TD 06 Probabilités

Exercice 1. Loi des événements rares – théorème de Poisson. On considère $(S_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires de lois $\mathcal{B}(n,p_n)$. On suppose que $\lim_{n\to\infty} np_n = \lambda > 0$.

Démontrer que $(S_n)_{n\in\mathbb{N}^*}$ converge en loi vers la loi $\mathcal{P}(\lambda)$, c'est-à-dire que pour tout k dans \mathbb{N} , $\mathbb{P}(S_n=k) \underset{n\to+\infty}{\longrightarrow} \mathrm{e}^{\lambda} \frac{\lambda^k}{k!}$.

Exercice 2. La loi géométrique est sans mémoire. Soit X une variable aléatoire discrète à valeurs dans \mathbb{N}^* . On dit que X est sans mémoire si pour tous j,k entiers naturels, $\mathbb{P}_{X>j}(X>j+k)=\mathbb{P}(X>k)$.

- 1. Démontrer que si X suit une loi géométrique, alors X est sans mémoire.
- **2.** Démontrer que, réciproquement, si X est sans mémoire, X suit une loi géométrique de paramètre $p = \mathbb{P}(X = 1)$.

Exercice 3. Formule de Wald. Soit $(X_n)_{n \in \mathbb{N}^*}$ une suite de variables aléatoires iid à valeurs dans \mathbb{N} ,

N une variable aléatoire indépendante des $(X_n)_{n\in\mathbb{N}}$, à valeurs dans \mathbb{N} , et, $S=\sum_{i=1}^N X_i$: cela signifie

que pour tout ω de Ω , $S(\omega) = \sum_{i=1}^{N(\omega)} X_i(\omega)$.

- 1. Justifier que S est bien une variable aléatoire discrète.
- **2.** On suppose que X_1 et N admettent une espérance. Démontrer que S admet une espérance et que $\mathbb{E}(S) = \mathbb{E}(N)\mathbb{E}(X_1)$.
- **3.** On suppose que X_1 est centrée et admet une variance. Démontrer que S admet une variance et que $\mathbb{V}(S) = \mathbb{E}(N)\mathbb{V}(X_1)$.

Exercice 4. Lemmes de Borel-Cantelli et applications. Soient $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé et $(A_n)_{n \in \mathbb{N}}$ une suite d'événements. On considère l'événement : $A = \bigcap_{k=0}^{+\infty} \left(\bigcup_{n=k}^{+\infty} A_n\right)$.

- 1. Traduire avec des mots en français l'événement A.
- **2.** On suppose que la série de terme général $P(A_n)$ converge. En se rappelant que la probabilité d'une réunion est inférieure à la somme des probabilités, déterminer $\mathbb{P}(A)$.
- **3.** On suppose maintenant que les A_n sont mutuellement indépendants et que la série de terme général $P(A_n)$ diverge. En étudiant $\mathbb{P}(\overline{A})$, et en remarquant que $1 x \leq e^{-x}$, déterminer $\mathbb{P}(A)$.
- **4. Application.** On considère une suite de variables aléatoires $(X_n)_{n\in\mathbb{N}^*}$ iid vérifiant $\mathbb{P}(X_1=1)=p$ et $\mathbb{P}(X_1=0)=1-p$. On note $S_n=\sum_{i=1}^n X_i$. Déterminer $\mathbb{P}(S_n=0)$ et démontrer que si $p\neq \frac{1}{2}$, alors S_n est infiniment souvent égale à 0.

Exercice 5. CCINP 2019. Soit $(A_k)_{1 \leqslant k \leqslant n}$ une famille finie d'événements d'un espace probabilisé $(\Omega, \mathsf{T}, \mathbb{P})$. Montrer :

$$\mathbb{P}(A_1 \cup \cdots \cup A_n) \leq \mathbb{P}(A_1) + \cdots + \mathbb{P}(A_n) \leq \mathbb{P}(A_1 \cap \cdots \cap A_n) + n - 1.$$

N. Laillet

Exercice 6. Mines-Télécom 24. Soit X suivant une loi géométrique de paramètre $p \in]0,1[$. On considère les évènements A: (X) est un entier pair (X); et (X) est un multiple de (X) (X) Calculer (X) (

Exercice 7. Mines-Télécom 24. Soit X et Y deux variables aléatoires indépendantes à valeurs dans \mathbb{N} telles que : $\forall k \in \mathbb{N}$, $P(X = k) = P(Y = k) = \frac{1 + a^k}{4k!}$.

- 1. Déterminer la valeur de a.
- **2.** Déterminer l'espérance de X.
- **3.** Déterminer la loi de X + Y.

Exercice 8. Mines-Télécom 24. On suppose que X et Y sont des variables aléatoires à valeurs dans \mathbb{N} telles que : $\forall (i,k) \in \mathbb{N}^2$, $P(X=i,Y=k)=a\frac{i+k}{2^{i+k}}$.

- 1. Déterminer la valeur de a.
- 2. X et Y sont-elles indépendantes?
- **3.** Calculer P(X = Y).

Exercice 9. Mines-Télécom 24. Soit X_1, \ldots, X_n des variables aléatoires indépendantes suivant la loi géométrique de paramètre p.

- **1.** Calculer $P(X_i > k)$ et $P(X_i \le k)$.
- **2.** Soit $Y = \min(X_1, ..., X_n)$.
 - (a) Calculer P(Y > k) puis $P(Y \le k)$ et P(Y = k).
 - (b) Montrer que Y a une espérance finie, que l'on calculera.

Exercice 10. *CCINP 2023*. Soit une urne avec 3 jetons numérotés. On tire avec remise des jetons de l'urne. On note Y la variable aléatoire qui compte le nombre de tirages nécessaire pour obtenir 2 jetons différents pour la première fois. On note Z la variable aléatoire qui compte le nombre de tirages nécessaires pour obtenir les 3 jetons pour la première fois.

- 1. Donner la loi de Y.
- 2. Reconnaître la loi de Y-1. En déduire la variance et l'espérance de Y.
- **3.** Déterminer la loi de (Y, Z).
- **4.** Donner enfin la loi de Z.

Exercice 11. Mines-Télécom 24. Soit X et Y des variables aléatoires indépendantes suivant des lois de Poisson de paramètres respectifs λ et μ .

- **1.** Montrer que Z = X + Y suit une loi de Poisson de paramètre $\lambda + \mu$.
- **2.** Calculer $P_{Z=n}(X=k)$ pour $(k,n) \in \mathbb{N}^2$.
- **3.** Reconnaître alors la loi conditionnelle de X sachant (Z = n).

Exercice 12. CCINP 23. Soit $Y = 1 + X^2$ où X suit une loi de Poisson de paramètre λ .

- **1.** Calculer E(Y).
- **2.** Calculer P(2X < Y).

Exercice 13. Mines-Ponts 24. Soit $(X_n)_{n\geqslant 1}$ une suite de variables aléatoires indépendantes suivant la loi géométrique de paramètre $p\in]0,1[$. On note q=1-p et pour $n,k\in \mathbb{N}$ avec $n\geqslant 2$ et $k\geqslant 1$, on pose : $A_n=(X_1<\cdots< X_n)$, $u_n=P(A_n)$, $B_{n,k}=(X_1=k,X_1<\cdots< X_n)$, $v_{n,k}=P(B_{n,k})$. Enfin pour $n\in \mathbb{N}^*$, on pose : $\pi_n=\prod_{i=1}^n \left(1-q^i\right)$.

- **1.** Calculer $P(X_1 = X_2)$ et $P(X_1 < X_2)$.
- **2.** Pour $n \geqslant 3$ et $k \in \mathbb{N}^*$, montrer que : $v_{n,k} = pq^{k-1} \sum_{j=k+1}^{+\infty} v_{n-1,j}$.
- **3.** En déduire que, pour $n \ge 2$ et $k \in \mathbb{N}^*$, $v_{n,k} = \frac{1}{\pi_{n-1}} \left(pq^{k-1} \right)^n q^{\alpha_n}$ où α_n est un entier à préciser
- **4.** Établir enfin que, pour $n \ge 2$, $u_n = \frac{1}{\pi_n} p^{\beta_n} q^{\gamma_n}$ où β_n et γ_n sont des entiers que l'on précisera.
- **5.** (question qui n'était pas dans la planche, en mode Centrale Maths II) Vérifier le résultat avec python.

Exercice 14. Centrale 24. Une candidate doit se rendre sur un lieu de convocation. Elle dispose pour cela de 2 chemins : le chemin A et le chemin B. Elle prend le chemin A avec une probabilité $p \in]0, 1[$. Soit T la variable aléatoire égale au temps de trajet de la candidate, en minutes. Le temps de trajet du chemin A (respectivement B) suit une loi de Poisson de paramètre a > 0 (respectivement b > 0).

- 1. (a) [Py] Écrire une fonction prenant comme argument p, a et b et renvoyant la valeur de T.
 - (b) **[Py]** On prend a=5 et b=10. Donner les valeurs moyennes de T avec N=500 simulations pour $p \in \left\{\frac{1}{4}, \frac{1}{2}, \frac{3}{4}\right\}$.
 - (c) **[Py]** Proposer une fonction calculant une approximation de E(T), justifiée par un résultat précis du cours.
- 2. Déterminer la loi de T en fonction de p, a et b, puis calculer E(T) et V(T) si elles existent.
- **3.** Déterminer N de sorte que, dans 95% des cas, on observe un écart maximum de 30 secondes entre la valeur moyenne de N simulations et l'espérance de T.

Exercice 15. Mines 24. Soient $r \in \mathbb{N}$, $r \ge 4$, $(X_n)_{n \ge 1}$ une suite i.i.d. de variables aléatoires suivant la loi uniforme sur [1, r]. On note A_n l'événement : on retrouve n fois chaque entier de [1, r] dans le nr uplet (X_1, \ldots, X_{nr}) .

- **1.** Calculer $\mathbb{P}(A_n)$.
- 2. Déterminer la probabilité qu'une infinité de A_n se réalisent.