PSI-Pasteur 2025-26 DM4

R désigne l'ensemble des nombres réels.

Soit α un réel strictement positif.

Pour n entier naturel non nul, on considère l'application u_n de $[0,+\infty[$ vers ${\bf R}$ définie par :

$$u_n(x) = \frac{x}{n^{\alpha} \left(1 + nx^2\right)}$$

I. Étude des modes de convergence de la série de fonctions $\sum u_n$

- 1) Montrer que la série $\sum u_n$ converge simplement sur $[0, +\infty[$.
- 2) Montrer que la série $\sum u_n$ converge normalement sur $[0, +\infty[$ si et seulement si $\alpha > \frac{1}{2}$.
- 3) Soient a et b deux réels tels que : 0 < a < b . Prouver que la série $\sum u_n$ converge normalement sur [a, b].
- 4) On suppose dans cette question que : $\alpha \leqslant \frac{1}{2}$. Pour x élément de $[0, +\infty[$, on pose : $R_n(x) = \sum_{k=n+1}^{+\infty} u_k(x)$.
 - a) Établir l'inégalité : $R_n(x) \geqslant \sum_{k=n+1}^{2n} \frac{x}{\sqrt{2n}(1+kx^2)}$
 - b) En déduire que la série $\sum u_n$ n'est pas uniformément convergente sur [0,1].

On note S l'application de $[0, +\infty[$ vers \mathbf{R} définie par : $S = \sum_{n=1}^{+\infty} u_n$.

II. Étude de la continuité de S

- 1) Montrer que, pour tout $\alpha > 0$, S est continue sur $]0, +\infty[$.
- 2) Montrer que si $\alpha > \frac{1}{2}$ alors S est continue sur $[0, +\infty[$.
- 3) On suppose désormais que : $\alpha \leqslant \frac{1}{2}$.
 - a) Pour x>0 soit $f:t\mapsto \frac{x}{t^\alpha(1+tx^2)}$. Établir l'intégrabilité de f sur $[1,+\infty[$.
 - b) Montrer que : $\int_1^{+\infty} f(t) dt \leqslant S(x)$.
 - c) Calculer $\int_1^{+\infty} \frac{x}{\sqrt{t}(1+tx^2)} dt$.
 - d) En déduire que S n'est pas continue en 0.