Exercice 1 (Mines-Télécom 25) Pour $n \in \mathbb{N}^*$ on pose $I_n = \int_0^{+\infty} \frac{n \sin(\frac{t}{n})}{t(1+t^2)} dt$. Justifier la convergence de l'intégrale I_n puis étudier la convergence de la suite (I_n) .

Exercice 2 (Mines-Télécom 25) Soit $I = \int_0^1 \frac{\ln(t)}{(1-t)}$. Justifier la convergence de I puis montrer que $I = \sum_{n=1}^{+\infty} \frac{1}{n^2}$

Exercice 3 (Navale 25) Pour $n \in \mathbb{N}$ on pose $I_n = \int_0^{+\infty} \frac{x^n}{1 + x^{n+2}} \, \mathrm{d}x$. Justifier la convergence de l'intégrale I_n puis étudier la convergence de la suite (I_n) .

Exercice 4 (CCINP 25) Pour $n \in \mathbb{N}$, $a \in [0,1[$ et $x \in]0,1]$, soit $f_n(x) = \frac{1-e^{-nx}}{x^a(1+x^2)}$ et $I_n = \int_0^1 f_n(x) \, dx$.

- 1) Montrer que f_n converge simplement vers une fonction f.
- 2) Pour quelles valeurs de *a* la convergence est-elle uniforme?
- 3) Montrer que l'intégrale définissant I_n est convergente pour tout $n \in \mathbb{N}$.
- 4) Montrer que la suite (I_n) converge et déterminer sa limite.
- 5) Que se passe-t-il pour a = 1?

Exercice 5 (CCINP 25) Soit $I = \int_0^1 \frac{\ln(t) \ln(1-t^2)}{t^2} dt$.

- a) Justifier la convergence de l'intégrale I.
- b) Donner le développement en série entière de $\ln(1-t^2)$ pour $t \in [0,1[$.
- c) Montrer que $I = \sum_{n=1}^{+\infty} \frac{1}{n(2n-1)^2}$.
- d) Déterminer a, b et c tels que : $\forall n \in \mathbb{N}^*$, $\frac{1}{n(2n-1)^2} = \frac{a}{n} + \frac{b}{2n-1} + \frac{c}{(2n-1)^2}$.
- e) Montrer que $\sum_{n=1}^{+\infty} \left(\frac{1}{n} \frac{2}{2n-1} \right) = 2 \sum_{n=1}^{+\infty} \left(\frac{1}{2n} \frac{1}{2n-1} \right) = \sum_{n=1}^{+\infty} \frac{(-1)^n}{n}$.
- f) Sachant que $\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$, montrer enfin que : $I = \frac{\pi^2}{2} 2\ln(2)$.

Exercice 6 (CCINP 25) Pour $n \in \mathbb{N}^*$ on pose $u_n(x) = (-1)^n \frac{e^{-nx}}{n}$.

- 1) Déterminer le domaine de définition D de $S: x \mapsto \sum_{n=1}^{+\infty} u_n(x)$.
- 2) *S* est-elle continue sur *D* ?
- 3) Montrer que S est de classe \mathscr{C}^1 sur \mathbf{R}_+^* .
- 4) Pour tout $x \in D$, calculer explicitement S(x).
- 5) Montrer que S est intégrable sur $[0, +\infty[$.
- 6) Déterminer la valeur de $\int_0^{+\infty} S(x) dx$, sachant que $\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.

Exercice 7 (Centrale 24) Soit $f \in \mathscr{C}_{\mathbf{R}}^{[0,1]}$ et, pour $n \in \mathbf{N}$, $u_n = \int_0^1 f(x) x^n dx$.

- a) Montrer que si f(1) > 0 alors il existe c > 0 et $a \in]0,1[$ tels que : $\forall t \in [c,1], f(t) \ge c$.
- b) Montrer que si la série de terme général u_n converge alors f(1) = 0.
- c) On suppose que f est de classe \mathscr{C}^1 et que f(1) = 0. Montrer que $\sum u_n$ converge.

Exercice 8 (Mines-Ponts 21)

- a) Pour $n \in \mathbb{N}^*$, soit $H_n = \sum_{k=1}^n \frac{1}{k}$. Montrer que $H_n \ln(n)$ tend vers une limite $\gamma \in \mathbb{R}$.
- b) Justifier la convergence de $I = \int_0^{+\infty} e^{-t} \ln(t) dt$.
- c) Pour tout entier $n \ge 2$ on pose $I_n = \int_0^n \left(1 \frac{t}{n}\right)^{n-1} \ln(t) dt$. Justifier l'existence de I_n puis exprimer I_n en fonction de H_n . En déduire que $I=-\gamma$.