PSI-Pasteur 2025-2026 Normes

**Exercice 1** (CCINP 25) Pour  $P = \sum_{k=0}^{n} a_k X^k$  et  $Q = \sum_{k=0}^{m} b_k X^k$  on pose  $\langle P, Q \rangle = \sum_{k=0}^{\min(n,m)} a_k b_k$ .

- 1) Vérifier que l'on définit ainsi un produit scalaire sur  $E = \mathbf{R}[X]$ .
- 2) Montrer que  $f: P \mapsto P(0)$  est lipschitzienne puis déterminer l'orthogonal du noyau de f.
- 3) Montrer que  $f: P \mapsto P(1)$  n'est pas lipschitzienne puis déterminer l'orthogonal du noyau de f.

**Exercice 2** (*Mines-Télécom 25*) Soit E un espace préhilbertien réel. On suppose que F est un sous-espace dense de E, c'est-à-dire que tout élément de E est limite d'une suite d'éléments de F. On se donne un vecteur unitaire v et l'on considère G, l'orthogonal de la droite engendrée par v.

- a) Montrer que :  $\forall (x, y) \in F \times F$ ,  $\langle x, v \rangle \cdot y \langle y, v \rangle \cdot x \in F \cap G$
- b) Montrer que tout élément de G est limite d'une suite d'éléments de  $F \cap G$ .

**Exercice 3** (*Mines-Télécom 25*) Soit *E* un espace euclidien.

On fixe un réel  $k \in [0, 1[$  et l'on considère l'ensemble  $F = \{ f \in \mathcal{L}(E) \mid \forall x \in E, || f(x) || \le k || x || \}$ .

- a) Déterminer l'ensemble F lorsque k = 0.
- b) Vérifier que l'application identité  $Id_E$  n'appartient pas à F.
- c) Montrer que F n'est pas un sous-espace vectoriel de  $\mathcal{L}(E)$ .
- d) Montrer qu'il existe une norme sur  $\mathcal{L}(E)$  telle que F soit une boule fermée pour cette norme.

**Exercice 4** (CCINP 25) Soit  $E = \mathcal{C}^2([0,1], \mathbf{R})$ . Pour  $f \in E$  on note:  $N_0(f) = \int_0^1 |f(t)| dt$ ,  $N_1(f) = |\int_0^1 f(t) dt| + \int_0^1 |f'(t)| dt$  et  $N_2(f) = |\int_0^1 f(t) dt| + |\int_0^1 f'(t) dt| + |\int_0^1 f''(t) dt|$ .

- 1) Soit  $f: x \mapsto \sin(2\pi x)$ . Calculer  $N_0(f)$ ,  $N_1(f)$  et  $N_2(f)$ .
- 2)  $N_0$  est une norme usuelle. Montrer que  $N_1$  est une norme. Est-ce que  $N_2$  est une norme?
- 3) Monter que :  $\forall f \in E, \exists c \in [0,1], f(c) = \int_0^1 f(t) dt$ .
- 4) Montrer que :  $\forall f \in E$ ,  $N_1(f) \leq N_0(f)$ . Existe-t-il une fonction f non identiquement nulle telle que  $N_1(f) = N_0(f)$ ?
- 5) Les normes  $N_0$  et  $N_1$  sont-elles équivalentes?

**Exercice 5** (CCINP 25) Soit  $a \in \mathbb{R}$ , pour  $P \in \mathbb{R}[X]$  on pose :  $N_a(P) = |P(a)| + \int_0^1 |P'(t)| dt$ .

- 1) Montrer que  $N_a$  est une norme sur  $\mathbf{R}[X]$ .
- 2) Montrer que, pour tout  $P \in \mathbf{R}[X]$ ,  $P(1) \leq |P(0)| + \int_0^1 |P'(t)| \, \mathrm{d}t$ . En déduire que  $N_0$  et  $N_1$  sont équivalentes.
- 3) Plus généralement, montrer que  $N_a$  et  $N_1$  sont équivalentes pour  $0 \le a \le 1$ .
- 4) Montrer que si une suite de vecteurs converge dans une espace vectoriel normé, alors la suite des normes de ces vecteurs converge vers la norme de la limite de cette suite.
- 5) Montrer que si  $1 \le a < b$  alors  $N_a$  et  $N_b$  ne sont pas équivalentes. Indication : on pourra considérer, pour  $c \in a$ , b, la suite  $(P_n)$  avec  $P_n = \left(\frac{X}{c}\right)^n$ .

## Exercice 6 (Mines-Ponts 17)

- Soit E un R-espace de dimension finie et F un sous-espace de E.
  Montrer que la limite d'une suite convergente d'éléments de F est toujours dans F.
- 2) Pour  $A \in \mathcal{M}_n(\mathbf{C})$  et  $p \in \mathbf{N}$ , soit  $S_p(A) = \sum_{k=0}^p \frac{A^k}{k}$ . Montrer que  $(S_p(A))$  est convergente.
- 3) Soit  $\exp(A) = \lim_{p \to \infty} S_p(A)$ . Montrer que  $\exp(A)$  est un polynôme en A.
- 4) Existe-t-il un polynôme P tel que :  $\forall A \in \mathcal{M}_n(\mathbf{C})$ ,  $\exp(A) = P(A)$  ?