Chapitre 13

Endomorphismes dans les espaces euclidiens - résumé de cours

Dans tout le chapitre, $(E, \langle \cdot, \cdot \rangle)$ désigne un espace euclidien, $\|\cdot\|$ la norme associée.

1 Isométries

Définition 1

Une isométrie de E est un endomorphisme u de E tel que pour tout x dans E, ||u(x)|| = ||x||. On note O(E) l'ensemble des isométries de E, appelé groupe orthogonal.

Proposition 2

- **1.** $O(E) \subset GL(E)$.
- **2.** Soit $u \in \mathcal{L}(E)$. On a les équivalences suivantes :
 - $u \in O(E)$
 - $\forall (x, y) \in E^2$, $\langle u(x), u(y) \rangle = \langle x, y \rangle$
 - pour toute BON (e_1, \ldots, e_n) de E, $(u(e_1), \ldots, u(e_n))$ est une BON.

Exemple 3

Les symétries orthogonales sont des isométries vectorielles.

Proposition 4

 $O(\overline{E})$ est un groupe, ou même plutôt un sous-groupe de GL(E):

- **1.** $\mathrm{Id}_{E} \in O(E)$,
- **2.** $\forall (u, v) \in O(E)^2$, $u \circ v \in O(E)$,
- **3.** $\forall u \in O(E), u^{-1} \in O(E).$

Proposition 5

Si $u \in O(E)$ et si F est un sous-espace stable par u, F^{\perp} l'est aussi.

Définition 6

Une matrice A de $\mathcal{M}_n(\mathbb{R})$ est dite orthogonale lorsque $A^{\top}A = I_n$. On note $O_n(\mathbb{R})$ ou O(n) l'ensemble des matrices orthogonales.

Proposition 7

On a les équivalences suivantes :

- **1.** *M* est orthogonale
- **2.** Les colonnes de M forment une base orthonormée de $\mathcal{M}_{n,1}(\mathbb{R})$
- **3.** Il existe une isométrie u et une base orthonormée \mathscr{B} telles que $M=\mathrm{Mat}_{\mathscr{B}}(u)$.

Proposition 8

Soit M une matrice orthogonale. Alors $det(M) = \pm 1$.

Définition 9

On note $SO_n(\mathbb{R})$ le groupe spécial orthogonal, défini par

$$SO_n(\mathbb{R}) = \{ M \in O_n(\mathbb{R}), \ \det(M) = 1 \}.$$

Proposition 10

O(n) et SO(n) sont des sous-groupes de $(GL_n(\mathbb{R}), +)$, c'est-à-dire que

- **1.** $I_n \in O_n(\mathbb{R})$ (respectivement $SO_n(\mathbb{R})$)
- **2.** $\forall (M, N) \in O_n(\mathbb{R})^2$, $M \times N \in O_n(\mathbb{R})$ (respectivement, $\forall (M, N) \in SO_n(\mathbb{R})^2$, $M \times N \in SO_n(\mathbb{R})$)
- **3.** $\forall M \in O_n(\mathbb{R}), M^{-1} \in O_n(\mathbb{R}).$

Remarque 11

Il existe un groupe dit spécial linéaire, $SL_n(\mathbb{R}) = \{M \in \mathcal{M}_n(\mathbb{R}), \det(M) = 1\}.$

2 Un peu de « géométrie »

2.1 Orientation des bases

Définition 12

- 1. On dit que deux bases orthonormales ont même orientation lorsque la matrice de passage de l'une vers l'autre a un déterminant égal à +1.
- **2.** Un espace euclidien orienté est un espace euclidien dans lequel on a choisi une base orthonormée de référence \mathscr{C}_0 .
- **3.** Soit E un espace euclidien orienté par une base orthonormée \mathscr{C}_0 . Une base orthonormée \mathscr{B} de E est dite
 - (a) directe si la matrice de passage de \mathscr{C}_0 à \mathscr{B} est de déterminant 1,
 - (b) indirecte si la matrice de passage de \mathscr{C}_0 à \mathscr{B} est de déterminant -1 .

Remarque 13

- **1.** Dans \mathbb{R}^n , on a tendance à orienter par rapport à la base canonique.
- **2.** Si on a choisi une base de référence \mathscr{C}_0 , cela revient au même d'orienter par rapport à n'importe quelle base orthonormée directe.

Proposition 14 (et définition)

Si E est orienté, le déterminant d'une famille de vecteurs (e_1, \ldots, e_n) dans une base orthonormée directe de E ne dépend pas de cette base : c'est le produit mixte, noté $[e_1, \ldots, e_n]$.

Remarque 15

- **1.** Une famille (u_1, \ldots, u_n) de E est une base de E si et seulement si $[u_1, \ldots, u_n] \neq 0$.
- **2.** Pour l'espace euclidien $E = \mathbb{R}^2$, le produit mixte [u, v] est l'aire algébrique du parallélogramme construit sur les vecteurs u et v.
- **3.** Pour l'espace euclidien $E = \mathbb{R}^3$, le produit mixte [u, v, w] est le volume algébrique du parallélépipède construit sur les vecteurs u, v et w.

Proposition 16

Le **produit vectoriel** de deux vecteurs $u \in E$ et $v \in E$, noté $u \wedge v$, est l'unique vecteur de E tel que

$$\forall w \in E$$
, $[u, v, w] = (u \land v \mid w)$

Remarque 17

Si E est orienté par $\mathscr{C} = (i, j, k)$, calculons $i \wedge j$, $j \wedge k$, etc.

Proposition 18

- 1. Le produit vectoriel est bilinéaire et antisymétrique.
- 2. Le vecteur $u \wedge v$ est orthogonal à u et orthogonal à v.
- **3.** On a $u \wedge v = 0_E$ si et seulement si u et v sont colinéaires.
- **4.** $||x \wedge y|| = ||x|| ||y|| \sin(\theta)$ où $\theta \in [0, \pi]$ est défini par : $\langle x, y \rangle = ||x|| ||y|| \cos(\theta)$.
- **5.** Si (u, v) est une famille orthonormée de E, alors $(u, v, u \wedge v)$ est une base orthonormée directe de E.
- **6.** On a une formule explicite pour $u \wedge v$ à l'aide des coordonnées de u et v.

Remarque 19

On peut orienter un plan ou une droite dans un espace euclidien de dimension 3 (mais on ne va pas en faire grand chose en PSI...)

2.2 Isométries du plan

Ici, E est un espace euclidien de dimension 2, orienté par une base $\mathscr{C} = (i,j)$.

Proposition 20

On a les égalités suivantes :

$$SO_2(\mathbb{R}) = \{R_\theta, \theta \in \mathbb{R}\}, \text{ où } R_\theta = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$$

$$O_2(\mathbb{R}) \setminus SO_2(\mathbb{R}) = \{S_\theta, \theta \in \mathbb{R}\}, \text{ où } S_\theta = \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ \sin(\theta) & -\cos(\theta) \end{pmatrix}$$

Remarque 21

- **1.** Les éléments de $O_2(\mathbb{R}) \setminus SO_2(\mathbb{R})$ sont des matrices de symétrie : ils vérifient $M^2 = I_2$.
- **2.** Le groupe $SO_2(\mathbb{R})$ est commutatif : on a, pour θ et φ dans \mathbb{R} ,

$$R_{\theta+\varphi}=R_{\theta}R_{\varphi}$$
 et $R_{-\theta}=R_{\theta}^{-1}$.

Proposition 22 (et définition)

Soit $u \in O(E)$ une isométrie d'un plan vectoriel euclidien orienté.

1. Si u est directe, alors il existe un réel $\theta \in \mathbb{R}$ tel que pour toute base orthonormée directe \mathscr{B} de E, on a

$$\mathsf{Mat}_{\mathscr{B}}(u) = \left(\begin{array}{cc} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{array}\right)$$

On dit que u est la **rotation d'angle** θ

2. Si u est indirecte, alors pour toute base orthonormée directe \mathscr{B} de E, il existe un réel $\theta \in \mathbb{R}$ tel que

$$\mathsf{Mat}_{\mathscr{B}}(u) = \left(\begin{array}{cc} \cos(\theta) & \sin(\theta) \\ \sin(\theta) & -\cos(\theta) \end{array}\right).$$

u est alors la symétrie orthogonale par rapport à la droite D d'équation $y=\tan(\theta)x$ si $\theta=\frac{\pi}{2}[\pi]$, par rapport à la droite d'équation x=0 si $\theta=\frac{\pi}{2}[\pi]$.

Remarque 23

La forme des isométries directes permet de définir la notion d'angle entre deux vecteurs.

2.3 Isométries de l'espace

Ici, E est un espace euclidien de dimension 2, orienté par une base $\mathscr{C} = (i, j, k)$.

Proposition 24

Soit $u \in O(E)$. Alors

1. ou bien $\det(u) = 1$ et on dispose de θ dans \mathbb{R} , d'une BOND $\mathscr{B} = (e_1, e_2, e_3)$ de E telles que

$$\operatorname{Mat}_{\mathscr{B}}(u) = \begin{pmatrix} 1 & 0_{1,2} \\ 0_{2,1} & R_{\theta} \end{pmatrix}.$$

On dit alors que u est la rotation d'axe $Vect(e_1)$ et d'angle θ .

2. (HP) ou bien det(u) = -1 et on dispose de θ dans \mathbb{R} , d'une BOND \mathscr{B} de E telles que

$$\operatorname{Mat}_{\mathscr{B}}(u) = \begin{pmatrix} -1 & 0_{1,2} \\ 0_{2,1} & R_{\theta} \end{pmatrix}.$$

Remarque 25

Le signe de θ dépend du choix de e_1 .

Point de méthode 26 (Déterminer les caractéristiques d'une isométrie directe)

Soit A une matrice de $SO_3(\mathbb{R})$: A représente une rotation d'axe $Vect(e_1)$ et d'angle θ .

- **1.** pour déterminer l'axe de rotation de A, on résout AX = X d'inconnue $X \in \mathcal{M}_{n,1}(\mathbb{R})$.
- 2. pour déterminer l'angle de A, on utilise la propriété précédente :
 - Déjà, $Tr(A) = 1 + 2\cos(\theta)$, on détermine donc facilement $\cos(\theta)$.
 - Ensuite, il faut déterminer le signe de θ ou bien de $\sin(\theta)$. Deux possibilités :
 - ou bien on prend x quelconque et non colinéaire à e_1 et on calcule $[e_1, x, Ax]$, qui doit être du signe de $sin(\theta)$.
 - ou bien on prend $y \in e_1^{\perp}$. Alors $y \wedge f(y)$ est colinéaire à e_1 , avec un coefficient positif si $\sin(\theta) \geqslant 0$, négatif si $\sin(\theta) \leqslant 0$.

3 Endomorphismes autoadjoints

3.1 Définitions

lci, E est à nouveau un espace vectoriel euclidien de dimension quelconque.

Définition 27

Un endomorphisme u de E est dit autoadjoint ou symétrique si pour tous x et y de E, $\langle u(x), y \rangle = \langle x, u(y) \rangle$. On note $\mathscr{S}(E)$ l'ensemble des endomorphismes symétriques de E.

Remarque 28

 $\mathscr{S}(E)$ est clairement un sous-espace vectoriel de $\mathscr{L}(E)$, contenant Id_E .

Proposition 29

Soit \mathscr{B} une BON de E. Un endomorphisme u de E est symétrique si et seulement si $\mathrm{Mat}_{\mathscr{B}}(u)$ est symétrique.

Proposition 30

- 1. Un projecteur est autoadjoint si et seulement si c'est un projecteur orthogonal.
- 2. Une symétrie est autoadjointe si et seulement si c'est un projecteur orthogonal.

3.2 Réduction

Proposition 31

Soit $u \in \mathcal{S}(E)$.

- **1.** Si F est stable par u, alors F^{\perp} est stable par u.
- **2.** Les sous-espaces propres de u sont orthogonaux.

Théorème 32 (Théorème spectral)

- **1.** Tout endomorphisme autoadjoint $f \in \mathscr{S}(E)$ d'un espace euclidien E est diagonalisable dans une base orthonormée, i.e. il existe une base orthonormée \mathscr{B} de E telle que $\mathrm{Mat}_{\mathscr{B}}(f)$ soit diagonale.
- **2.** Si $A \in \mathscr{S}_n(\mathbb{R})$ est une matrice symétrique réelle, alors il existe une matrice diagonale $D \in \mathscr{M}_n(\mathbb{R})$ et une matrice orthogonale $P \in O_n(\mathbb{R})$ telles que

$$A = PDP^{-1} = PDP^{\top}$$
.

3.3 Endomorphismes positifs, matrices positives

Définition 33

- **1.** Soit $u \in \mathscr{S}(E)$. On dit que u est **positif** (resp. **défini positif**) si pour tout x dans E, $\langle u(x), x \rangle \geqslant 0$ (resp. $\langle u(x), x \rangle > 0$). On note $\mathscr{S}^+(E)$ (resp. $\mathscr{S}^{++}(E)$) l'ensemble des endomorphismes positifs (resp. définis positifs).
- **2.** Soit $M \in \mathscr{S}_n(\mathbb{R})$. On dit que M est **positive** (resp. **définie positive**) si pour tout X dans $\mathscr{M}_{n,1}(\mathbb{R})$, $X^\top AX \geqslant 0$. On note $\mathscr{S}_n^+(\mathbb{R})$ (resp. $\mathscr{S}_n^{++}(\mathbb{R})$) l'ensemble des matrices positives (resp. définies positives).

Proposition 34

1. Soit $u \in \mathcal{S}(E)$. On a l'équivalence

$$(\forall x \in E, \langle u(x), x \rangle \geqslant 0) \Leftrightarrow \operatorname{Sp}(u) \subset \mathbb{R}_+$$

ainsi que l'équivalence

$$(\forall x \in E, \langle u(x), x \rangle > 0) \Leftrightarrow \operatorname{Sp}(u) \subset \mathbb{R}^*_{\perp}$$

2. Soit $A \in \mathscr{S}_n(\mathbb{R})$. On a l'équivalence

$$(\forall X \in \mathscr{M}_{n,1}(\mathbb{R}), \ X^{\top}AX \geqslant 0) \Leftrightarrow \operatorname{Sp}(A) \subset \mathbb{R}_{+}$$

ainsi que l'équivalence

$$(\forall X \in \mathscr{M}_{n,1}(\mathbb{R}), \ X^{\top}AX > 0) \Leftrightarrow \operatorname{Sp}(A) \subset \mathbb{R}_{+}^{*}.$$

Remarque 35

- **1.** Si $u \in \mathcal{S}^{++}(E)$, l'application $(x, y) \mapsto \langle u(x), y \rangle$ définit un produit scalaire sur E.
- **2.** L'ensemble des endomorphismes autoadjoints positifs est un cône : pour tous u et v autoadjoints positifs, pour tous λ et μ **positifs**, $\lambda u + \mu v$ est autoadjoint positif.

Exemple 36

- **1.** Si $\lambda_1 \leqslant \cdots \leqslant \lambda_n$ sont les valeurs propres de $u \in \mathscr{S}^+(E)$, encadrement de $\langle u(x), x \rangle$.
- 2. Existence (et unicité) d'une « racine carrée » (définie) positive d'une matrice (définie) positive.