PSI-Pasteur 2025-2026 **DM1**

$$\text{Pour } \alpha \in \mathbf{R}_+ \text{ et } \beta \in \mathbf{R}_+ \text{ on pose } I_{\alpha,\beta} = \int_0^{+\infty} \frac{t^\alpha}{1 + t^\beta \sin^2 t} \, \mathrm{d}t \text{ et } J_\beta = \int_0^{+\infty} \frac{t^2}{(1 + t^\beta \sin^2 t)^2} \, \mathrm{d}t.$$

- 1) Montrer que si $\beta = 0$ alors $I_{\alpha,\beta}$ est divergente. Dans la suite, on supposera $\beta > 0$.
- **2)** Pour x > -1, justifier l'existence de $\varphi(x) = \int_0^\pi \frac{\mathrm{d}\theta}{1 + x \sin^2 \theta}$ et de $\psi(x) = \int_0^\pi \frac{\mathrm{d}\theta}{(1 + x \sin^2 \theta)^2}$.
- **3)** Montrer que $\varphi(x) = \int_{-\pi/2}^{\pi/2} \frac{d\theta}{1 + x \sin^2 \theta}$; puis calculer $\varphi(x)$ en posant $t = \tan \theta$.
- 4) Montrer que $I_{\alpha,\beta}$ est de même nature que la série de terme général $u_n = \int_{n\pi}^{(n+1)\pi} \frac{t^{\alpha}}{1+t^{\beta}\sin^2 t} dt$.
- **5)** Montrer que : $\frac{n^{\alpha}\pi^{\alpha+1}}{\sqrt{1+(n+1)^{\beta}\pi^{\beta}}} \leqslant u_n \leqslant \frac{(n+1)^{\alpha}\pi^{\alpha+1}}{\sqrt{1+n^{\beta}\pi^{\beta}}}$. En déduire un équivalent de u_n , puis une CNS pour que $I_{\alpha,\beta}$ soit convergente.
- **6)** Soit $F(x) = \int_x^{+\infty} \frac{t}{1+t^5 \sin^2 t} \, \mathrm{d}t$. Montrer que F est définie et de classe C^1 sur \mathbf{R}_+^* . Préciser l'expression de F'(x). Quel est le comportement de F(x) quand x tend vers $+\infty$? Et celui de F'(x)?
- 7) Soit $f(x) = \frac{\pi^2 x^2}{x^5 + \pi^5 \sin^2 \frac{\pi}{x}}$. En posant $x = \frac{\pi}{t}$, justifier la convergence de $\int_0^1 f(x) \, dx$.
- **8)** Soit $S_n = \frac{1}{n} \sum_{k=1}^n f\left(\frac{k}{n}\right)$. Montrer que $S_n \geqslant \pi^2 n^2$. Conclusion?
- 9) Justifier l'existence puis calculer la valeur de $W = \int_{-\infty}^{+\infty} \frac{t^2 dt}{(1+t^2)^2}$. (on pourra effectuer, en la justifiant, une intégration par parties en posant $u(t) = \frac{t}{2}$ et $v(t) = \frac{-1}{1+t^2}$)
- **10)** En déduire la valeur de $\psi(x)$, puis montrer que $\psi(x) \sim \frac{\pi}{2\sqrt{x}}$ quand $x \to +\infty$.
- 11) Soit $w_n = \int_{n\pi}^{(n+1)\pi} \frac{t^2}{(1+t^\beta\sin^2t)^2}\,\mathrm{d}t$. Trouver un équivalent de w_n . En déduire une CNS pour que J_β soit convergente.
- 12) Montrer que si (u_n) est suite de réels positifs telle que la série de terme général u_n converge, alors la série de terme général u_n^2 converge.
- 13) Soit g une fonction continue sur $[0,+\infty[$, à valeurs positives. L'intégrabilité de g sur $[0,+\infty[$ entraı̂ne-t-elle celle de g^2 ?