Exercice 1 (CCINP 22) Pour $a \in \mathbb{R}$ et $n \in \mathbb{N}^*$ on pose $f_n(x) = x(1 + n^a e^{-nx})$.

- a) Montrer que la suite de fonctions (f_n) converge simplement sur $[0, +\infty[$ et préciser sa limite.
- b) Déterminer les valeurs de a pour lesquelles la convergence est uniforme sur $[0, +\infty[$.
- c) Calculer la limite quand n tend vers l'infini de $\int_0^1 f_n(t) \, \mathrm{d} t$.

Exercice 2 (CCINP 23) Pour
$$n \in \mathbb{N}$$
 soit $I_n = \int_0^{+\infty} \frac{\arctan(n+x)}{(n+x)\sqrt{x}} dx$.

- a) Justifier l'existence de I_n puis déterminer sa limite quand n tend vers l'infini.
- b) Calculer $\int_0^{+\infty} \frac{1}{(n+x)\sqrt{x}} dx$. En déduire un équivalent de I_n .

Exercice 3 (CCINP 22) Soit
$$S(x) = \sum_{n \ge 2} \frac{\ln(x)}{x^n \ln(n)}$$
.

- a) Déterminer le domaine *D* de convergence cette série de fonctions.
- b) Montrer que cette série ne converge pas normalement sur *D*.
- c) Montrer que : $\forall x \in D$, $\forall n \in \mathbb{N}^*$, $\left| \sum_{k=n+1}^{+\infty} u_k(x) \right| \leqslant \frac{1}{\ln(n+1)}$.
- d) Montrer que *S* est continue sur *D*. Est-elle intégrable?

Exercice 4 (CCINP 23) Soit
$$I = \int_0^1 \frac{t (\ln t)^2}{(1-t)^2} dt$$
.

Justifier l'existence de I puis montrer que $I=2\sum_{n=1}^{+\infty}\frac{1}{n^2}-\sum_{n=1}^{+\infty}\frac{1}{n^3}$.