Chapitre 10 Séries entières – Résumé de cours

1 Définitions, rayon de convergence

Définition 1

Une série entière est une série de fonctions $\sum f_n$ où la fonction $f_n: \mathbb{C} \to \mathbb{C}$ est de la forme $f_n: z \mapsto a_n z^n$ pour tout $n \in \mathbb{N}$.

Remarque 2

- 1. Par abus de notation, la série entière de la définition ci-dessus se note simplement $\sum a_n z^n$.
- **2.** Pour z = 0, tous les termes de la série sont nuls sauf éventuellement celui d'indice n = 0 qui est a_0 .

Proposition 3 (Lemme d'Abel)

Si la suite $(a_n z_0^n)$ est bornée, alors $\sum a_n z^n$ converge absolument pour $|z| < |z_0|$.

Définition 4 (Rayon de convergence)

Le rayon de convergence de $\sum a_n z^n$ est

 $R = \sup \{r \in \mathbb{R}_+, \text{ la suite } (a_n r^n)_{n \in \mathbb{N}} \text{ est bornée } \}.$

Remarque 5

L'ensemble $\{r \in \mathbb{R}_+, \text{ la suite } (a_n r^n)_{n \in \mathbb{N}} \text{ est bornée } \}$ est un intervalle.

Proposition 6

Soit $\sum a_n z^n$ une série entière de rayon de convergence R, et $z_0 \in \mathbb{C}$.

- Si $|z_0| > R$, alors $\sum a_n z_0^n$ diverge grossièrement.
- Si $|z_0| < R$, alors $\sum a_n z_0^n$ converge absolument.

Remarque 7

La propriété précédente est une caractérisation du rayon de convergence.

Proposition 8

Pour $\alpha \in \mathbb{R}$, le rayon de convergence de $\sum n^{\alpha} x^n$ vaut 1.

Proposition 9 (Théorèmes de comparaison)

: Soient R_a et R_b les rayons de convergence respectifs de $\sum a_n z^n$ et $\sum b_n z^n$.

- 1. Si $a_n = O(b_n)$, alors on a $R_a \geqslant R_b$.
- **2.** Si $a_n \underset{n \to +\infty}{\sim} b_n$, alors on a $R_a = R_b$.

Remarque 10

Le (i) est aussi valable si $a_n = o(b_n)$ ou si l'on met des modules sur a_n ou b_n .

Point de méthode 11 (Méthodes pour déterminer le rayon de convergence)

- 1. On cherche à déterminer l'ensemble des r > 0 tels que $\sum a_n r^n$ converge absolument.
 - (a) Utiliser la règle de D'Alembert.
 - (b) **Dans le cas où** $\forall n \in \mathbb{N}$, $a_n \neq 0$, **et dans ce cas SEULEMENT**, on a une « superrègle de D'Alembert » : si $\frac{|a_{n+1}|}{|a_n|} \xrightarrow[n \to +\infty]{} \ell$, alors le rayon de convergence de la série entière est égal à $\frac{1}{\ell}$.
- 2. On fait des équivalents pour se ramener à un terme facile à traiter (avec la règle de D'Alembert, ou comme terme de série entière usuelle).
- 3. On fait des inégalités pour majorer/minorer le rayon de convergence.

Proposition 12 (Somme de deux séries entières)

Soient $\sum a_n z^n$ et $\sum b_n z^n$ deux séries entières de rayon de convergence respectif R_a et R_b . Le rayon de convergence R de la série entière $\sum (a_n + b_n) z^n$ vérifie l'inégalité $R \geqslant \min(R_a, R_b)$. De plus, pour tout $z \in \mathbb{C}$ vérifiant $|z| < \min(R_a, R_b)$, on a

$$\sum_{n=0}^{+\infty} (a_n + b_n) z^n = \left(\sum_{n=0}^{+\infty} a_n z^n\right) + \left(\sum_{n=0}^{+\infty} b_n z^n\right)$$

Remarque 13

Si $R_a \neq R_b$, alors on a l'égalité $R = \min(R_a, R_b)$.

Proposition 14 (Produit de Cauchy de deux séries entières)

: Soient $\sum a_n z^n$ et $\sum b_n z^n$ deux séries entières de rayons de convergence respectifs R_a et R_b . Le produit de Cauchy des deux séries entières $\sum a_n z^n$ et $\sum b_n z^n$ est la série entière $\sum c_n z^n$ définie par

$$\forall n \in \mathbb{N}, \quad c_n = \sum_{k=0}^n a_k b_{n-k}.$$

Son rayon de convergence R vérifie $R \geqslant \min(R_a, R_b)$ et pour tout $z \in \mathbb{C}$ vérifiant $|z| < \min(R_a, R_b)$, on a

$$\sum_{n=0}^{+\infty} c_n z^n = \left(\sum_{n=0}^{+\infty} a_n z^n\right) \left(\sum_{n=0}^{+\infty} b_n z^n\right)$$

2 Régularité de la somme d'une série entière

Désormais, pour les deux prochaines parties, toutes nos séries entières sont avec des variables réelles (mais des coefficients potentiellement complexes).

Proposition 15

Une série entière réelle de rayon de convergence R converge normalement sur tout segment inclus dans]-R, R[.

Remarque 16

On n'a pas, en général, de convergence normale sur l'intervalle/le disque de convergence.

Proposition 17 (Primitivation et intégration d'une série entière)

Soit $\sum a_n x^n$ une série entière, S sa somme, R son rayon de convergence.

1. La primitive de S sur]-R, R[qui s'annule en 0 est définie par

$$\forall x \in]-R, R[, \int_0^x S(t)dt = \sum_{n=0}^{\infty} \frac{a_n}{n+1} x^{n+1}.$$

2. En particulier, pour tous a < b dans] - R, R[, $\int_a^b S(t) dt = \sum_{n=0}^\infty \int_a^b a_n t^n dt$.

Proposition 18

La somme d'une série entière est continue sur son intervalle de convergence.

Proposition 19 (Régularité et dérivation d'une série entière)

Soit $\sum a_n x^n$ une série entière, S sa somme, R > 0 son rayon de convergence.

- **1.** S est dérivable sur] -R, R et pour tout x dans] -R, R[, $S'(x) = \sum_{n \ge 1} n a_n x^{n-1}$
- 2. $\sum na_nx^n$ et $\sum a_nx^n$ ont le même rayon de convergence
- **3.** S est en fait de classe \mathscr{C}^{∞} sur] -R, R et pour tout p dans \mathbb{N} , pour tout x dans] -R, R[,

$$S^{(p)}(x) = \sum_{n \ge p} n(n-1) \dots (n-p+1) a_n x^{n-p} = \sum_{n \ge p} \frac{n!}{(n-p)!} a_n$$

Corollaire 20

- **1.** Avec les mêmes notations que précédemment, $a_p = \frac{S^{(p)}(0)}{p!}$
- 2. Il y a unicité des coefficients d'une série entière : si $\sum a_n x^n$ et $\sum b_n x^n$ sont deux séries entières qui coïncident sur un intervalle] -R, R[, alors pour tout n, $a_n = b_n$.

3 Développement en série entière

Définition 21

Une fonction f est dite développable en série entière (au voisinage de 0) s'il existe R > 0 et $(a_n)_{n \in \mathbb{N}}$ une suite de complexes tels que $\sum a_n x^n$ converge sur]-R, R[et

$$\forall x \in]-R, R[, f(x) = \sum_{n \geqslant 0} a_n x^n.$$

Remarque 22

On I'a vu, dans ce cas, f est \mathscr{C}^{∞} et $a_n = \frac{f^{(n)}(0)}{n!}$.

Définition 23

On appelle série de Taylor d'une fonction f de classe \mathscr{C}^{∞} la série entière $\sum \frac{f^{(n)}(0)}{n!} x^n$.

Remarque 24

- 1. Si f est développable en série entière, alors elle est égale à sa série de Taylor au voisinage de 0.
- 2. L'inégalité de Taylor-Lagrange peut nous aider à montrer qu'une fonction est développable en série entière, de même que la (HP) formule de Taylor avec reste intégral.

3. Il existe des fonctions \mathscr{C}^{∞} qui ne sont pas développables en série entière, par exemple $t\mapsto \begin{cases} 0 \text{ si } t\leqslant 0 \\ \mathrm{e}^{-\frac{1}{t}} \text{ si } t>0 \end{cases}$ ou $t\mapsto \begin{cases} 0 \text{ si } t=0 \\ \mathrm{e}^{-\frac{1}{t^2}} \text{ si } t\neq 0 \end{cases}$

Proposition 25 (Développements en série entière usuels)

Formule	Rayon
Formule $\exp(x) = \sum_{n=0}^{+\infty} \frac{x^n}{n!}$ $\cos(x) = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n}}{(2n)!}$ $\sin(x) = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$ $\cosh(x) = \sum_{n=0}^{+\infty} \frac{x^{2n}}{(2n)!}$ $\sinh(x) = \sum_{n=0}^{+\infty} \frac{x^{2n+1}}{(2n+1)!}$ $\frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n$ $\frac{1}{1+x} = \sum_{n=0}^{+\infty} (-1)^n x^n$ $\ln(1-x) = -\sum_{n=1}^{+\infty} \frac{x^n}{n}$	$+\infty$
$\cos(x) = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n}}{(2n)!}$	$+\infty$
$\sin(x) = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$	$+\infty$
$ch(x) = \sum_{n=0}^{+\infty} \frac{x^{2n}}{(2n)!}$	$+\infty$
$sh(x) = \sum_{n=0}^{+\infty} \frac{x^{2n+1}}{(2n+1)!}$	$+\infty$
$\frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n$	1
$\frac{1}{1+x} = \sum_{n=0}^{+\infty} (-1)^n x^n$	1
$\ln(1-x) = -\sum_{n=1}^{+\infty} \frac{x^n}{n}$	1
$\ln(1+x) = \sum_{n=1}^{+\infty} \frac{n}{n}$ $\ln(1+x) = \sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n} x^n$ $\operatorname{Arctan}(x) = \sum_{n=1}^{+\infty} (-1)^n \frac{x^{2n+1}}{n}$	1
$\sqrt{(1)} 2n \pm 1$	1
$(1+x)^{\alpha} = 1 + \sum_{n=1}^{+\infty} \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!} x^n$	1

Remarque 26

- **1.** Pour $\alpha \in \mathbb{N}$, la somme du dernier DSE est finie.
- 2. Il faut avoir déjà fait une fois, par soi-même, le DSE de $\sqrt{1+x}$, et surtout celui de $\frac{1}{\sqrt{1+x}}$, ainsi que celui de Arcsin(x).

4 Le cas de la variable complexe

Définition 27 (Rappel)

Une fonction $f: D \subset \mathbb{C} \to \mathbb{C}$ est dite continue si pour tout a dans D, pour tout $\varepsilon > 0$, il existe $\delta > 0$ tel que

$$\forall x \in D, |x - a| \leq \delta \Rightarrow |f(x) - f(a)| \leq \varepsilon.$$

On écrit aussi que $f(x) \xrightarrow[x \to a]{} f(a)$.

Proposition 28

- 1. Une série entière réelle de rayon de convergence *R* converge normalement sur tout disque fermé inclus dans le disque ouvert de convergence.
- 2. La somme d'une série entière est continue sur le disque ouvert de convergence.

Proposition 29

- **1.** Pour tout $z \in \mathbb{C}$ vérifiant |z| < 1, $\frac{1}{1-z} = \sum_{n=0}^{+\infty} z^n$.
- **2.** Pour tout $z \in \mathbb{C}$, $e^z = \sum_{n=0}^{+\infty} \frac{z^k}{k!}$.