

C'est (re)parti!

Le 12 septembre 2020 - calculatrices autorisées

1 Hum...

Sisyphe

1.1 Une relation de récurrence du premier ordre

Étudier la suite de premier terme $u_0 = -\pi$, et vérifiant la relation de récurrence :

$$\forall n \in \mathbb{N}, \qquad u_{n+1} = u_n + \frac{1}{2}\cos(u_n) + \frac{1}{4}.$$

Cet exercice ne sera pas corrigé si vous ne suivez pas ce plan :

- étude préliminaire conduisant à un graphe relativement précis de « la fonction en jeu » (disons f) ainsi que de l'escalier usuel;
- ullet tel intervalle est stable par f;
- tous les u_n sont dans tel intervalle pour telle raison;
- la suite converge pour telle raison;
- la limite vérifie telle relation pour telle raison;
- la limite vérifie telles inégalités pour telle raison, donc vaut...

1.2 Un calcul de somme

- 1. Justifier la convergence de $\sum_{n\geqslant 1} \frac{1}{n(n+1)(n+2)}$.
- 2. Décomposer en éléments simples la fraction

$$\frac{1}{X(X+1)(X+2)}.$$

3. Calculer, pour $N \ge 1$:

$$\sum_{n=1}^{N} \frac{1}{n(n+1)(n+2)}$$

et enfin

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+2)} \cdot$$

1.3 Une asymptote

Montrer que le graphe de l'application $f: x \mapsto (x^3 + 2x^2 + x + 9)^{1/3} e^{2/x}$ possède une asymptote (en $+\infty$), et donner les positions relatives du graphe et de l'asymptote.

2 Du cours

- 1. Montrer qu'une application linéaire entre deux espaces vectoriels est injective si et seulement si son noyau est réduit à 0.
- 2. Soit f une application linéaire de E dans F, et $(e_1, ..., e_n)$ une famille de vecteurs de E telle que $(u(e_1), ..., u(e_n))$ est libre. Montrer que $(e_1, ..., e_n)$ est libre.
- 3. Montrer que $\sum \frac{1}{n^2}$ est convergente et que $\sum \frac{1}{\sqrt{n}}$ est divergente.
- 4. Montrer: $\sum_{k=1}^{n} \frac{1}{k} \sim \ln n.$

3 Autour des séries de Bertrand

Peut-être qu'en cours de route, un changement de variable $u = \ln x$ pourra être intéressant...

- 1. Convergences et divergences
 - (a) Justifier simplement le fait que $\sum \frac{1}{n^2 \ln^3 n}$ est convergente et $\sum \frac{\ln^5 n}{\sqrt{n}}$ est divergente.
 - (b) Montrer que la série de terme général $\sum \frac{(\ln n)^{10}}{n^2}$ est convergente (on pourra comparer $\frac{(\ln n)^{10}}{n^2}$ et $\frac{1}{n^{3/2}}$).
 - (c) Que dire de la série $\sum \frac{1}{n^{1/2}(\ln n)^{999}}$? (On pourra comparer le terme général à $\frac{1}{n^{3/4}}$)
 - (d) À l'aide d'une comparaison somme/intégrale, montrer que $\sum \frac{1}{n \ln^2 n}$ converge.
 - (e) Montrer que la série $\sum \frac{1}{n^{\alpha}(\ln n)^{\beta}}$ est convergente si et seulement si $\alpha > 1$ ou bien : $(\alpha = 1 \text{ et } \beta > 1)$.
- 2. Des estimations de sommes partielles et restes
 - (a) Établir un équivalent simple lorsque n tend vers $+\infty$ de

$$\sum_{k=2}^{n} \frac{1}{k\sqrt{\ln k}}.$$

On commencera par faire un dessin conduisant (pour des valeurs de k à préciser) à un encadrement de $\frac{1}{k\sqrt{\ln k}}$ par deux intégrales (ou celui d'une intégrale par deux autres choses...); encadrement qu'on prouvera. Ensuite on sommera, etc...

- (b) Même chose avec $\sum_{k=2}^{n} \frac{1}{k(\ln k)^{\alpha}}$, avec $\alpha \in]0,1[$.
- (c) Établir un équivalent simple lorsque n tend vers $+\infty$ de

$$\sum_{k=n}^{+\infty} \frac{1}{k(\ln k)^2}.$$

Ici, on passera par un encadrement de $\sum_{k=n}^{N}$, encadrement qu'on exploitera avec soin...

- (d) Même chose avec $\sum_{k=n}^{+\infty} \frac{1}{k(\ln k)^{\alpha}}$, avec $\alpha > 1$.
- (e) Donner finalement un équivalent simple lorsque n tend vers $+\infty$ de

$$\sum_{k=2}^{n} \frac{1}{k \ln k}.$$

2