Exercice 1 (Mines-Télécom 23)

- 1) Pour $(x, y) \in \mathbf{R}^2$ on pose : $N(x, y) = \max(|y|, |x + \frac{1}{2}y|, |x + y|)$. Vérifier que l'on définit ainsi une norme sur \mathbf{R}^2 et représenter sa boule unité.
- 2) Soit $(\varphi_1, ..., \varphi_p)$ une famille de formes linéaires sur un **R**-espace vectoriel E de dimension n. À quelle condition $N: x \mapsto \max\{|\varphi_i(x)| : 1 \le i \le p\}$ est-elle une norme sur E?

Exercice 2 (ENSEA 23) Dans $E = \mathbf{R}_4[X]$ on pose $\Phi(P,Q) = \int_{-2}^2 P(t)Q(t) dt$.

- a) Vérifier que Φ est un produit scalaire.
- b) Montrer que l'ensemble des polynômes pairs et l'ensemble des polynômes impairs sont des supplémentaires orthogonaux de *E*.
- c) Déterminer une base orthogonale de *E*.

Exercice 3 (CCINP 21) Soit E l'ensemble des fonctions f de classe C^1 de [0,1] dans \mathbb{R} vérifiant f(0) = 0. Pour $f \in E$ on pose $N(f) = ||f||_{\infty} + ||f'||_{\infty}$ et $N'(f) = ||f + f'||_{\infty}$.

- a) Montrer que N et N' sont des normes sur E.
- b) Montrer que : $\forall f \in E, \ \forall x \in [0,1], \ e^x f(x) = \int_0^x e^t (f(t) + f'(t)) \, dt$.
- c) Montrer que N et N' sont équivalentes.

Exercice 4 Dans un espace préhilbertien réel E, dont le produit scalaire est noté $\langle \cdot, \cdot \rangle$, on se donne une famille de vecteurs (e_1, \dots, e_n) .

À quelle condition, nécessaire et suffisante, $x\mapsto \sqrt{\sum_{k=1}^n \langle x,e_k\rangle^2}$ définit une norme sur E ?