Définition 1 Soit $(u_n)_{n\in\mathbb{N}}$ une suite de nombres complexes. On dit que la série de terme général u_n converge lorsque la suite des sommes partielles $\left(S_n = \sum_{k=0}^n u_k\right)$ converge. La limite de cette suite est alors appelée *somme* de la série, et notée $\sum_{n=0}^{+\infty} u_n$.

Remarque 1 Une suite (u_n) converge si et seulement si la série $\sum (u_{n+1} - u_n)$ converge.

Proposition 1 Le terme général d'une série convergente tend nécessairement vers zéro.

Exemple 1 La série géométrique de raison z converge si, et seulement si, |z| < 1.

La somme vaut alors : $\sum_{n=0}^{+\infty} z^n = \frac{1}{1-z}$.

Proposition 2 Une série à termes positifs converge ssi la suite de ses sommes partielles est majorée.

Corollaire Si $0 \le u_n \le v_n$ pour tout n, la convergence de $\sum v_n$ implique celle de $\sum u_n$.

Remarque 2 Principe de comparaison série-intégrale

Exemple 2 Séries de Riemann

Exemple 3 Formule de Stirling

Définition 2 On dit que $\sum u_n$ est absolument convergente lorsque $\sum |u_n|$ est convergente.

Proposition 3 Toute série absolument convergente converge et vérifie : $\left|\sum_{n=0}^{+\infty}u_n\right|\leqslant\sum_{n=0}^{+\infty}|u_n|$.

Remarque 3 Si (v_n) est une suite à termes positifs et (u_n) une suite à termes complexes telle que $u_n \in O(v_n)$ alors la convergence de $\sum v_n$ implique la convergence absolue de $\sum u_n$.

Proposition 4 (*Règle de D'Alembert*) Pour une série de terme général non nul :

Si $\left|\frac{u_{n+1}}{u_n}\right|$ tend vers une limite $\ell < 1$, la série converge absolument.

Si $\left|\frac{u_{n+1}}{u_n}\right|$ tend vers une limite $\ell > 1$, la série diverge grossièrement.

Exemple 4 Pour tout $z \in \mathbb{C}$, la série de terme général $\frac{z^n}{n!}$ converge absolument et $\sum_{n=0}^{+\infty} \frac{z^n}{n!} = e^z$.

Proposition 5 (critère spécial des séries alternées)

Si (v_n) est une suite de réels décroissant vers zéro, alors la série de terme général $(-1)^n v_n$ converge. En outre, $R_n = \sum_{k=n+1}^{+\infty} (-1)^k v_k$ est alors du signe de $(-1)^{n+1}$ et $|R_n| \leq v_{n+1}$.

Remarque 4 Deux séries à termes positifs équivalents sont de même nature.

Mais attention : la série de terme général $u_n = \frac{(-1)^n}{\sqrt{n}} + \frac{1}{n}$ est divergente!

Dans ce genre de situation, on aura en général recours à un petit développement limité...