtenir de plus en plus de racines pour ((X — 1)"(X + 1)”)(k) en n’oubliant pas la caractérisation
de Pordre de multiplicité des racines d’un polynéme. Pour la norme, réfléchir a la valeur de (P,|X™)
(d’une part, d’autre part...).



Ezercice 14 — Changement de variable ¢ = cos #; racines : les cos ((Zk + 1)21) pour k € [0,n— 1] (sans
n

raisonnement par équivalence donc pourri...).

Ezercice 15 — IPP, Rolle, ordre de multiplicité, récurrence.

Ezercice 16 — Raisonner par I’absurde, noter x1, ..., z, les racines de P,, de multiplicité impaire incluses
dans I, puis considérer (P,|Q), o Q = (X —z1)... (X — z,).

FEzercice 17 — La famille a 'arrivée est bien entendu orthogonale, et avec 'indication on montre que les
images des vecteurs de la base initiale ont tous la méme norme, disons «. Si a # 0 (sans quoi...), alors
f = (ald) o g, avec g un automorphisme orthogonal.

FEzercice 18 — Cauchy-Schwarz entre v = ey + -+ - + ey, et u(v)

Ezercice 19 — F nous est vendu comme un orthogonal ; on a donc directement une base de F-. On vérifie
a la fin la trace.

Ezercice 20 — Chaque colonne est constituée de n — 1 « 0 » et d’'un « £1 ». Mais c’est le cas aussi pour
chaque ligne : on doit donc choisir la permutation qui place en (sigma(i), ) le terme non nul de chaque
colonne. Finalement, on obtient 2"n! telles matrices.

Exercice 21 — Travailler dans une base adaptée.

{zld) .
Id|*

Ezercice 22 — s(x) = &1 — &y = — (@1 + x2) 4+ 221 = —x + 2

Exercice 23 — Cosinus et sinus sont connus via le produit scalaire et le produit mixte.

Ezercice 24 — On peut travailler géométriquement (analyse : il faut déja avoir a et b orthogonaux...). On
peut aussi travailler de facon analytique, en calculant dans une base orthonormée raisonnable... aprés
avoir évacué les cas ol a et b ne sont pas orthogonaux.

FEzxercice 25 — Donné par le cosinus, donné par le produit scalaire et les normes.
Ezercice 26 — On vérifiera que la trace vaut... ce qu’il faut.

Exercice 27 — Au choix, r(x) = ... ou bien passer par une (autre) base orthonormée puis revenir a la
canonique. Vérifier la trace a la fin, ainsi que le caractére orthogonal.

Ezercice 28 — C’est un endomorphisme orthogonal (trois produits scalaires, trois normes), de détermi-
nant 1 (u(e1) Au(ez2) = +u(es)) donc une rotation d’axe Ker (u —Idg). En regardant la trace on obtient
le cosinus de 'angle. En orientant I’axe par exemple par n dirigeant Ker (u — Idg) et en fixant « L n, le
signe du sinus sera celui de {(u(z)|n A x).

Exercice 29 — Voir l'exercice précédent !

Ezercice 30 — Classique (sans étre facile)... Relations coefficients/racines; conditions d’orthogonalité
(filf;) = 6i,, déterminant, et brassage d’air algébrique. Equivalences « déconseillées ». Dans le sens
direct, on localise t en étudiant tout bétement les variations du polyndéme, qui doit posséder trois racines
réelles (comptées avec leur multiplicité).

P

Ezercice 31 — Que se passe-t-il quand on réalise 'opération C; + C; — > a;C) dans la matrice de
k=2

Gram ?

Ezxercice 32 — La clé est le théoréme de représentation des formes linéaires dans un espace euclidien.
Ensuite, on fixe et libére x et y dans un bon ordre aprés avoir établi des relations de la forme

(zlu”(y)) = (u(@)ly) = --- = (zlo(y))



Ezxercice 33 — Si on ouvre les yeux, on trouve que la matrice ressemble furieusement & une matrice
orthogonale rencontrée n fois (n > 5) : = A est orthogonale et symétrique ; c’est la matrice d’une symétrie

orthogonale (et méme d’une réflexion, d’apres la trace). Il reste & déterminer le noyau de A — 315 (c’est
une droite) et celui de A + 373 (un plan).

Ezercice 34 — Mouais... Je trouve comme valeurs propres 3, 6 et 9...

n
Ezercice 35 — Le membre de gauche vaut 3" [lu(e;)||*. On décompose calmement chaque e; dans une
j=1
base (orthonormée) de diagonalisation de u, on échange les deux sommes, etc.

Exercice 36 — Notons h = f3 (et oublions provisoirement g). Puisque h est autoadjoint, il est diagonali-
sable en base orthonormée. Et comme f et h commutent, les sous-espaces propres de h sont stables par
f. Ensuite, la restriction de f & chaque sous-espace propre de h est autoadjointe, donc diagonalisable.
Mais comme h est connu sur ces sous-espaces propres, on obtient une seule valeur possible pour f sur
ces sous-espaces ('équation \* = p (d’inconnue réelle \) n’a pas le méme comportement que I’équation
A2 = u!). Mais g vérifiant les mémes hypothéses, vaut la méme valeur que f sur chaque sous-espace
propre de h...

Ezercice 37 — Je serais bien tenté par une analyse-synthése. Déja, il est probablement nécessaire que
M soit symétrique; et sous cette hypothése, en supposant 1’équation vérifiée et aprés géométrisation,
on a deux endomorphismes qui commutent ; je serais alors tenté de regarder les restrictions de I'un aux
sous-espaces propres de 'autre : ne seraient-elles pas diagonalisables? Etc.

Ezercice 38 — Si une telle matrice est non diagonalisable, alors elle posséde une seule valeur propre, donc
le discriminant du polynéme caractéristique est nul ; etc. Je trouve finalement comme solutions I’ensemble

des matrices de la forme (i(a :lﬂ)/2 i %ﬂ)m) avec o # .



