Semaine 06 - Colle du lundi 02/11 à 8h

Nom	Énoncé et commentaires	Note
	Planche python.	
	1. Justifier que $\langle \rangle : (P,Q) \mapsto \langle P \mid Q \rangle : \int_{-1}^{1} P(t)Q(t)dt$ est un produit scalaire sur $\mathbb{R}[X]$, et que $N_{\infty} : P \mapsto$	
	$\max_{t \in [-1,1]} P(t) $ est une norme.	
	2. [Py] n note $F = \mathbb{R}_5[X]$, déterminer une base orthonormée (E_0, \dots, E_5) de F en appliquant le procédé d'orthonormalisation de Gram-Schmidt à la base canonique.	
	3. [Py] Tracer (sur $[-1, 1]$) les courbes représentatives de E_0, \ldots, E_5 .	
	4. [Py] Estimer $N_{\infty}(E_i)$, $i \in [0, 5]$, ainsi que les valeurs de t par laquelle elle est atteinte. Conjecturer la valeur de $(N_{\infty}(E_i))^2$, $i \in [0, 5]$. On admet pour la suite ces résultats mathématiquement établis.	
	5. Montrer que si $P \in F$ est tel que $ P = 1$, alors $N_{\infty}(P) \leqslant 3\sqrt{2}$. Quand a-t-on égalité?	
	6. Trouver a et b optimaux tels que pour tout $P \in F$, $a\ P\ \le N_{\infty}(P) \le b\ P\ $. Donner des exemples pour lesquels il y a égalité, à gauche ou à droite.	
	 Cours. Si deux normes sont équivalentes, toute suite bornée/convergente pour l'une est bornée/convergente pour l'autre, vers la même limite. 	
	2. On prend (a_0, \ldots, a_n) $n+1$ réels (pas forcément distincts)	
	(a) Démontrer que $\langle P \mid Q \rangle = \sum_{k=0}^{n} P^{(k)}(a_k) Q^{(k)}(a_k)$ définit un produit scalaire.	
	(b) Montrer qu'il existe une base orthonormée $(P_0,, P_n)$ de $\mathbb{R}_n[X]$ telle que deg $P_k = k$.	
	(c) Expliciter $P_0, \dots P_n$ lorsque $a_0 = \dots = a_n = a$	
	3. Montrer la réciproque de la question de cours.	
	1. Cours. Montrer que $N_{a,b} = \sup_{t \in [a,b]} P(t) $ est une norme.	
	2. Soit E l'espace vectoriel des fonctions de classe \mathscr{C}^1 de $[0,1]$ dans \mathbb{R} . On considère $\varphi: E^2 \to \mathbb{R}$ définie par	
	$arphi(f,g) = \int_0^1 ig(f(t)g(t) + f'(t)g'(t)ig)\mathrm{d}t.$	
	(a) Montrer que $arphi$ est un produit scalaire.	
	(b) Soient $V = \{f \in E, f(0) = f(1) = 0\}$ et $W = \{f \in E, f'' = f\}$. Montrer que V et W sont supplémentaires orthogonaux. Exprimer la projection orthogonale sur W des éléments de E .	
	(c) On note $E_{\alpha,\beta} = \{f \in E, f(0) = \alpha, f(1) = \beta\}$. Calculer $\inf_{f \in E_{\alpha,\beta}} \int_0^1 \left(f^2 + \left(f'\right)^2\right)$.	
	3. Montrer que $N_{a,b}$ et $N_{c,d}$ ne sont pas équivalentes lorsque $(a,b) \neq (c,d)$, On pourra commencer par un cas simple et explicite.	