Exercice 1 (ENSEA 25) Pour $x \in [0,1]$ et $n \in \mathbb{N}^*$ on pose $f_n(x) = \frac{n^2 x^2}{1 + n^3 x^3}$. Étudier la convergence simple, puis la convergence uniforme, de (f_n) et de (f_n) .

Exercice 2 (CCINP 25) Pour $n \in \mathbb{N}$ on pose $f_n(x) = \frac{nx^2}{1+nx}$ si $x \ge 0$, $\frac{nx^3}{1+nx^2}$ si x < 0.

- a) Montrer que (f_n) converge uniformément sur **R** vers une fonction que l'on précisera.
- b) Montrer que f_n est dérivable sur **R** puis étudier la convergence de (f'_n) .

Exercice 3 (Navale 25)

Étudier la convergence sur]0,1] de la suite de fonctions définie par : $f_n(x) = \sum_{k=1}^n \frac{x^k}{k} - \int_1^n \frac{x^t}{t} dt$.

Exercice 4 (*Mines-Ponts 25*) Soit $f_n(x) = \frac{x^n}{n!} e^{-x}$ pour $n \in \mathbb{N}$.

- a) Étudier la convergence simple et uniforme de la suite de terme général $f_n(x)$ sur $[0, +\infty[$.
- b) Montrer que, pour tout $n \in \mathbb{N}$, f_n est intégrable sur $[0, +\infty[$ et calculer cette intégrale.
- c) Déterminer la limite de $\int_0^{+\infty} f_n(t) dt$ quand n tend vers l'infini. Commentaire?

Exercice 5 (CCINP 25) Pour $n \in \mathbb{N}^*$ et x > 0 on pose $f_n(x) = \frac{1}{\sinh(nx)}$.

- a) Donner le domaine de définition de $S(x) = \sum_{n \ge 1} f_n(x)$.
- b) Déterminer le domaine de continuité de *S*, puis les variations de *S*.
- c) Démontrer qu'il existe A > 0 tel que : $\forall n \ge 2$, $\forall x \ge A$, $f_n(x) \le 3e^{-nx}$.
- d) En déduire que $S(x) \sim \frac{1}{\sinh(x)}$ quand x tend vers $+\infty$.

Exercice 6 (CCINP 25) Pour $x \in \mathbb{R}$ et $n \in \mathbb{N}^*$ on pose $u_n(x) = \frac{\ln(1+x^2n^2)}{n^2\ln(1+n)}$.

- a) Montrer que la série de terme général $u_n(x)$ converge pour tout $x \in \mathbf{R}$.
- b) Montrer que la somme de la série est continue sur **R**.
- c) La série des dérivées converge-t-elle normalement sur R?
- d) Montrer que la série des dérivées converge uniformément sur R.
 (on pourra pour cela effectuer une comparaison série intégrale)

Exercice 7 (Centrale 25)

- 1) Montrer qu'il existe une unique fonction f_n de classe \mathscr{C}^2 de \mathbf{R}_+^* dans \mathbf{R} vérifiant : $f_n(1) = f_n(2) = 0$ et $f_n''(x) = (-1)^n 2^{-nx^2}$.
- 2) Établir la convergence uniforme des séries de fonction $\sum f_n''$, $\sum f_n'$ et $\sum f_n$ sur tout segment de \mathbf{R}_+^* .

Exercice 8 (*Mines-Télécom 23*) Pour x > 0 on pose $f(x) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{1+xn}$.

- a) Montrer que l'on définit ainsi une application continue sur \mathbf{R}_{+}^{*} .
- b) Déterminer la limite de f(x) en $+\infty$. c) Étudier la dérivabilité de f sur \mathbb{R}_+^* .

Exercice 9 (Mines-Télécom 25) Pour tout x > 0 on pose $f(x) = \sum_{n=0}^{+\infty} \frac{1}{n!(n+x)}$.

- a) Montrer que f est bien définie sur $]0, +\infty[$.
- b) Déterminer $(a, b) \in \mathbb{R}^2$ tels que : $f(x) = \frac{a}{x} + \frac{b}{x^2} + o\left(\frac{1}{x^2}\right)$ quand x tend vers $+\infty$.

Exercice 10 (CCINP 22) Soit $f: t \mapsto e^t \ln(t)$. Justifier l'intégrabilité de f sur]0, 1] puis montrer que $\int_0^1 f(t) dt = -\sum_{n=1}^{+\infty} \frac{1}{n n!}$