PSI - DS01 - CORRIGÉ

Problème 1. Étude d'une série de restes – E3A PC 99

1. La suite $\left(\frac{1}{p}\right)_{p\in\mathbb{N}}$ est positive, décroissante et tend vers 0 donc, d'après le critère des séries alternées, la série de terme général $\frac{(-1)^p}{p}$ converge.

- **2.** Par le cours, on sait que R_n est du signe de $\frac{(-1)^{n+1}}{n+1}$ et que $|R_n| \leqslant \frac{1}{n+1}$.
- **3.** Soit n dans \mathbb{N}^* . Pour tout t dans [0,1], on a $0 \leqslant \frac{t^n}{(1+t)^a} \leqslant t^n$, donc, par croissance de l'intégrale, $0 \leqslant \int_0^1 \frac{t^n}{(1+t)^a} dt \leqslant \int_0^1 t^n dt = \frac{1}{n+1} \leqslant \frac{1}{n}$.
- **4.** Soit $n \in \mathbb{N}$, $N \geqslant n$. Alors

et

$$\begin{split} \sum_{p=n+1}^{N} \frac{(-1)^{p-1}}{p} &= \sum_{p=n+1}^{N} \int_{0}^{1} (-1)^{p-1} t^{p-1} dt \\ &= \int_{0}^{1} \sum_{p=n+1}^{N} (-t)^{p-1} dt \\ &= \int_{0}^{1} (-t)^{n} \frac{1 - (-t)^{N-n}}{1 + t} dt \\ &= \int_{0}^{1} \frac{t^{n}}{1 + t} dt + (-1)^{N} \int_{0}^{1} \frac{t^{N}}{1 + t} dt. \end{split}$$

Par la question précédente, $\left| (-1)^N \int_0^1 \frac{t^N}{(1+t)^a} dt \right| \leqslant \frac{1}{N} \underset{N \to +\infty}{\longrightarrow} 0$, donc, en faisant tendre N vers $+\infty$, on obtient

$$R_n = (-1)^n \int_0^1 \frac{t^n}{1+t} dt.$$

5. Dans l'expression de R_n , on intègre t^n et on dérive $\frac{1}{1+t}$. On obtient

$$R_n = \left[\frac{(-1)^n}{n+1} \frac{t^{n+1}}{1+t} \right]_0^1 + \frac{(-1)^n}{n+1} \int_0^1 \frac{t^{n+1}}{(1+t)^2} dt$$
$$= \frac{(-1)^n}{2(n+1)} + \frac{(-1)^n}{n+1} \int_0^1 \frac{t^{n+1}}{(1+t)^2} dt.$$

Or, $(-1)^{n-1}$ $(-1)^{n-1}$ 1 $(-1)^{n-1}$

 $\frac{(-1)^{n-1}}{2(n+1)} = \frac{(-1)^{n-1}}{2n} \frac{1}{1 + \frac{1}{n}} \underset{n \to +\infty}{=} \frac{(-1)^{n-1}}{2n} + O\left(\frac{1}{n^2}\right),$

 $\left| \frac{(-1)^n}{n+1} \int_0^1 \frac{t^{n+1}}{(1+t)^2} dt \right| \leqslant \frac{1}{n+1} \int_0^1 t^{n+1} dt \leqslant \frac{1}{(n+1)(n+2)} \underset{n \to +\infty}{=} O\left(\frac{1}{n^2}\right).$

Page 1 sur 8

Le résultat s'ensuit, en prenant $\beta = 1$ et $K = \frac{1}{2}$.

6. On écrit donc que $R_n = \frac{(-1)^n}{n} + u_n$, où $u_n = O\left(\frac{1}{n^2}\right)$. Alors la série de terme général $\frac{(-1)^n}{n}$ converge par le critère des séries alternées, et la série de terme général u_n converge absolument donc converge par comparaison à une série à termes positifs. Donc la série de terme général R_n converge.

Problème 2. Un problème, deux points de vue

A. Du point de vue des intégrales – E3A PSI 2020

Corrigé fourni par le concours E3A

1. Dans cette question, et uniquement dans cette question,
$$f$$
 est la fonction $t \mapsto \cos\left(\frac{t}{1+t^2}\right)$.

1.1. On a :
$$\cos(u) = 1 - \frac{u^2}{2} + o(u^2)$$
 et donc, $1 - f(t) \underset{t \to +\infty}{\sim} \frac{t^2}{2(1 + t^2)^2} \underset{t \to +\infty}{\sim} \frac{1}{2t^2}$ et donc, $f(t) = 1 - \frac{1}{2t^2} + o\left(\frac{1}{t^2}\right)$ et par suite $\lambda - f(t) \underset{t \to +\infty}{\sim} \left\{\begin{array}{c} \lambda - 1 & \text{si } \lambda \neq 1 \\ \frac{1}{2t^2} & \text{sinon} \end{array}\right\}$

1.2. Soit $\lambda \in \mathbb{R}$.

L'application $t \mapsto \frac{\lambda - f(t)}{t}$ est continue sur $]0, +\infty[$ et donc sur tout intervalle $[a, +\infty[$ avec a > 0.

• si $\lambda \neq 1$, alors $\frac{\lambda - f(t)}{t} \underset{t \to +\infty}{\sim} \frac{\lambda - 1}{t} \neq 0$ et qui garde un signe constant au voisinage de $+\infty$.

Or, l'intégrale
$$\int_{t}^{+\infty} \frac{\mathrm{d}t}{t}$$
 diverge (Riemann).

Par le théorème de comparaison des intégrales de fonctions positives, on en déduit que dans ce cas, $I(\lambda)$ n'existe pas.

 \bullet si $\lambda=1,$ alors d'après la question précédente, $\frac{1-f(t)}{t} \underset{t \to +\infty}{\sim} \frac{1}{2t^3}.$

Or, l'intégrale
$$\int_{a}^{+\infty} \frac{1}{t^3} dt > 0$$
 converge (Riemann).

Le même théorème de comparaison des intégrales de fonctions positives, on en déduit que I(1) existe.

Conclusion : $I(\lambda)$ existe si, et seulement si $\lambda = 1$.

1.3. On peut écrire pour tout $x \in [a, +\infty[$:

$$\int_{a}^{x} \frac{f(t)}{t} dt = \int_{a}^{x} \frac{f(t) - 1}{t} dt + \int_{a}^{x} \frac{dt}{t} = \int_{a}^{x} \frac{f(t) - 1}{t} dt + \ln(x) - \ln(a)$$

On a $\lim_{x\to+\infty}\int_a^x \frac{f(t)-1}{t} dt = -I(1)$ qui est fini et en divisant par $\ln(x)$, on obtient que :

$$\lim_{x \to +\infty} \frac{1}{\ln(x)} \int_{a}^{x} \frac{f(t)}{t} dt = 1, \text{ soit } \int_{a}^{x} \frac{f(t)}{t} dt \underset{x \to +\infty}{\sim} \ln(x).$$

2. On suppose qu'il existe λ et μ deux réels pour lesquels $I(\lambda)$ et $I(\mu)$ existent.

Si $I(\lambda)$ et $I(\mu)$ existent, leur différence aussi et donc $\int_a^{+\infty} \frac{\lambda - \mu}{t} dt$ aussi, ce qui est faux, puisque d'après Riemann, cette intégrale diverge.

Il en résulte que la seule possibilité pour que $\int_a^{+\infty} \frac{\lambda - \mu}{t} dt$ converge est qu'elle soit nulle, c'est-à-dire que $\lambda = \mu$.

- 3. Pour tout x réel, on pose $H_{\lambda}(x) = \int_{a}^{x} (\lambda f(t)) dt$.
 - **3.1.** L'application $t \mapsto \lambda f(t)$ est continue sur \mathbb{R} .

On en déduit, d'après le Théorème fondamental de l'Analyse que :

l'application $x \mapsto \int_a^x (\lambda - f(t)) dt$ est de classe C^1 sur \mathbb{R} et que : $\forall x \in \mathbb{R}$, $H'(x) = \lambda - f(x)$.

3.2. Supposons que H_{λ} soit bornée sur $\mathbb{R}: \exists M \in \mathbb{R}_{+}$ tel que $: \forall x \in \mathbb{R}, |H_{\lambda}(x)| \leq M$.

On prouve en même temps la convergence de l'intégrale $I(\lambda)$ et la relation demandée.

Pour ce faire, on remarque que l'on a (sous réserve d'existence) :

$$I(\lambda) = \int_{a}^{+\infty} \frac{\lambda - f(t)}{t} dt = \int_{a}^{+\infty} \frac{H'_{\lambda}(t)}{t} dt$$

Ceci nous incite à effectuer une intégration par parties en posant :

- $u = \frac{1}{t}$ et donc, $du = -\frac{1}{t^2} dt$
- $\mathrm{d}v = H_\lambda'(t)\,\mathrm{d}t$ et par exemple, $v = H_\lambda(t).$

Comme il s'agit d'intégrales impropres, il est nécessaire de vérifier l'existence du terme $\left[\frac{H_{\lambda}(t)}{t}\right]_{a}^{+\infty}$:

Puisque
$$H_{\lambda}$$
 est bornée, on a : $0 \leqslant \left| \frac{H_{\lambda}(t)}{t} \right| \leqslant \frac{M}{t} \underset{t \to +\infty}{\longrightarrow} 0$

Alors, d'après le théorème d'intégration par parties, les intégrales $\int_a^{+\infty} \frac{H_\lambda'(t)}{t} \, \mathrm{d}t$ et $\int_a^{+\infty} \frac{H_\lambda(t)}{t^2} \, \mathrm{d}t$ sont de même nature.

Or
$$\left|\frac{H_{\lambda}(t)}{t^2}\right| \leqslant \frac{M}{t^2}$$
 et $\int_{a}^{+\infty} \frac{1}{t^2} dt$ converge d'après Riemann.

On en déduit que $I(\lambda) = \int_{t}^{+\infty} \frac{H'_{\lambda}(t)}{t} dt$ est convergente et que :

$$I(\lambda) = \left[\frac{H_{\lambda}(t)}{t}\right]_{a}^{+\infty} + \int_{a}^{+\infty} \frac{H_{\lambda}(t)}{t^{2}} dt = \int_{a}^{+\infty} \frac{H_{\lambda}(t)}{t^{2}} dt.$$

- **4.** Désormais on suppose que f est continue sur \mathbb{R} et T-périodique (T>0).
- **4.1.** La fonction φ est de classe C^1 sur $\mathbb R$ puisque f est continue sur $\mathbb R$, d'après le théorème fondamental de l'analyse.

Et:
$$\forall x \in \mathbb{R}, \varphi'(x) = f(x+T) - f(x) = 0$$
 puisque f est T -périodique.

Il en résulte que la fonction φ est constante sur \mathbb{R} .

On en déduit que l'on a :

$$\forall x \in \mathbb{R}, H_{\lambda}(x+T) - H_{\lambda}(x) = \int_{x}^{x+T} (\lambda - f(t)) dt = \int_{x}^{x+T} \lambda dt - \int_{x}^{x+T} f(t) dt$$
$$= \lambda T - \int_{0}^{T} f(t) dt$$

en utilisant le début de la question.

4.2. Soient $\lambda \in \mathbb{R}$ et $n \in \mathbb{N}^*$.

D'après la question précédente, on peut écrire :

$$\forall k \in \mathbb{N}, H_{\lambda}(a+(k+1)T) - H_{\lambda}(a+kT) = \lambda T - \int_{0}^{T} f(t) dt.$$

On somme alors ces égalités de k = 0 à k = n - 1.

Il vient alors : $\forall n \in \mathbb{N}$, (car l'égalité est aussi valable lorsque n = 0 :

$$H_{\lambda}(a+nT) = H_{\lambda}(a) + n\left(\lambda T - \int_{0}^{T} f(t) dt\right)$$

Or, si
$$\left(\lambda T - \int_0^T f(t) dt\right) \neq 0$$
, alors $\lim_{n \to +\infty} n \left|\lambda T - \int_0^T f(t) dt\right| = +\infty$ et la suite $(H_{\lambda}(a + nT))_{n \in \mathbb{N}}$ n'est pas bornée.

Il en résulte qu'une condition nécessaire sur λ pour que la suite $(H_{\lambda}(a+nT))_{n\in\mathbb{N}}$ soit bornée est que le terme $\lambda T - \int_0^T f(t) \, \mathrm{d}t$ soit nul, ce qui donne : $\lambda_0 = \frac{1}{T} \int_0^T f(t) \, \mathrm{d}t$.

• On pouvait aussi dire que d'après la question précédente, la suite $(H_{\lambda}(a+nT))_{n\in\mathbb{N}}$ est une suite arithmétique de raison $\lambda T - \int_0^T f(t) \, \mathrm{d}t$ et donc, qu'elle est bornée si et seulement si cette raison est nulle, ce qui redonne $\lambda_0 = \frac{1}{T} \int_0^T f(t) \, \mathrm{d}t$.

4.3. Le résultat de la question **4.1.** permet alors d'affirmer que la fonction H_{λ_0} est périodique de période T.

Etant continue sur le segment [0,T] la fonction H_{λ_0} y est bornée et sa périodicité entraı̂ne qu'elle est bornée sur \mathbb{R} .

- **4.4.** D'après la question **3.2.**, la fonction H_{λ_0} étant bornée, l'intégrale $I(\lambda_0)$ converge. D'après la question **2.**, c'est la seule valeur de λ pour laquelle l'intégrale converge. Conclusion : $I(\lambda)$ converge si et seulement si $\lambda = \lambda_0$.
- 4.5. On reprend la démonstration de la question 1.3. avec λ_0 à la place de 1 et on obtient :

$$\int_{a}^{x} \frac{f(t)}{t} dt \underset{x \to +\infty}{\sim} \lambda_0 \ln(x).$$

- **5.** Pour tout entier naturel n non nul, on pose $A_n = \int_0^{\pi/2} \frac{|\sin(nt)|}{\sin(t)} dt$ et $B_n = \int_0^{\pi/2} \frac{|\sin(nt)|}{t} dt$.
- **5.1.** Pour $n \ge 1$, la fonction $h_n : t \mapsto \frac{|\sin(nt)|}{\sin(t)}$ est continue sur $\left]0, \frac{\pi}{2}\right]$.

L'équivalent $\sin(u) \underset{u \to 0}{\sim} u$ permet de la prolonger par continuité en 0 en posant $h_n(0) = n$.

En notant encore h_n le prolongement obtenu, h_n est continue sur le segment $\left[0, \frac{\pi}{2}\right]$ et A_n existe.

- **5.2.** Pour t au voisinage de $0: \psi(t) = \frac{1}{t} \frac{1}{\sin(t)} = \frac{\sin(t) t}{t \sin(t)} \underset{t \to 0}{\sim} \frac{-t^3/6}{t^2} = -\frac{t}{6}$.
- **5.3.** D'après la question précédente, on prolonge la fonction ψ par continuité sur le segment $\left[0,\frac{\pi}{2}\right]$. Il en résulte que ψ est bornée sur ce segment : $\exists\,M\in\mathbb{R}_+$ tel que $\forall\,t\in\left[0,\frac{\pi}{2}\right],\,|\psi(t)|\leqslant M$.

Ainsi : $|A_n - B_n| \leqslant \int_0^{\pi/2} |\sin(nt)| M dt \leqslant \frac{\pi M}{2}$ et la suite $(A_n - B_n)_{n \in \mathbb{N}^*}$ est bornée.

- **5.4.** Équivalents de A_n et B_n lorsque n tend vers l'infini.
 - **5.4.1.** Le changement de variable u=nt dans B_n donne :

$$B_n = \int_0^{n\frac{\pi}{2}} \frac{|\sin(u)|}{u} du = \int_0^{\frac{\pi}{2}} \frac{|\sin(u)|}{u} du + \int_{\frac{\pi}{2}}^{n\frac{\pi}{2}} \frac{|\sin(u)|}{u} du \ (*)$$

découpage réalisé afin de pouvoir appliquer les résultats de la question 4.

L'application $u \mapsto |\sin(u)|$ est π -périodique et donc, en utilisant donc les résultats de la question 4., on a :

$$\int_{\frac{\pi}{2}}^{n\frac{\pi}{2}} \frac{|\sin(u)|}{u} du \underset{n \to +\infty}{\sim} \lambda_0 \ln\left(\frac{n\pi}{2}\right)$$

où l'on vérifie bien que $\lambda_0 \neq 0$: $\lambda_0 = \frac{1}{\pi} \, \int_0^\pi |\sin(u)| \, \mathrm{d}u = \frac{1}{\pi} \, \int_0^\pi \sin(u) \, \mathrm{d}u = \frac{2}{\pi}.$

En utilisant alors (*) après avoir constaté que $\int_0^{\frac{\pi}{2}} \frac{|\sin(u)|}{u} du$ est une constante, on obtient finalement :

$$B_n \underset{n \to +\infty}{\sim} \frac{2}{\pi} \ln(n).$$

5.4.2. En écrivant alors que l'on a pour tout entier naturel $n:A_n=(A_n-B_n)+B_n$ et le résultat de la question **5.3.** (la suite $(A_n-B_n)_{n\in\mathbb{N}}$ est bornée), on en déduit que :

$$A_n \underset{n \to +\infty}{\sim} B_n \underset{n \to +\infty}{\sim} \frac{2}{\pi} \ln(n).$$

B. Du point de vue des séries - EM Lyon MP/PC/PSI 2022

Corrigé fourni par le concours EM Lyon

6 Soit λ tel que $\sum u_n(\lambda)$ converge, et soit $\mu \in \mathbb{C}$ tel que $\mu \neq \lambda$. Or

$$u_n(\mu) = u_n(\lambda) + \frac{\mu - \lambda}{n}$$

et $\sum \frac{\mu - \lambda}{n}$ diverge; comme somme d'une série convergente et d'une série divergente, $\sum u_n(\mu)$ diverge.

S'il existe une valeur $\lambda \in \mathbb{C}$ telle que $\sum u_n(\lambda)$ converge, alors celle-ci est unique.

7

7.1 Par périodicité, on a

$$\frac{1}{md+1} \sum_{k=1}^{d} \omega_{md+k} = \frac{\omega_1 + \dots + \omega_d}{md+1}$$

ou encore

$$\boxed{\frac{1}{md+1}\sum_{k=1}^{d}\omega_{md+k} = \frac{\Omega}{md+1}}.$$

7.2 Écrivons, pour tout $m \in \mathbf{N}^*$,

$$\begin{split} \mathbf{S}_{(m+1)d} - \mathbf{S}_{md} - \frac{1}{md+1} \sum_{k=1}^{d} \omega_{md+k} &= \sum_{k=1}^{d} \frac{\omega_{k}}{md+k} - \sum_{k=1}^{d} \frac{\omega_{k}}{md+1} \\ &= \sum_{k=1}^{d} \omega_{k} \left[\frac{1}{md+k} - \frac{1}{md+1} \right] \\ &= \frac{1}{md} \sum_{k=1}^{d} \omega_{k} \left[\frac{1}{1 + \frac{1}{md}} - \frac{1}{1 + \frac{1}{md}} \right] \\ &= \frac{1}{md} \sum_{k=1}^{d} \omega_{k} \left[1 - \frac{k}{md} + \mathbf{o} \left(\frac{1}{m} \right) - 1 + \frac{1}{md} + \mathbf{o} \left(\frac{1}{m} \right) \right] \\ &= \frac{1}{m^{2}} \cdot \frac{1}{d^{2}} \sum_{k=1}^{d} (1 - k) \omega_{k}. \end{split}$$

En posant

$$\alpha = \frac{1}{d^2} \sum_{k=1}^{d} (1-k)\omega_k,$$

alors

$$S_{(m+1)d} - S_{md} = \frac{1}{md+1} \sum_{k=1}^{d} \omega_{md+k} + \frac{\alpha}{m^2} + o\left(\frac{1}{m^2}\right).$$

7.3 Puisque

$$\mathbf{S}_{(m+1)d} - \mathbf{S}_{md} = \frac{\Omega}{md+1} + \frac{\alpha}{m^2} + \mathbf{o}\left(\frac{1}{m^2}\right),$$

que la série $\sum \frac{\alpha}{m^2}$ converge et que la série $\sum o(1/m^2)$ converge absolument, on en déduit que la série $\sum \left(S_{(m+1)d} - S_{md}\right)$ a même nature que la série $\sum_{m} \frac{\Omega}{md+1}$:

La série
$$\sum (S_{(m+1)d} - S_{md})$$
 converge si et seulement si $\Omega = 0$.

7.4 La suite des sommes partielles associée à la série précédente est la sous-suite $(S_{md})_m$ des sommes partielles de la série $\sum u_n$. Notamment, si cette sous-suite diverge, la suite $(S_n)_{n\geq 1}$ diverge également.

Réciproquement, supposons que la série $\sum (S_{(m+1)d} - S_{md})$ converge, c'est-à-dire que la suite $(S_{md})_m$ converge. On note ℓ sa limite. Alors, pour tout $i \in [1; d-1]$, la sous-suite $(S_{md+i})_m$ converge également, puisque

$$S_{md+i} = S_m d + \sum_{k=1}^{i} \underbrace{\frac{\omega_{md+k}}{md+k}}_{m \to \infty} \xrightarrow[n \to \infty]{} \ell.$$

On en déduit que la suite $(S_n)_{n\geq 1}$ converge.

 $\sum u_n$ converge si et seulement si $\Omega = 0$.

8 Si l'on note $\Omega(\lambda) = \sum_{k=1}^{d} (\omega_k + \lambda) = \Omega + d\lambda$, l'étude qui précède montre que la série $\sum u_n(\lambda)$ converge si et seulement si $\Omega(\lambda) = 0$, c'est-à-dire si et seulement si $\lambda = -\Omega/d$.

$$\lambda = -\Omega/d$$
 est l'unique valeur telle que la série $\sum u_n(\lambda)$ converge.

9

9.1 $(T_n)_{n\geqslant 1}$ est périodique, donc

La suite
$$(T_n)_{n\geqslant 1}$$
 est bornée.

9.2 Écrivons

$$\begin{split} \sum_{k=1}^{n} u_k &= \sum_{k=1}^{n} \frac{\omega_k}{a_k} = \sum_{k=1}^{n} \frac{\mathbf{T}_k - \mathbf{T}_{k-1}}{a_k} \\ &= \sum_{k=1}^{n} \frac{\mathbf{T}_k}{a_k} - \sum_{k=1}^{n} \frac{\mathbf{T}_{k-1}}{a_k} \\ &= \sum_{k=1}^{n} \frac{\mathbf{T}_k}{a_k} - \sum_{k=0}^{n-1} \frac{\mathbf{T}_k}{a_{k+1}} \\ &= \sum_{k=1}^{n} \frac{\mathbf{T}_k}{a_k} - \sum_{k=1}^{n-1} \frac{\mathbf{T}_k}{a_{k+1}} \\ &= \sum_{k=1}^{n} \mathbf{T}_k \left(\frac{1}{a_k} - \frac{1}{a_{k+1}} \right) + \frac{\mathbf{T}_n}{a_{n+1}}. \end{split}$$

 $T_0 = 0$

9.3 On note M un majorant de la suite $(|T_n|)_{n\geqslant 1}$. Le terme général de la série étudiée vérifie

$$\left| \mathbf{T}_k \left(\frac{1}{a_k} - \frac{1}{a_{k+1}} \right) \right| \leqslant \mathbf{M} \left(\frac{1}{a_k} - \frac{1}{a_{k+1}} \right)$$

or la série $\sum \left(\frac{1}{a_k} - \frac{1}{a_{k+1}}\right)$ converge (elle est télescopique et $1/a_k \xrightarrow[k \to \infty]{} 0$. Ainsi

$$\sum T_k \left(\frac{1}{a_k} - \frac{1}{a_{k+1}} \right)$$
 converge absolument, donc converge.

9.4 S'en déduit immédiatement.