Définition 1 Une *norme* sur un espace vectoriel E est une application $N: E \to \mathbb{R}_+$ vérifiant :

- i) $N(x) = 0 \iff x = 0_E$ (séparation)
- ii) $\forall x \in E, \ \forall \lambda \in \mathbf{K}, \ N(\lambda \cdot x) = |\lambda| N(x)$ (homogénéité)
- iii) $\forall (x, y) \in E \times E$, $N(x + y) \leq N(x) + N(y)$ (inégalité triangulaire)

On dit alors que (E, N) est un espace normé et l'on définit la distance entre deux éléments de E par : d(x, y) = N(x - y).

Exemple 1 Norme associée à un produit scalaire dans un espace préhilbertien réel

Exemple 2 Normes $\|\cdot\|_1$, $\|\cdot\|_2$ et $\|\cdot\|_{\infty}$ sur \mathbf{K}^n pour $n \in \mathbf{N}^*$

Exemple 3 Norme $\|\cdot\|_{\infty}$ sur un espace de fonctions bornées à valeurs dans **K**

Définition 2 Soit (E, N) un espace vectoriel normé.

- 1) La boule ouverte de centre a et de rayon R est : $B(a,R) = \{x \in E, N(x-a) < R\}$
- 2) La *boule fermée* de centre a et de rayon R est : $B_f(a,R) = \{x \in E, N(x-a) \le R\}$
- 3) La *sphère* de centre a et de rayon R est : $S(a,R) = \{x \in E, N(x-a) = R\}$
- 4) Une partie A de E est dite bornée s'il existe R > 0 tel que : $\forall x \in A, N(x) \leq R$
- 5) Une partie A de E est dite convexe lorsque : $\forall (x, y) \in A \times A, \ \forall t \in [0, 1], \ (1 t)x + ty \in A$

Remarque Une boule est toujours convexe (et symétrique par rapport à son centre).

Définition 3 On dit qu'une suite (x_n) d'éléments d'un espace normé (E, N) converge vers $\ell \in E$ lorsque $N(x_n - \ell)$ tend vers 0.

Proposition 1 Unicité de la limite

Proposition 2 Toute suite convergente est bornée.

Proposition 3 Limite d'une combinaison linéaire de suites convergentes

Proposition 4 Toute suite extraite d'une suite convergente converge vers la même limite.

Définition 4 Deux normes N_1 et N_2 sont dites équivalentes lorsqu'existent deux réels α et β tels que : $\forall x \in E$, $N_1(x) \leq \alpha N_2(x)$ et $N_2(x) \leq \beta N_1(x)$.

Proposition 5 Si deux normes sont équivalentes, toute suite bornée pour l'une l'est aussi pour l'autre; et toute suite convergente pour l'une converge pour l'autre *vers la même limite*.

Théorème Sur un espace de dimension finie, toutes les normes sont équivalentes.

Corollaire Dans un espace de dimension finie, la convergence d'une suite équivaut à celle de chacune de ses coordonnées dans une base.