Semaine 02 – Colle du lundi 23/09 à 8h

Nom	Énoncé et commentaires	Note
	Pour $n \in \mathbb{N}$, on pose $u_n = \operatorname{Arctan}(n+1) - \operatorname{Arctan}(n)$	
	1. Pour tout $n \in \mathbb{N}$, on choisit $\varepsilon_n \in \{0, 1\}$. Montrer que $\sum \varepsilon_n u_n$ converge. On note S sa somme. Montrer que $S \in \left[0, \frac{\pi}{2}\right]$	
	Soit $x \in \left[0, \frac{\pi}{2}\right]$. On définit une suite $(\varepsilon_n)_{n \geqslant 0}$ par récurrence en posant	
	• si $x \leqslant \frac{\pi}{4}$, $\varepsilon_0 = 0$, sinon $\varepsilon_0 = 1$,	
	• pour $n \in \mathbb{N}$, si $x \leqslant \sum_{k=0}^n \varepsilon_k u_k + u_{n+1}$, alors $\varepsilon_{n+1} = 0$, sinon $\varepsilon_{n+1} = 1$.	
	2. [Py] Écrire une fonction Python Suite qui prend en argument x et n et qui renvoie $\sum_{k=0}^{n} \varepsilon_k u_k$. La fonction Arctan est atan en Python.	
	3. [Py] La tester avec différentes valeurs de x pour $n = 100$, puis $n = 1000$ et $n = 10000$.	
	4. Que peut-on conjecturer?	
	On va chercher à montrer le résultat.	
	5. Démontrer que pour tout n , $u_{n+1} \leqslant \sum_{k=n+2}^{+\infty} u_k$.	
	6. Démontrer que pour tout n dans \mathbb{N} , $S_n \leqslant x \leqslant S_n + \sum_{k=n+1}^{+\infty} u_k$, et conclure.	
	 Question de cours. Soit s ∈ L(E) vérifiant s ∘ s = Id_E. Montrer que ker(s - Id_E) ⊕ ker(s + Id_E) = E. Soit f ∈ L_{pm} (R₊, R) fonction décroissante de limite nulle en +∞. On pose 	
	$\forall n \in \mathbb{N} u_n = \int_{n\pi}^{(n+1)\pi} f(t) \sin t \ dt$	
	Étudier la nature de la série $\sum u_n$ puis la nature de l'intégrale $\int_0^{+\infty} f(t) \sin t \ \mathrm{d}t$.	
	1. Question de cours. Série de terme général ln $\left(1+\frac{(-1)^n}{\sqrt{n}}\right)$.	
	2. Le but de l'exercice est de prouver la relation suivante :	
	$\int_0^1 \frac{\ln t}{t^2 - 1} dt = \lim_{n \to +\infty} \sum_{k=0}^n \frac{1}{(2k+1)^2}.$	
	(a) Prouver la convergence de l'intégrale et de la série.	
	(b) Montrer que, pour tout entier $k\geqslant 0$, l'intégrale $\mathrm{I}_k=\int_0^1 t^k \ln t dt$ converge, puis calculer I_k .	
	(c) Montrer que, pour tout entier $n \geqslant 1$, $\sum_{k=0}^{n} \frac{1}{(2k+1)^2} = \int_0^1 \frac{\ln t}{t^2 - 1} dt - \int_0^1 \frac{t^{2n+2} \ln t}{t^2 - 1} dt$.	
	(d) Démontrer que la fonction $t\mapsto \frac{t^2\ln t}{t^2-1}$ se prolonge par continuité en 0 et en 1. En déduire qu'il existe une	
	constante $M>0$, qu'on ne cherchera pas à calculer, telle que, pour tout $t\in]0,1[,\left \frac{t^2\ln t}{t^2-1}\right \leqslant M.$	
	(e) En déduire que $\lim_{n \to +\infty} \int_0^1 \frac{t^{2n+2} \ln t}{t^2-1} dt = 0$, puis la relation demandée.	