Définition 1 Soit *I* un intervalle et (f_n) une suite de fonctions de *I* dans **R** ou **C**. On dit que (f_n) converge simplement sur I lorsque, pour tout x de I, la suite $(f_n(x))$ converge. Soit alors f(x) la limite simple de $f_n(x)$. On dit que (f_n) converge uniformément vers f sur I lorsque $||f_n - f||_{\infty}^I = \sup_{x \in I} |f_n(x) - f(x)|$ tend vers 0 quand n tend vers l'infini.

Remarque 1 Cela revient à: $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}$, $\forall n \ge N$, $\forall x \in I$, $|f(x) - f_n(x)| \le \varepsilon$.

Remarque 2 La convergence uniforme passe aux combinaisons linéaires, mais ni aux produits ni aux composées, comme le montre la suite $f_n(x) = (x + 1/n)^2$.

Définition 2 On dit qu'une série de fonctions converge simplement (resp. uniformément) lorsque la suite des sommes partielles converge simplement (resp. uniformément). Si la convergence simple est établie, il reste alors à étudier la convergence uniforme de la suite des restes vers 0.

Définition 3 Une série de fonctions $\sum f_n$ est dite *normalement convergente* sur I lorsque la série de terme général $||f_n||_{\infty}^I$ est convergente.

Proposition 1 La convergence normale implique la convergence uniforme (et absolue).

Proposition 2 Si une suite (f_n) de fonctions continues sur I converge uniformément sur I vers f, alors f est continue sur I.

Remarque 3 Application à la continuité de la somme d'une série de fonctions.

Proposition 3 Si une suite (f_n) de fonctions continues converge uniformément sur [a,b] vers g, alors $\int_a^b f_n(t) dt$ tend vers $\int_a^b g(t) dt$ quand n tend vers l'infini.

Remarque 4 Application à l'intégration terme à terme d'une série de fonctions.

Proposition 4 Soit (f_n) une suite d'applications de classe C^1 sur un intervalle I.

Si (f_n) converge simplement sur I vers une application f et si (f'_n) converge uniformément sur tout segment de I vers une application h, alors f est de classe C^1 sur I et f' = h.

En outre, la convergence de (f_n) est alors uniforme sur tout segment de I, ce qui permet d'étendre le théorème aux applications de classe C^k sous l'hypothèse de convergence simple des $(f_n^{(j)})$ pour $0 \le j \le k-1$ et de convergence uniforme de $(f_n^{(k)})$ sur tout segment de I.

Remarque 5 Application à la dérivation terme à terme d'une série de fonctions.

Remarque 6 Soit (f_n) une suite de fonctions convergeant uniformément vers f sur un intervalle I. Si chacune des fonctions f_n admet une limite b_n (réelle ou complexe) en a, extrémité finie ou infinie de I, alors la suite (b_n) est convergente et f(x) tend vers la limite des b_n quand x tend vers a. C'est le *théorème de la double limite* : $\lim_{n\to\infty} \left(\lim_{x\to a} f_n(x)\right) = \lim_{x\to a} \left(\lim_{n\to\infty} f_n(x)\right)$. Désormais, le programme officiel ne mentionne plus que l'application aux séries de fonctions :

$$\sum_{n=0}^{\infty} \left(\lim_{x \to a} f_n(x) \right) = \lim_{x \to a} \sum_{n=0}^{\infty} f_n(x)$$